Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 81a58cc
  • /
  • principalComponents.rd
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:b0d5b3bfbf428a44b3fbf3cc103c0c958b99ad81
directory badge Iframe embedding
swh:1:dir:81a58ccd18362c0779c20584660fd01c976e32e4
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
principalComponents.rd
\name{principalComponents}
\alias{principalComponents}
\title{ Principal Component Analysis }

\description{
 The \emph{principalComponents} function return a principal component analysis.
 Other R functions give the same results, but \emph{principalComponents} is mainly
 customed for the other factor analysis functions available in the \emph{nfactors}
 package.  To retain only a small number of components the \emph{componentAxis}
 function has to be used.
 }

\usage{
 principalComponents(R)
 }

\arguments{
  \item{R}{     numeric: correlation or covariance matrix}
 }

\value{
  \item{values}{       numeric: variance of each component }
  \item{varExplained}{ numeric: variance explained by each component }
  \item{varExplained}{ numeric: cumulative variance explained by each component }
  \item{loadings}{     numeric: loadings of each variable on each component }
 }

\seealso{
 \code{\link{componentAxis}},
 \code{\link{iterativePrincipalAxis}},
 \code{\link{rRecovery}}
 }

\author{ 
    Gilles Raiche, Universite du Quebec a Montreal
    \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/}
 }

\examples{
# .......................................................
# Exemple from Kim and Mueller (1978, p. 10)
# Population: upper diagonal
# Simulated sample: lower diagnonal
 R <- matrix(c( 1.000, .6008, .4984, .1920, .1959, .3466,
                .5600, 1.000, .4749, .2196, .1912, .2979,
                .4800, .4200, 1.000, .2079, .2010, .2445,
                .2240, .1960, .1680, 1.000, .4334, .3197,
                .1920, .1680, .1440, .4200, 1.000, .4207,
                .1600, .1400, .1200, .3500, .3000, 1.000),
                nrow=6, byrow=TRUE)

# Factor analysis: Principal components -
# Kim et Mueller (1978, p. 21)
# Replace upper diagonal by lower diagonal
 RU <- diagReplace(R, upper=TRUE)
 principalComponents(RU)

# Replace lower diagonal by upper diagonal
 RL <- diagReplace(R, upper=FALSE)
 principalComponents(RL)
# .......................................................
 }

\keyword{ multivariate }

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top