\name{thomas.estK} \alias{thomas.estK} \title{Fit the Thomas Point Process by Minimum Contrast} \description{ Fits the Thomas point process to a point pattern dataset by the Method of Minimum Contrast. } \usage{ thomas.estK(X, startpar=c(kappa=1,sigma2=1), lambda=NULL, q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...) } \arguments{ \item{X}{ Data to which the Thomas model will be fitted. Either a point pattern or a summary statistic. See Details. } \item{startpar}{ Vector of starting values for the parameters of the Thomas process. } \item{lambda}{ Optional. An estimate of the intensity of the point process. } \item{q,p}{ Optional. Exponents for the contrast criterion. } \item{rmin, rmax}{ Optional. The interval of \eqn{r} values for the contrast criterion. } \item{\dots}{ Optional arguments passed to \code{\link[stats]{optim}} to control the optimisation algorithm. See Details. } } \details{ This algorithm fits the Thomas point process model to a point pattern dataset by the Method of Minimum Contrast, using the \eqn{K} function. The argument \code{X} can be either \describe{ \item{a point pattern:}{An object of class \code{"ppp"} representing a point pattern dataset. The \eqn{K} function of the point pattern will be computed using \code{\link{Kest}}, and the method of minimum contrast will be applied to this. } \item{a summary statistic:}{An object of class \code{"fv"} containing the values of a summary statistic, computed for a point pattern dataset. The summary statistic should be the \eqn{K} function, and this object should have been obtained by a call to \code{\link{Kest}} or one of its relatives. } } The algorithm fits the Thomas point process to \code{X}, by finding the parameters of the Thomas model which give the closest match between the theoretical \eqn{K} function of the Thomas process and the observed \eqn{K} function. For a more detailed explanation of the Method of Minimum Contrast, see \code{\link{mincontrast}}. The Thomas point process is described in Moller and Waagepetersen (2003, pp. 61--62). It is a cluster process formed by taking a pattern of parent points, generated according to a Poisson process with intensity \eqn{\kappa}{kappa}, and around each parent point, generating a random number of offspring points, such that the number of offspring of each parent is a Poisson random variable with mean \eqn{\mu}{mu}, and the locations of the offspring points of one parent are independent and isotropically Normally distributed around the parent point with standard deviation \eqn{\sigma}{sigma}. The theoretical \eqn{K}-function of the Thomas process is \deqn{ K(r) = \pi r^2 + \frac 1 \kappa (1 - \exp(-\frac{r^2}{4\sigma^2})). }{ K(r) = pi r^2 + (1 - exp(-r^2/(4 sigma^2)))/kappa. } The theoretical intensity of the Thomas process is \eqn{\lambda = \kappa \mu}{lambda=kappa* mu}. In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the parameters \eqn{\kappa}{kappa} and \eqn{\sigma^2}{sigma^2}. Then the remaining parameter \eqn{\mu}{mu} is inferred from the estimated intensity \eqn{\lambda}{lambda}. If the argument \code{lambda} is provided, then this is used as the value of \eqn{\lambda}{lambda}. Otherwise, if \code{X} is a point pattern, then \eqn{\lambda}{lambda} will be estimated from \code{X}. If \code{X} is a summary statistic and \code{lambda} is missing, then the intensity \eqn{\lambda}{lambda} cannot be estimated, and the parameter \eqn{\mu}{mu} will be returned as \code{NA}. The remaining arguments \code{rmin,rmax,q,p} control the method of minimum contrast; see \code{\link{mincontrast}}. The Thomas process can be simulated, using \code{\link{rThomas}}. Homogeneous or inhomogeneous Thomas process models can also be fitted using the function \code{\link{kppm}}. The optimisation algorithm can be controlled through the additional arguments \code{"..."} which are passed to the optimisation function \code{\link[stats]{optim}}. For example, to constrain the parameter values to a certain range, use the argument \code{method="L-BFGS-B"} to select an optimisation algorithm that respects box constraints, and use the arguments \code{lower} and \code{upper} to specify (vectors of) minimum and maximum values for each parameter. } \value{ An object of class \code{"minconfit"}. There are methods for printing and plotting this object. It contains the following main components: \item{par }{Vector of fitted parameter values.} \item{fit }{Function value table (object of class \code{"fv"}) containing the observed values of the summary statistic (\code{observed}) and the theoretical values of the summary statistic computed from the fitted model parameters. } } \references{ Moller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton. Waagepetersen, R. (2006). An estimation function approach to inference for inhomogeneous Neyman-Scott processes. Submitted. } \author{Rasmus Waagepetersen \email{rw@math.auc.dk} Adapted for \pkg{spatstat} by Adrian Baddeley \email{adrian@maths.uwa.edu.au} \url{http://www.maths.uwa.edu.au/~adrian/} } \seealso{ \code{\link{kppm}}, \code{\link{lgcp.estK}}, \code{\link{matclust.estK}}, \code{\link{mincontrast}}, \code{\link{Kest}}, \code{\link{rThomas}} to simulate the fitted model. } \examples{ data(redwood) u <- thomas.estK(redwood, c(kappa=10, sigma2=0.1)) u plot(u) } \keyword{spatial} \keyword{models}