Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 45ef561
  • /
  • energy.h
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:b23687b76ba869bf3251abf85e9e985fb1319566
directory badge Iframe embedding
swh:1:dir:45ef561aa9bb7cf13b9fd8057ce25f873848f634

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
energy.h
/* energy.h */
/* Vladimir Kolmogorov (vnk@cs.cornell.edu), 2003. */

/*
	This software implements an energy minimization technique described in

	What Energy Functions can be Minimized via Graph Cuts?
	Vladimir Kolmogorov and Ramin Zabih. 
	To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI). 
	Earlier version appeared in European Conference on Computer Vision (ECCV), May 2002. 

	More specifically, it computes the global minimum of a function E of binary
	variables x_1, ..., x_n which can be written as a sum of terms involving
	at most three variables at a time:

		E(x_1, ..., x_n) = \sum_{i}     E^{i}    (x_i)
		                 + \sum_{i,j}   E^{i,j}  (x_i, x_j)
		                 + \sum_{i,j,k} E^{i,j,k}(x_i, x_j, x_k)

	The method works only if each term is "regular". Definitions of regularity
	for terms E^{i}, E^{i,j}, E^{i,j,k} are given below as comments to functions
	add_term1(), add_term2(), add_term3(). 

	This software can be used only for research purposes. IF YOU USE THIS SOFTWARE,
	YOU SHOULD CITE THE AFOREMENTIONED PAPER IN ANY RESULTING PUBLICATION.

	In order to use it, you will also need a MAXFLOW software which can be
	obtained from http://www.cs.cornell.edu/People/vnk/software.html


	Example usage
	(Minimizes the following function of 3 binary variables:
	E(x, y, z) = x - 2*y + 3*(1-z) - 4*x*y + 5*|y-z|):

	///////////////////////////////////////////////////

	#include <stdio.h>
	#include "energy.h"

	void main()
	{
		// Minimize the following function of 3 binary variables:
		// E(x, y, z) = x - 2*y + 3*(1-z) - 4*x*y + 5*|y-z|
		   
		Energy::Var varx, vary, varz;
		Energy *e = new Energy();

		varx = e -> add_variable();
		vary = e -> add_variable();
		varz = e -> add_variable();

		e -> add_term1(varx, 0, 1);  // add term x 
		e -> add_term1(vary, 0, -2); // add term -2*y
		e -> add_term1(varz, 3, 0);  // add term 3*(1-z)

		e -> add_term2(x, y, 0, 0, 0, -4); // add term -4*x*y
		e -> add_term2(y, z, 0, 5, 5, 0); // add term 5*|y-z|

		Energy::TotalValue Emin = e -> minimize();
		
		printf("Minimum = %d\n", Emin);
		printf("Optimal solution:\n");
		printf("x = %d\n", e->get_var(varx));
		printf("y = %d\n", e->get_var(vary));
		printf("z = %d\n", e->get_var(varz));

		delete e;
	}

	///////////////////////////////////////////////////
*/

#ifndef __ENERGY_H__
#define __ENERGY_H__

#include <assert.h>
#include "graph.h"

template <typename captype, typename tcaptype, typename flowtype> class Energy: public Graph<captype,tcaptype,flowtype>
{
	typedef Graph<captype,tcaptype,flowtype> GraphT;
public:
	typedef typename GraphT::node_id Var;

	/* Types of energy values.
	   Value is a type of a value in a single term
	   TotalValue is a type of a value of the total energy.
	   By default Value = short, TotalValue = int.
	   To change it, change the corresponding types in graph.h */
	typedef captype Value;
	typedef flowtype TotalValue;

	/* interface functions */

	/* Constructor. Optional argument is the pointer to the
	   function which will be called if an error occurs;
	   an error message is passed to this function. If this
	   argument is omitted, exit(1) will be called. */
	Energy(int var_num_max, int edge_num_max, void (*err_function)(char *) = NULL);

	/* Destructor */
	~Energy();

	/* Adds a new binary variable */
	Var add_variable(int num=1);

	/* Adds a constant E to the energy function */
	void add_constant(Value E);

	/* Adds a new term E(x) of one binary variable
	   to the energy function, where
	       E(0) = E0, E(1) = E1
	   E0 and E1 can be arbitrary */
	void add_term1(Var x,
	               Value E0, Value E1);

	/* Adds a new term E(x,y) of two binary variables
	   to the energy function, where
	       E(0,0) = E00, E(0,1) = E01
	       E(1,0) = E10, E(1,1) = E11
	   The term must be regular, i.e. E00 + E11 <= E01 + E10 */
	void add_term2(Var x, Var y,
	               Value E00, Value E01,
	               Value E10, Value E11);

	/* Adds a new term E(x,y,z) of three binary variables
	   to the energy function, where
	       E(0,0,0) = E000, E(0,0,1) = E001
	       E(0,1,0) = E010, E(0,1,1) = E011
	       E(1,0,0) = E100, E(1,0,1) = E101
	       E(1,1,0) = E110, E(1,1,1) = E111
	   The term must be regular. It means that if one
	   of the variables is fixed (for example, y=1), then
	   the resulting function of two variables must be regular.
	   Since there are 6 ways to fix one variable
	   (3 variables times 2 binary values - 0 and 1),
	   this is equivalent to 6 inequalities */
	void add_term3(Var x, Var y, Var z,
	               Value E000, Value E001,
	               Value E010, Value E011,
	               Value E100, Value E101,
	               Value E110, Value E111);

	/* After the energy function has been constructed,
	   call this function to minimize it.
	   Returns the minimum of the function */
	TotalValue minimize();

	/* After 'minimize' has been called, this function
	   can be used to determine the value of variable 'x'
	   in the optimal solution.
	   Returns either 0 or 1 */
	int get_var(Var x);

/***********************************************************************/
/***********************************************************************/
/***********************************************************************/

private:
	/* internal variables and functions */

	TotalValue	Econst;
	void		(*error_function)(char *);	/* this function is called if a error occurs,
											with a corresponding error message
											(or exit(1) is called if it's NULL) */
};















/***********************************************************************/
/************************  Implementation ******************************/
/***********************************************************************/

template <typename captype, typename tcaptype, typename flowtype> 
inline Energy<captype,tcaptype,flowtype>::Energy(int var_num_max, int edge_num_max, void (*err_function)(char *)) : Graph<captype,tcaptype,flowtype>(var_num_max, edge_num_max, err_function)
{
	Econst = 0;
	error_function = err_function;
}

template <typename captype, typename tcaptype, typename flowtype> 
inline Energy<captype,tcaptype,flowtype>::~Energy() {}

template <typename captype, typename tcaptype, typename flowtype> 
inline typename Energy<captype,tcaptype,flowtype>::Var Energy<captype,tcaptype,flowtype>::add_variable(int num) 
{	return GraphT::add_node(num); }

template <typename captype, typename tcaptype, typename flowtype> 
inline void Energy<captype,tcaptype,flowtype>::add_constant(Value A) { Econst += A; }

template <typename captype, typename tcaptype, typename flowtype> 
inline void Energy<captype,tcaptype,flowtype>::add_term1(Var x,
                              Value A, Value B)
{
	this->add_tweights(x, B, A);
}

template <typename captype, typename tcaptype, typename flowtype> 
inline void Energy<captype,tcaptype,flowtype>::add_term2(Var x, Var y,
                              Value A, Value B,
                              Value C, Value D)
{
	/* 
	   E = A A  +  0   B-A
	       D D     C-D 0
	   Add edges for the first term
	*/
	this->add_tweights(x, D, A);
	B -= A; C -= D;

	/* now need to represent
	   0 B
	   C 0
	*/

	assert(B + C >= 0); /* check regularity */
	if (B < 0)
	{
		/* Write it as
		   B B  +  -B 0  +  0   0
		   0 0     -B 0     B+C 0
		*/
		this->add_tweights(x, 0, B); /* first term */
		this->add_tweights(y, 0, -B); /* second term */
		this->add_edge(x, y, 0, B+C); /* third term */
	}
	else if (C < 0)
	{
		/* Write it as
		   -C -C  +  C 0  +  0 B+C
		    0  0     C 0     0 0
		*/
		this->add_tweights(x, 0, -C); /* first term */
		this->add_tweights(y, 0, C); /* second term */
		this->add_edge(x, y, B+C, 0); /* third term */
	}
	else /* B >= 0, C >= 0 */
	{
		this->add_edge(x, y, B, C);
	}
}

template <typename captype, typename tcaptype, typename flowtype> 
inline void Energy<captype,tcaptype,flowtype>::add_term3(Var x, Var y, Var z,
                              Value E000, Value E001,
                              Value E010, Value E011,
                              Value E100, Value E101,
                              Value E110, Value E111)
{
	Value pi = (E000 + E011 + E101 + E110) - (E100 + E010 + E001 + E111);
	Value delta;
	Var u;

	if (pi >= 0)
	{
		Econst += E111 - (E011 + E101 + E110);

		add_tweights(x, E101, E001);
		add_tweights(y, E110, E100);
		add_tweights(z, E011, E010);

		delta = (E010 + E001) - (E000 + E011); /* -pi(E[x=0]) */
		assert(delta >= 0); /* check regularity */
		add_edge(y, z, delta, 0);

		delta = (E100 + E001) - (E000 + E101); /* -pi(E[y=0]) */
		assert(delta >= 0); /* check regularity */
		add_edge(z, x, delta, 0);

		delta = (E100 + E010) - (E000 + E110); /* -pi(E[z=0]) */
		assert(delta >= 0); /* check regularity */
		add_edge(x, y, delta, 0);

		if (pi > 0)
		{
			u = add_variable();
			add_edge(x, u, pi, 0);
			add_edge(y, u, pi, 0);
			add_edge(z, u, pi, 0);
			add_tweights(u, 0, pi);
		}
	}
	else
	{
		Econst += E000 - (E100 + E010 + E001);

		add_tweights(x, E110, E010);
		add_tweights(y, E011, E001);
		add_tweights(z, E101, E100);

		delta = (E110 + E101) - (E100 + E111); /* -pi(E[x=1]) */
		assert(delta >= 0); /* check regularity */
		add_edge(z, y, delta, 0);

		delta = (E110 + E011) - (E010 + E111); /* -pi(E[y=1]) */
		assert(delta >= 0); /* check regularity */
		add_edge(x, z, delta, 0);

		delta = (E101 + E011) - (E001 + E111); /* -pi(E[z=1]) */
		assert(delta >= 0); /* check regularity */
		add_edge(y, x, delta, 0);

		u = add_variable();
		add_edge(u, x, -pi, 0);
		add_edge(u, y, -pi, 0);
		add_edge(u, z, -pi, 0);
		add_tweights(u, -pi, 0);
	}
}

template <typename captype, typename tcaptype, typename flowtype> 
inline typename Energy<captype,tcaptype,flowtype>::TotalValue Energy<captype,tcaptype,flowtype>::minimize() { 
return Econst + GraphT::maxflow(); }

template <typename captype, typename tcaptype, typename flowtype> 
inline int Energy<captype,tcaptype,flowtype>::get_var(Var x) { return (int) this->what_segment(x); }

#endif

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API