Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/MDverse/mdde
23 April 2023, 12:50:48 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    • 52604906f80f96b27fd61209a78a93cd36be9a45
    No releases to show
  • 1fc8b8e
  • /
  • website_management.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:b12a67851de5c0f51afe2aa584ffb254cecab08c
origin badgedirectory badge Iframe embedding
swh:1:dir:1fc8b8eaabf4a9087e6d5b0ec5ed97031482bcbf
origin badgerevision badge
swh:1:rev:52604906f80f96b27fd61209a78a93cd36be9a45
origin badgesnapshot badge
swh:1:snp:5a3326fd135f604290fb799470f524384a959b04
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 52604906f80f96b27fd61209a78a93cd36be9a45 authored by Pierre Poulain on 23 April 2023, 12:49:24 UTC
Add data DOI
Tip revision: 5260490
website_management.py
"""Helper functions to manage the Streamlit application."""

import streamlit as st
import pandas as pd
from pandas.api.types import (
    is_categorical_dtype,
    is_numeric_dtype,
    is_object_dtype,
)
from datetime import datetime
import itables
from itables import JavascriptFunction


@st.cache_data
def load_data() -> dict:
    """Retrieve our data and loads it into the pd.DataFrame object.

    Returns
    -------
    dict
        returns a dict containing the pd.DataFrame objects of our datasets.
    """
    # DATA_URL needs to be the URL of the last version of the data.
    # I cannot be the identifier provided by the master DOI.
    DATA_URL = "https://zenodo.org/record/7856806"
    dfs = {}
    datasets = pd.read_parquet(
        f"{DATA_URL}/files/datasets.parquet"
    )
    gro = pd.read_parquet(
        f"{DATA_URL}/files/gromacs_gro_files.parquet"
    )
    gro_data = pd.merge(
        gro,
        datasets,
        how="left",
        on=["dataset_id", "dataset_origin"],
        validate="many_to_one",
    )
    mdp = pd.read_parquet(
        f"{DATA_URL}/files/gromacs_mdp_files.parquet"
    )
    mdp_data = pd.merge(
        mdp,
        datasets,
        how="left",
        on=["dataset_id", "dataset_origin"],
        validate="many_to_one",
    )
    dfs["datasets"] = datasets
    dfs["gro"] = gro_data
    dfs["mdp"] = mdp_data
    return dfs


def is_isoformat(dates: object) -> bool:
    """Check that all dates are in iso 8601 format.

    Parameters
    ----------
    dates: object
        contains all dates from a pandas dataframe.

    Returns
    -------
    bool
        returns false if at least one element does not respect the format
        otherwise returns true.
    """
    for date_str in dates:
        # Try to convert a string into an iso datatime format
        try:
            datetime.fromisoformat(date_str)
        except Exception:
            return False
    return True


def filter_dataframe(df: pd.DataFrame, add_filter) -> pd.DataFrame:
    """Add a UI on top of a dataframe to let user filter columns.

    This function is based on the code from the following repository:
    https://github.com/tylerjrichards/st-filter-dataframe

    Parameters
    ----------
    df : pd.DataFrame
        original dataframe.
    add_filter : bool
        tells if the user wants to apply filter.

    Returns
    -------
    pd.DataFrame
            Filtered dataframe
    """
    if not add_filter:
        return df

    df = df.copy()
    tmp_col = {}
    # Try to convert datetimes into a standard format (datetime, no timezone)
    for col in df.columns:
        if is_object_dtype(df[col]):
            try:
                tmp_col[col] = pd.to_datetime(df[col].copy())
                df[col] = pd.to_datetime(df[col]).dt.strftime("%Y-%m-%d")
            except Exception:
                pass

    modification_container = st.expander(label="Filter dataframe on:", expanded=True)
    with modification_container:
        to_filter_columns = st.multiselect(
            label="Filter dataframe on",
            options=df.columns.drop(["URL", "ID"], errors="ignore"),
            label_visibility="collapsed",
        )
        for column in to_filter_columns:
            left, right, _ = st.columns((1, 20, 5))
            left.write("↳")
            # Treat columns with < 10 unique values as categorical
            if is_categorical_dtype(df[column]) or df[column].nunique() < 10:
                user_cat_input = right.multiselect(
                    f"Values for {column}",
                    df[column].unique(),
                    default=list(df[column].unique()),
                )
                df = df[df[column].isin(user_cat_input)]
            elif is_numeric_dtype(df[column]):
                _min = float(df[column].min())
                _max = float(df[column].max())
                step = (_max - _min) / 100
                user_num_input = right.slider(
                    f"Values for {column}",
                    _min,
                    _max,
                    (_min, _max),
                    step=step,
                )
                df = df[df[column].between(*user_num_input)]
            elif is_isoformat(df[column]):
                user_date_input = right.date_input(
                    f"Values for {column}",
                    value=(
                        tmp_col[column].min(),
                        tmp_col[column].max(),
                    ),
                )
                if len(user_date_input) == 2:
                    user_date_input = tuple(map(pd.to_datetime, user_date_input))
                    start_date, end_date = user_date_input
                    df = df.loc[tmp_col[column].between(start_date, end_date)]
            else:
                user_text_input = right.text_input(
                    f"Substring or regex in {column}",
                )
                if user_text_input:
                    df = df[
                        df[column].str.contains(user_text_input, case=False, na=False)
                    ]
    return df


def link_content_func() -> str:
    """Return a JavaScript template as a string to display a tooltip and href.

    The template create a hyperlink to a specifi column and display a tooltip
    for each cells of the table. The template will be configured in the
    display_table function.

    Returns
    -------
    str
        return the JS code as a string.
    """
    return """
            function (td, cellData, rowData, row, col) {
                if (col == 3) {
                    td.innerHTML = "<a href="+rowData[1]+" target='_blank'>"+cellData+"</a>";
                }
                td.setAttribute('title', cellData);
            }
            """


@st.cache_data
def display_table(data_filtered: pd.DataFrame) -> str:
    """Display a table of the query data.

    To get more information about the itables library, please visit:
    https://mwouts.github.io/itables/advanced_parameters.html

    Parameters
    ----------
    data_filtered: pd.DataFrame
        filtered dataframe.

    Returns
    -------
    str
        a HTML string containing the datatable.
    """
    st.write(f"{len(data_filtered)} elements found")
    table = itables.to_html_datatable(
        data_filtered,
        # Style display of the table
        classes="display nowrap cell-border",
        # Element to display
        dom="ltpr",
        # Number of elements to display
        lengthMenu=[20, 50, 100, 250],
        style="width:100%",
        # Apply Javascript function to all cells
        columnDefs=[
            {
                "targets": "_all",
                "createdCell": JavascriptFunction(link_content_func()),
            }
        ],
        # Enable scrolling
        scrollX=True,
        # Set a vertical scroll
        scrollY=650,
        # Desactivate downsampling
        maxBytes=0,
    )
    return table


def display_search_bar(select_data: str = "datasets") -> tuple:
    """Configure the display of the search bar.

    Parameters
    ----------
    select_data: str
        Type of data to search for.
        Values: ["datasets", "gro","mdp"]
        Default: "datasets"

    Returns
    -------
    tuple
        contains search word, a bool for checkbox and a layout of
        the site.
    """
    st.title("MDverse data explorer")
    placeholder = (
        "Enter search term. For instance: Covid, POPC, Gromacs, CHARMM36, 1402417"
    )
    label_search = ""
    if select_data == "datasets":
        label_search = "Datasets quick search"
    elif select_data == "gro":
        label_search = ".gro files quick search"
    elif select_data == "mdp":
        label_search = ".mdp files quick search"
    col_keyup, col_filter, col_download, _ = st.columns([4, 1.2, 1, 1])
    with col_keyup:
        search = st.text_input(label_search, placeholder=placeholder)
    return search, col_filter, col_download


def display_export_button(data_filtered: pd.DataFrame) -> None:
    """Add a download button to export the data from the table.

    Parameters
    ----------
    data_filtered: pd.DataFrame
        filtered dataframe.
    """
    date_now = f"{datetime.now():%Y-%m-%d_%H-%M-%S}"
    data_filtered = data_filtered.drop("index", axis=1)
    # Change URL column to the last column
    temp_cols = list(data_filtered.columns)
    new_cols = temp_cols[1:] + temp_cols[0:1]
    data_filtered = data_filtered[new_cols]
    st.download_button(
        label="🛒 Export to tsv",
        data=data_filtered.to_csv(sep="\t", index=False).encode("utf-8"),
        file_name=f"mdverse_{date_now}.tsv",
        mime="text/tsv",
    )


def update_contents(data_filtered: pd.DataFrame, select_data: str) -> None:
    """Change the content display according to the cursor position.

    Parameters
    ----------
    data_filtered: pd.DataFrame
        filtered dataframe.
    select_data: str
        Type of data to search for.
        Values: ["datasets", "gro","mdp"]
    """
    selected_row = st.session_state["cursor" + select_data]
    data = data_filtered.iloc[selected_row]
    contents = f"""
        **Dataset:**
        [{data["Dataset"]} {data["ID"]}]({data["URL"]})<br />
        **Creation date:** {data["Creation date"]}<br />
        **Author(s):** {data["Authors"]}<br />
        **Title:** *{data["Title"]}*<br />
        **Description:**<br /> {data["Description"]}
    """
    st.session_state["content"] = contents


def display_slider(select_data: str, size_selected: int) -> None:
    """Display a sidebar for the information to be displayed.

    Parameters
    ----------
    select_data: str
        Type of data to search for.
        Values: ["datasets", "gro","mdp"]
    size_selected: int
        number of rows selected.
    """
    cursor = st.sidebar.slider("Selected row:", 1, size_selected, 1)
    st.session_state["cursor" + select_data] = cursor - 1


def display_details(data_filtered: pd.DataFrame, select_data: str) -> None:
    """Show the details of the selected rows in the sidebar.

    Parameters
    ----------
    data_filtered: pd.DataFrame
        filtered dataframe.
    select_data: str
        Type of data to search for.
        Values: ["datasets", "gro","mdp"]
    """
    if (
        "cursor" + select_data not in st.session_state
        or "content" not in st.session_state
    ):
        st.session_state["cursor" + select_data] = 0
        st.session_state["content"] = ""

    size_selected = len(data_filtered)
    if size_selected:
        if size_selected > 1:
            display_slider(select_data, size_selected)
        update_contents(data_filtered, select_data)
        st.sidebar.markdown(st.session_state["content"], unsafe_allow_html=True)
    else:
        st.session_state["cursor" + select_data] = 0


def load_css() -> None:
    """Load a css style."""
    st.markdown(
        """
        <style>
            /* Centre the add filter checkbox and the download button */
            .stCheckbox {
                position: absolute;
                top: 40px;
            }

            .stDownloadButton {
                position: absolute;
                top: 33px;
            }

            /* Responsive display */
            @media (max-width:640px) {
                .stCheckbox {
                    position: static;
                }

                .stDownloadButton {
                    position: static;
                }
            }

            /* Maximize thedusplay of the data explorer search */
            .block-container:first-of-type {
                padding-top: 20px;
                padding-left: 20px;
                padding-right: 20px;
            }
        </style>
    """,
        unsafe_allow_html=True,
    )
    itables.options.css = """
            /* Change the display of the table */
            .itables {
                font-family: 'sans-serif';
                font-size: 0.8rem;
                background: white;
                padding: 10px;
            }

            /* Specific column titles */
            .itables table th {
                word-wrap: break-word;
                font-size: 11px;
            }

            /* Cells specific */
            .itables table td {
                word-wrap: break-word;
                min-width: 50px;
                max-width: 50px;
                overflow: hidden;
                text-overflow: ellipsis;
                font-size: 12px;
            }

            /* Set the width of the id column */
            .itables table td:nth-child(4) {
                min-width: 80px;
                max-width: 80px;
            }

            /* Set the width of the title and description columns */
            .itables table td:nth-child(5), .itables table td:nth-child(8) {
                max-width: 300px;
            }

            /* Hide the URL column */
            .itables table th:nth-child(2), .itables table td:nth-child(2){
                display:none;
            }

            /* Apply colour to links */
            a:link, a:visited {
                color: rgb(51, 125, 255);
            }
    """

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top