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Abstract

In this paper, the problem of trajectory tracking in 3D space for a fully actuated autonomous underwater vehicle (AUV) is addressed
and a novel hierarchical control scheme is proposed. In this scheme, the kinematics of AUV and the highly uncertain dynamics of AUV
are treated separately where the kinematics are formulated on the Special Euclidean group SE(3). On the kinematic level, a bounded
and smooth virtual velocity is designed. The vehicle will follow the desired trajectory if the vehicle’s velocity converges to the virtual
velocity. On the dynamic level, two model-free controllers for virtual velocity tracking are developed. The hierarchical design avoids the
orientation singularity, and simplifies the complexity of the trajectory tracking problem such that many existing methods for the control
of uncertain nonlinear systems can be used. Moreover, the bounded and smooth design of the virtual velocity is helpful to reduce the
amplitude of the control input.
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1 Introduction

In the past few decades, the related sensor fusion tech-
niques have significantly improved the navigation capability
of AUVs. A typical task for an underwater vehicle naviga-
tion is to design a robust controller such that the underwater
vehicle accurately follows a desired trajectory. The prob-
lem of trajectory tracking is now reasonably well understood
for a holonomic system in Euclidean space. However, it is
not the case for an AUV because vehicle dynamics in the
underwater environment are highly uncertain. For this rea-
son, various advanced control strategies for AUVs have been
proposed and can be roughly classified as two categories:
model-based control and model-free control.

Model-based control for an AUV employs a finite-
dimensional lumped parameter dynamic model to describe
the hydrodynamics of the AUV. Some controllers are avail-
able based on the nominal model with exact parameters,
such as [1] and [2]. However, there is not a commonly ac-
cepted method to calculate the parameters in the nominal
dynamic model for vehicles. In [3–7], several experiment-
based methods for parameter identification are introduced
and these usually require expensive devices, such as a
towing tank, with dedicated instrumentation and manoeu-
vres. In recent years, parameter identification for AUV by
computational fluid dynamics (CFD) software is reported
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in [8] and [9]. On the other hand, trajectory tracking con-
trol for a class of fully actuated nonlinear systems (i.e.,
ẋ = f (x)Θ+ u where f (x) is a known nonlinear function
and Θ are unknown constants) is well studied in [10] and the
related theoretical results are utilized by many model-based
adaptive controllers, such as [11–15]. A common point of
these model-based adaptive controllers is designing a filter
to identify the unknown parameters online. A similar idea
by identifying parameters in the nominal model online is
reported in [16] and [17] in which sliding mode control and
optimal control are used, respectively. An obvious drawback
for model-based control is that it is difficult to handle the
large unmodeled error and the time-varing external distur-
bance. It is reported in [15] and [18] that without additional
supplementary techniques some model-based controllers
may not guarantee stability in the presence of unmodeled
error such as the thruster dynamics during highly dynamic
vehicle maneuvering.

Unlike model-based control, model-free control for AUVs
does not explicitly depend on a nominal dynamic model.
Hence its adaptability seems more flexible compared to
model-based control from the most intuitive point of view.
The unknown hydrodynamic effects can be treated as an
uncertain nonlinear function. Based on this viewpoint, the
popular techniques such as neural networks-based and fuzzy
logic control are used to approximate the hydrodynamic ef-
fects in model-free control of AUVs, e.g., [19–21]. In [22]
and [23], a nonlinear controller is reported in which a dis-
turbance observer is designed to adapt to the unknown dy-
namics. In [24], a continuous Robust Integral of the Sign of
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the Error (RISE) control structure is proposed for a class of
multiple-input multiple-output (MIMO) nonlinear systems
and a RISE type controller for AUVs is developed in [25],
requiring some prior knowledge of the upper bounds of the
uncertain vehicle dynamics for the control gain selection.

Besides the uncertain dynamics, another issue for AUV con-
trol is that the problem is formulated in non-Euclidean space
because vehicle’s orientation in 3D space is a point in the
special orthogonal group SO(3). For addressing the orienta-
tion in 3D space, ZY X Euler-angle (roll, pitch and yaw) as a
local parameterization of SO(3) is widely employed. There-
fore the problem in non-Euclidean space can be formulated
in Euclidean space. Recently, the exponential coordinate is
used to represent vehicle’s orientation in [15]. However, sin-
gularities, at which rotational rate matrix is undefined, can
never be eliminated in any 3-dimensional representation of
SO(3) including the exponential coordinates and ZY X Euler-
angle [26]. Therefore, the controllers using Euler-angle or
exponential coordinate does not always work well when the
vehicle singularity happens. Fewer controllers for AUVs em-
ploy unit quaternion as orientation representation. In [13], a
model-based controller with unit quaternion as orientation
representation is proposed but it is difficult to directly use
unit quaternion for most Euler-angle based model-free con-
trollers. For example, the controllers proposed in [20], [23]
and [27] strongly depend on the assumption that the vehicle’s
orientation is always far away from the singularity orienta-
tion. Therefore, additional supplemental techniques should
be used when the vehicle is close to a singularity orientation.

To address the difficulties mentioned above, a hierarchical
control scheme is proposed in this paper. The scheme con-
sists of the kinematics level and the dynamics level. Firstly,
a 6-dimensional vector called “virtual velocity” is desinged
on the kinematic level according to the vehicle’s pose, the
desired trajectory and the desired velocity. The vehicle’ pose
will follow the desired trajectory if the vehicle’s velocity
converges to the virtual velocity. Secondly, the dynamics
level generates the control input signals such that the vehi-
cle’s velocity converges to the virtual velocity.

The contributions of this paper are in four aspects:

• The hierarchical design simplifies the complexity of the
trajectory tracking problem, because the kinematics and
the dynamics are treated separately. The proposed virtual
velocity provides a solution for the kinematic level such
that the rest of the trajectory tracking problem is design-
ing a controller for the “virtual velocity” tracking on the
dynamic level.
• Many existing methods for the control of the uncertain

nonlinear systems can be used on the dynamic level after
some minor modifications. In this paper, two model-free
controllers for “virtual velocity” tracking are developed.
Hierarchical design has high potential of being coupled
with the more advanced controller in the future.
• The virtual linear velocity is deliberately designed to be

bounded and smooth, which is shown to be very helpful

to reduce the amplitude of the inputs especially when the
vehicle is far away from the desired trajectory.

• The problem of orientation singularity is skillfully avoided
by the design of virtual velocity on the kinematic level.
Thus this control scheme can handle the situation where
the pitch angle is near 90◦ without any additional supple-
mental techniques.

This paper is organized as follows. In Section 2, the kine-
matic and dynamic model of an AUV is described and the
trajectory tracking problem is formulated. In Section 3, the
virtual velocity is designed with detailed step descriptions.
In Section 4, based on the available methods in the literature,
two model-free controllers for virtual velocity tracking are
proposed with stability analysis. In Section 5, our designed
control scheme is illustrated and validated through a num-
ber of comparisons between the original controllers and the
modified controllers. Section 6 states conclusion and future
work.

2 Problem Formulation

The motion of an underwater vehicle can be modeled as
the motion of a rigid body. Let O be an inertial coordinate
frame. Let B be a coordinate frame fixed in the vehicle
and coincides with the center of mass of the underwater
vehicle. The coordinate transformation from the frame B to
the frame O can be expressed by g= (R, p)∈ SE(3), e.g., for
a point q in 3D space, q|O = Rq|B+ p where q|O denotes the
coordinate of q in the frame O and q|B denotes the coordinate
of q in the frame B. The matrix R ∈ SO(3) denotes the
rotation from the frame B to the frame O. The vector p∈R3

is the coordinate of the origin of the frame B, expressed in
the frame O. Because the frame B is fixed relative to the
vehicle, the vehicle’s pose can also be represented by g. Let
V := (vT ,ωT )T ∈R6 be the general velocity of the frame B
relative to the frame O, where v∈R3 is the linear velocity of
the frame B relative to the frame O, expressed in the frame
B and ω ∈R3 is the angular velocity of the frame B relative
to the frame O, expressed in the frame B.

The kinematic equation of the underwater vehicle can be
expressed as:

Ṙ = Rs(ω)

ṗ = Rv
(1)

where the linear operator s is the skew symmetric operator,
defined as

s(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 , ∀x = (x1,x2,x3)
T ∈ R3. (2)

According to [11] and [28], the dynamic equation of AUV
can be described as

MV̇ +C(V )V +D(V )V +G +d = u, (3)

2



where M ∈R6×6 denotes the inertial matrix including added
mass, C(V ) ∈ R6×6 denotes the centripetal terms and the
Coriolis matrix, D(V ) ∈ R6×6 denotes the damping matrix
describing the effect of drag force, G denotes the restor-
ing force produced by the gravity and the buoyancy, d ∈R6

denotes the unmodeled error including the external distur-
bances and u ∈ R6 as the control input denotes the force
and torque expressed in the frame B produced by thrusters
or other actuators. The problem considered in this paper can
be stated as follows.

Trajectory tracking for a fully actuated underwater ve-
hicle: Let gd(t) = (Rd(t), pd(t)) : 0 ≤ t < ∞ be a desired
trajectory in the group SE(3) and assumed to be bounded
and smooth with respect to t and its first-order derivative
and second-order derivative are bounded. The problem is to
design a controller u ∈ R6 such that the vehicle’s pose g(t)
converges to the desired trajectory gd(t). It is assumed that
the vehicle’s pose g and velocity V are always available.

3 Kinematic Level

In this section a virtual velocity Vr is designed such that if
the vehicle’s velocity V converges to the virtual velocity Vr,
the vehicle’s pose g will converge to the desired trajectory
gd .

Firstly, a “distance” function V1(g,gd) on SE(3) is defined:

V1(g,gd) =
1
2

∆θ
2 +

1
2
‖p− pd‖2 (4)

where ∆θ = arccos( tr(RRT
d )−1

2 )∈ [0,π] represents the rotation
angle of the rotation matrix RRT

d [26], Rd is the desired
orientation and pd is the desired position. The time derivative
of ∆θ is

∆θ̇ =
1√

1− (
tr(RRT

d )−1
2 )2

tr(ṘRT
d +RṘT

d )

2

=
1

sin∆θ

tr(Rs(ω−ωd)RT
d )

2

=
1

sin∆θ

tr(RT
d Rs(ω−ωd))

2

(5)

where ωd is the desired angular velocity derived from (1)
and the desired trajectory gd . Notice that tr(R̄s(w)) =−(R̄−
R̄T )gT w for any R̄ ∈ SO(3) and any w ∈ R3, where the op-
erator g is a mapping from 3×3 skew symmetric matrix to
3-dimensional vector, defined as

0 −a3 a2

a3 0 −a1

−a2 a1 0


g

=


a1

a2

a3

 (6)

And hence (5) can be rewritten as

∆θ̇ =
−1

2sin∆θ
(RT

d R− (RT
d R)T )gT (ω−ωd) (7)

Note that RT
d R− (RT

d R)T = 2sin∆θ̄s(W ) where ∆θ̄ is the
rotation angle of RT

d R and W is the rotation axis of RT
d R

defined as

W =
1

2‖RT
d R− (RT

d R)T‖
(RT

d R− (RT
d R)T )g (8)

On the other hand,

∆θ = arccos(
tr(RRT

d )−1
2

) = arccos(
tr(RT

d R)−1
2

) = ∆θ̄

(9)
and hence (7) can be rewritten as

∆θ̇ =−W T (ω−ωd) (10)

By combining (4) with (10), the time derivative of V1(g,gd)
can be written as

V̇1 =−∆θW T (ω−ωd)+(p− pd)
T (ṗ− ṗd)

=−∆θW T (ω−ωd)+(p− pd)
T (Rv−Rdvd)

(11)

where vd is the desired linear velocity derived from (1) and
the desired trajectory gd . For analyzing V̇1, a virtual velocity
Vr = (vT

r ,ω
T
r )

T is designed as

vr = RT Rdvd− k1RT p− pd

‖p− pd‖
(1− e−‖p−pd‖) (12)

ωr =
2k2√

1+ cos∆θ
(RT

d R− (RT
d R)T )g+ωd (13)

where k1 and k2 are positive control gains. By combining
(11) with (12) and (13), V̇1 can be rewritten as

V̇1 =−4k2
sin∆θ√

1+ cos∆θ
∆θ − k1‖p− pd‖(1− e−‖p−pd‖)

−W T
∆θ(ω−ωr)+(p− pd)(Rv−Rvr)

(14)

In the following paragraph, we prove that if V → Vr, i.e.,
v→ vr and ω → ωr then V1→ 0, i.e., g→ gd . If V → Vr,
then ∀ ε ∈ (0,k2), ∃ Tε , ‖v− vr‖< ε and ‖ω−ωr‖< ε for
t ≥ Tε . On the other hand,

4
sin∆θ√

1+ cos∆θ
≥ ∆θ , (15)

when ∆θ ∈ [0,π). Then ∀ t ≥ Tε

V̇1≤−k2∆θ
2+ε∆θ−‖p− pd‖(k1−k1e−‖p−pd‖−ε) (16)
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and hence it is obvious that V̇1 < 0 if ∆θ > ε

k2
and ‖p−

pd‖> ln k1
k1−ε

when t > Tε . On the other hand, V1 increases
with respect to ∆θ and ‖p− pd‖, respectively. Therefore,

limsup
t→∞

V1 ≤ V1|
∆θ= ε

k2
,‖p−pd‖=ln k1

k1−ε

≤ (
1
k2

1
+

1
2k2

2
)ε2,

(17)
when ε is small enough. According to the arbitrariness of ε ,
it is concluded that

limsup
t→∞

V1 = 0, (18)

i.e., V1 → 0 and hence g→ gd . The next subsection will
consider how to design a controller such that V →Vr.

Remark 1: Note that the formulation of (12): the term
p−pd
‖p−pd‖

(1−e−‖p−pd‖)≈ p−pd
‖p−pd‖

when ‖p− pd‖ is large and
p−pd
‖p−pd‖

(1−e−‖p−pd‖)≈ p− pd when ‖p− pd‖ is small and
hence vr is bounded and smooth if the desired linear veloc-
ity vd is bounded and smooth. On the other hand, ωr is well
defined and bounded if ωd is bounded because ∆θ ∈ [0,π]
and

‖(RT
d R− (RT

d R)T )g‖√
1+ cos∆θ

=
2sin∆θ√
1+ cos∆θ

→ 2
√

2,∆θ → π
−

(19)
In all, this design of (12) and (13) make the virtual velocity
Vr bounded and smooth. In Section 5, it is demonstrated
through simulation that the design is helpful to reduce the
amplitude of the control input signals on the dynamic level.

4 Dynamic Level

In this section, we address the problem of designing a con-
troller for the uncertain nonlinear system expressed in (3)
such that V → Vr. Two model-free controllers (Controller
1+ and Controller 2+) based on the existing methods in [23]
and [27] are developed to validate the proposed hierarchical
control scheme.

4.1 Model-free Controller 1+

In [29], a model-free controller is reported that forces
the actual velocity to track the desired velocity. In
[23], the extended controller based on Euler-angle for
trajectory-tracking is proposed. In the following, based
on the work in [29], the improved Controller 1+ is pro-
posed that requires weaker assumptions: ‖M−1‖ ≤ α ,
‖M‖ ≤ β1, λmin(M−1) > r, ‖C(V )+D(V )‖ ≤ β2 + β3‖e‖,
and ‖G +d‖ ≤ d0 +d1‖e‖, where λmin(M−1) represents the
smallest eigenvalue of M−1 and e :=Vr−V . Let θ1 =

αβ1
r ,

θ2 = αβ2
r , θ3 = αd0

r , θ4 = ε+αd1
r , θ5 = αβ3

r where ε is a
positive constant and hence θi (i = 1, ...,5) is a positive
constant.

The proposed controller is designed as

u =
5

∑
i=1

Kiφi, (20)

where φ1 = V̇r, φ2 = V , φ3 = 1, φ4 = e and φ5 =
‖e‖‖V‖(1,0,0,0,0,0)T . The update law for Ki is

Ki =
θ̂ieφ T

i
‖e‖‖φi‖

, (21)

˙̂
θi = fi‖e‖‖φi‖ (22)

where fi (i = 1, ...,5) is a positive control gain and the initial
value θ̂i(0) (i = 1, ...,5) is designed to be nonnegative.

Then the following is the proof that e converges to zero. A
Lyapunov function is defined as

V2 =
1
2

eT e+
1
2

5

∑
i=1

f−1
i r(θi− θ̂i)

2 (23)

With (3) and (20), the time derivative of V2 becomes

V̇2 =[eT M−1
5

∑
i=1

Piφi−
5

∑
i=1

f−1
i rθi

˙̂
θi]

+ [−eT M−1
5

∑
i=1

Kiφi +
5

∑
i=1

f−1
i rθ̂i

˙̂
θi]

(24)

where P1 = M, P2 =C(V )+D(V ), P3 = G +d, P4 = 0 and
P5 = 0.

With the update law (21) and (22), the formula in the first
bracket of (24) can be derived as

eT M−1
5

∑
i=1

Piφi−
5

∑
i=1

f−1
i rθi

˙̂
θi

= eT M−1
2

∑
i=1

Piφi + eT M−1P3φ3−
5

∑
i=1

rθi‖e‖‖φi‖

= (eT M−1
2

∑
i=1

Piφi−
2

∑
i=1

αβi‖e‖‖φi‖)+ eT M−1(G +d)

−αd0‖e‖‖φ3‖− (ε +αd1)‖e‖‖φ4‖−αβ3‖e‖‖φ5‖
≤ ‖e‖α(β1‖φ1‖+β2‖φ2‖+β3‖e‖‖φ2‖)

−
2

∑
i=1

αβi‖e‖‖φi‖+‖e‖α(d0 +d1‖e‖)

−αd0‖e‖− (ε +αd1)‖e‖2−αβ3‖e‖‖φ5‖
≤ −ε‖e‖2 +αβ3‖V‖‖e‖2−αβ3‖e‖‖e‖‖V‖
≤ −ε‖e‖2

(25)
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and the formula in the second bracket can be derived as

− eT M−1
5

∑
i=1

Kiφi +
5

∑
i=1

f−1
i rθ̂i

˙̂
θi

=−eT M−1
5

∑
i=1

θ̂ieφ T
i

‖e‖‖φi‖
φi +

5

∑
i=1

f−1
i rθ̂i fi‖e‖‖φi‖

=
5

∑
i=1

−eT M−1e
‖e‖

‖φi‖θ̂i +
5

∑
i=1

rθ̂i‖e‖‖φi‖

≤
5

∑
i=1

(−λmin(M−1)+ r)‖e‖‖φi‖θ̂i

(26)

From (25) and (26), it is clear that V̇2 < 0 when e 6= 0 and
hence e→ 0, i.e., V →Vr.

Remark 2: Large control input signals and high-frequency
oscillation would be generated by the proposed controller
shown in (21). In order to alleviate this problem, a modified
version is used:

Ki =


θ̂ieφT

i
‖e‖‖φi‖ if ‖e‖‖φi‖> δi
θ̂ieφT

i
δi

if ‖e‖‖φi‖ ≤ δi

(27)

In order to avoid ambiguities, Controller 1+ refers to (20),
(22) and (27) with the virtual velocity (12) and (13). Con-
troller 1 refers to the controller in [23]. Compared to Con-
troller 1+, Controller 1 requires the assumption ‖C(V ) +
D(V )‖ ≤ β2, while a weaker assumption ‖C(V )+D(V )‖ ≤
β2 +β3‖e‖ is required in our proposed Controller 1+.

4.2 Model-free Controller 2+

An Euler-angle based controller reported in [27] success-
fully applies the RISE type feedback in [24] to an AUV,
which requires the knowledge of the upper bounds of the
overall system uncertainty. Here we propose an improved
controller (such that V →Vr) based on the recent RISE type
control structure in [30], which requires the assumptions:
Ṁ, Vr and V̇r are bounded, 0 < Mmin ≤ ‖M‖ ≤Mmax and the
term C(V )V +D(V )V +G +d is uniformly continuous with
respect to time t and continuously differentiable up to its
second-order derivatives. The proposed controller is

u =k(e− e(0))+
∫ t

0
kedτ +

∫ t

0
βSgn(e) dτ (28)

where k > 1 is a control gain to be selected, e=Vr−V ∈R6,
Sgn(e) = (sgn(e1), ...sgn(e6))

T ∈ R6, and β ∈ R is updated
according to

β = β0 + eT Sgn(e)− e(0)T Sgn(e(0))+
∫ t

0
eT Sgn(e)dτ

(29)
where β0 > 1 is a constant to be chosen.

The following provides a simplified proof for the stability
of the controller above. Firstly, the standard hydrodynamic
equation (3) can be rewritten as

MV̇ + f = u (30)

where M is the unknown inertia matrix including added mass
and f = C(V )V +D(V )V + G + d is also unknown. Two
auxiliary variables r ∈ R6 and z ∈ R12 are defined as

r = ė+ e (31)

and
z = (eT ,rT )T (32)

By combining (30) with (29) and (31), β̇ can be obtained:

β̇ = rT Sgn(e) (33)

By combining (30) with (31), ṙ can be obtained:

Mṙ =−1
2

Ṁr− e− u̇+N (34)

where
N = M(V̈r + ė)+ Ṁ(

1
2

r+V̇ )+ ḟ + e (35)

The term N consists of two parts, i.e., N = Nr + N̄, where
Nr = N|V=Vr ,V̇=V̇r

and N̄ = N−Nr. Note that Nr and Ṅr are
bounded because M, Ṁ, Vr and V̇r are bounded, i.e., ∀ t,
∃ K > 0 such that max1≤i≤6 |Nri| ≤ K, max1≤i≤6 |Ṅri| ≤ K.
Moreover, according to the Mean Value Theorem [31], N̄
can be bounded such that

‖N̄‖ ≤ p(‖z‖)‖z‖ (36)

where p : R≥0 → R≥0 is a globally invertible, non-
decreasing function.

Lemma 1 ([24]): A function L1(t) ∈ R is defined as

L1 = rT (Nr−2KSgn(e)). (37)

According to the property of K: K ≥ ‖Nr‖, ‖Ṅr‖, we have

∫ t

0
L1(τ)dτ ≤ η1, (38)

where η1 is a positive constant.

Lemma 2 ([30]): A function L2(t) ∈ R is defined as

L2 =−ėT Sgn(e) (39)

Then we have ∫ t

0
L2(τ)dτ ≤ η2 (40)
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where η2 is a positive constant.

Then three variables are defined as

P1 = η1−
∫ t

0
L1(τ)dτ > 0 (41)

P2 = β0(η2−
∫ t

0
L2(τ)dτ)> 0 (42)

P3 = β −β0−2K (43)

A Lyapunov function V3 respect to y := (zT ,
√

P1,
√

P2,P3)
T

is defined as

V3 =
1
2

eT e+
1
2

rT Mr+
1
2

P2
3 +P1 +P2 (44)

After taking the time derivative of (44), V̇3 can be obtained:

V̇3 = eT ė+(rT Mṙ+
1
2

rT Ṁr)

+(β −β0−2K)rT Sgn(e)−L1−β0L2

=−eT e− krT r+ rT N̄−β0eT Sgn(e)

=−eT e− rT r− (k−1)rT r+ rT N̄−β0eT Sgn(e)

≤−‖z‖2− ((k−1)‖r‖2−‖r‖p(‖z‖)‖z‖)−β0eT Sgn(e)

≤−‖z‖2 +
p2(‖z‖)
4(k−1)

‖z‖2−β0eT Sgn(e)

(45)
From the inequality, V̇3 < 0 when e 6= 0 and ‖y‖ ≤
p−1(

√
4(k−1)). On the other hand, note that 0 < Mmin ≤

‖M‖ ≤Mmax which implies a1‖y‖2 ≤ V3 ≤ a2‖y‖2, where
a1 = min{ 1

2 ,Mmin} and a2 = max{2,Mmax}. By using The-
orem 8.4 in [31], it is followed that V3→ 0 when ‖y(0)‖ is
less than a value related to k, i.e., k is selected larger than a
value related to ‖y(0)‖, which implies g→ gd .

Remark 3: In order to avoid ambiguities, Controller 2+
refers to (28) and (29) with the virtual velocity (12) and
(13). Controller 2 refers to the controller in [27]. Note that
in Controller 2, β is a constant based on the prior knowledge
while β is time-varying in the proposed Controller 2+ and
hence Controller 2+ relies less on prior knowledge of the
uncertain system.

5 Simulation Results

A performance comparison between the proposed con-
trollers and their original controllers has been made by
numerical simulations. The dynamic model of the ODIN
vehicle is used in the simulation. This model has been
validated through experiments, e.g., [32] and [33].

5.1 Settings

In order to show effectiveness of the proposed hierarchical
control scheme, Control 1+ is compared with Controller 1 in
Section 5.2, and Controller 2+ is compared with Controller
2+ in Section 5.3. The rotation angle ∆θ , the generalized
position error ‖p− pd‖ ∈R+ and the input u ∈R6 are used
in the comparisons, where ∆θ is the rotation angle between
the desired orientation and the actual orientation, given as

∆θ = arccos(
tr(RRT

d )−1
2

) ∈ [0,π]. (46)

In all simulations, the vehicle’s initial state is set as

R0 = I3, p0 = (5,0,0)T

v0 = (0,0,0)T , ω0 = (0,0,0)T (47)

Two desired trajectories are used to illustrate the behavior
of the controllers. The first desired trajectory is

Rd(t) = Rz(−t/10)

pd(t) = (2sin(t/10),2cos(t/10), t/20)T (48)

and the second trajectory is

Rd(t) = Ry(−t/10)

pd(t) = (0,0, t/20)T (49)

where Rz denotes the rotation about z-axis and Ry denotes
the rotation about y-axis. The second trajectory is designed
such that the singularity happens when t = (2n+1)5π where
n ∈ Z+. At the beginning, the vehicle’s position is far away
from the desired trajectory. In the simulation, the parameters
of Controller 1 are chosen as: σ = 1, θ̂i = 0, fi = 1, δi = 0.1
(i= 1, ...,5). In oder to achieve similar tracking performance,
the parameters of Controller 1+ are chosen as: k1 = 4, k2 =√

2, θ̂i = 0, fi = 1 and δi = 0.1 (i = 1, ..,5). The parameters
for Controller 2 are αi = 1 (i= 1,2), ks = 200 and β = 20. In
oder to achieve similar tracking performance, the parameters
for Controller 2+ are chosen as: k1 = 1, k2 =

√
2

2 , k = 200
and β0 = 20.

5.2 Controller 1 vs Controller 1+

5.2.1 The first desired trajectory

For the first desired trajectory, both Controller 1 and Con-
troller 1+ can stabilize the simulated vehicle after 25s. Fig.
1 displays the generalized position error of Controller 1 and
Controller 1+ during 0 ∼ 25s. Fig. 2 displays the rotation
angle between the desired orientation and the actual orienta-
tion of Controller 1 and Controller 1+ during 0∼ 25s. Table
1 displays the maximal amplitudes of the inputs by Con-
troller 1 and Controller 1+ during 0∼ 25s. Table 2 displays
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Fig. 1. The simulated generalized position error for the first desired
trajectory during 0∼ 25s: Controller 1 and Controller 1+

Fig. 2. The simulated rotation angle for the first desired trajectory
during 0∼ 25s: Controller 1 and Controller 1+

the average amplitudes of the inputs by Controller 1 and
Controller 1+ during 0∼ 25s.

As shown in Fig. 1, Controller 1 has slightly better perfor-
mance in the position tracking than Controller 1+ before 5s
however a slightly poorer performance than Controller 1+
after 5s. From Fig. 2, we can see that Controller 1+ has
much better performance in the rotation tracking than Con-
troller 1: the convergence rate is faster and the final error
is smaller. It is shown in Table 1 that the maximal ampli-
tudes of all inputs by Controller 1+ are much smaller than
that by Controller 1, especially for u6. It is shown in Table
2 that the average amplitudes of all inputs (except u3) by
Controller 1+ are smaller than that by Controller 1, and the
average amplitude of u6 by Controller 1+ is a little bigger
than that by Controller 1. In this simulation, u4 and u5 gen-
erated by both controllers are very small (less than 0.0005)
and therefore 0 is listed in Table 1 and Table 2. In Fig. A.1
and A.2 in Appendix, the control inputs u1 and u6 under the
two controllers are displayed to show the large differences.

5.2.2 The second desired trajectory

For the second desired trajectory, it is shown in Fig. 3 that
the simulated vehicle is stabilized by the proposed Con-
troller 1+. In this simulation, Controller 1 suddenly gener-
ates huge control input signals and it forces the vehicle to

Table 1
The maximal amplitudes (max.am) of inputs by Controller 1 and
Controller 1 for the first desired trajectory during 0∼ 25s

Ctr/max.am u1 u2 u3 u4 u5 u6

Ctr 1 190 85.8 20.0 0 0 121.6

Ctr 1+ 103.4 39.9 6.8 0 0 5.57

Table 2
The average amplitudes (ave.am) of inputs by Controller 1 and
Controller 1 for the first desired trajectory during 0∼ 25s

Ctr/ave.am u1 u2 u3 u4 u5 u6

Ctr 1 36.9 13.5 1.73 0 0 4.67

Ctr 1+ 20.38 9.7 1.91 0 0 2.32

Fig. 3. The simulated generalized position error and rotation angle
for the second desired trajectory during 0∼ 20s: Controller 1+

an unreasonable position when the pitch angle is close to
−90◦, which results in the failure of tracking. Controller 1
requires the pitch angle always far away from 90◦, however
this is not the case for the second desired trajectory.

5.3 Controller 2 vs Controller 2+

5.3.1 The first desired trajectory

It is shown in Fig. 4 and Fig. 5 that the simulated vehicle
can track the first desired trajectory under both Controller
2 and Controller 2+. As we can see from Fig. 4, Controller
2 achieves better performance in the position tracking than
Controller 2+ before 10s and a very slightly poorer perfor-
mance than Controller 2+ after 10s. Fig. 5 shows that Con-
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Fig. 4. The simulated generalized position error for the first desired
trajectory: Controller 2 and Controller 2+

Fig. 5. The simulated rotation angle for the first desired trajectory:
Controller 2 and Controller 2+

troller 2+ performs better than Controller 2 for the rotation
tracking due to the faster convergence rate and the smaller
final error. It is shown in Table 3 that the maximal ampli-
tudes of u1 and u2 by Controller 2+ are much smaller than
that by Controller 2 in this simulation. Table 4 shows that
Controller 2+ generates smaller control inputs signals, espe-
cially for u1 and u2 in this simulation. In Fig. A.3 and A.4 in
Appendix, the control inputs u1 and u2 are displayed to show
the large difference in amplitudes of the two controllers.

Table 3
The maximal amplitudes (max.am) of inputs by Controller 2 and
Controller 2+ during 0∼ 20s for the first desired trajectory

Ctr/max.am u1 u2 u3 u4 u5 u6

Ctr 2 406 152 19.03 0.016 0.018 5.44

Ctr 2+ 91.67 37.18 16.27 0.015 0.009 5.51

Table 4
The average amplitudes (ave.am) of inputs by Controller 2 and
Controller 2+ during 0∼ 20s for the first desired trajectory

Ctr/ave.am u1 u2 u3 u4 u5 u6

Ctr 2 65.88 30.90 6.31 0.0048 0.0049 3.85

Ctr 2+ 19.01 7.9 2.79 0.0046 0.0047 3.84

Fig. 6. The simulated generalized position error and rotation angle
for the second desired trajectory during 0∼ 40s: Controller 2+

5.3.2 The second desired trajectory

Controller 2+ based on the proposed hierarchical control
scheme can stabilize the simulated vehicle, as shown in Fig.
6. Like the Controller 1, the Euler-angle based Controller 2
cannot stabilize the simulated vehicle under this condition.

5.4 Summary of the simulation results

The dynamic model of the ODIN vehicle and two trajecto-
ries were used to test the performances of the controllers.
We compared the performances between Controller 1 and
Controller 1+, and the performances between Controller 2
and Controller 2+. The aim was to clearly show the charac-
teristics of the proposed hierarchical control scheme.

From the simulation results of the first trajectory, as com-
pared with the original controllers Controller 1 and Con-
troller 2, our proposed controllers show better orientation
tracking performance and similar position tracking perfor-
mance, and generate much smaller control input signals dur-
ing the starting stage. This phenomenon is not strange be-
cause Controller 1 and Controller 2 employ the Euler-angle
as the orientation representation and their control input sig-
nals make ėp→−σep where ep = p− pd . In our proposed
hierarchical control scheme, the virtual angular velocity ωr
is designed for the rotation angle ∆θ and the virtual linear
velocity vr makes ėp →−σ

ep
‖ep‖ (1− e−‖ep‖) such that the

amplitudes of the control input signals are much less than
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that of the original controllers when ‖ep‖ is large, e.g., dur-
ing the starting stage.

Without additional supplemental techniques, the Euler-angle
based Controller 1 and Controller 2 cannot be used to track
the trajectory in which the pitch angle is not always far away
from ±90◦. However, there is no singularity problem for the
proposed Controller 1+ and Controller 2+.

6 Conclusion and Future Work

In this paper, a hierarchical control scheme consisting of
the kinematic level and the dynamic level for fully actuated
AUVs was proposed. On the kinematic level, the virtual ve-
locity is designed. The vehicle will track the desired trajec-
tory if the vehicle’s velocity converges to the virtual veloc-
ity. On the dynamic level, two model-free controllers were
developed with stability analysis.

Numerical simulations using ODIN vehicle model validated
our proposed method. For the first desired trajectory, in
which the desired orientation is always far away from the
singularity in terms of Euler-angle, the proposed controllers
achieve better performance in the rotation tracking, similar
performance in the position tracking, as compared with the
original controllers. The control input signals by the pro-
posed controllers are much smaller than those by the original
controllers during the starting stage. For the second trajec-
tory, in which sometimes the desired orientation is close to
singularity in terms of Euler-angle, the proposed controllers
can stabilize the vehicle while the original controllers can
not stabilize the vehicle.

The advantages of the proposed scheme can be concluded
as:

• The hierarchical design simplifies the complexity of the
trajectory tracking problem.
• Many existing methods for the control of uncertain non-

linear systems can be used in the scheme.
• The bounded and smooth design of the virtual velocity is

shown to be helpful to reduce the amplitude of the control
input.
• The orientation singularity is avoided.

Future work includes two aspects. Firstly, it is desirable
to develop a model-based controller as a feedforward term
coupled with the proposed model-free controllers so as to
reduce the model uncertainty and improve the performance.
Secondly, a more advanced RISE type controller taken into
account the input saturation is planned to be developed.
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A Figures for some control inputs

Fig. A.1. The control input u1 for first trajectory: Controller 1 and
Controller 1+

Fig. A.2. The control input u6 for first trajectory: Controller 1 and
Controller 1+

Fig. A.3. The control input u1 for the first trajectory: Controller 2
and Controller 2+

Fig. A.4. The control input u2 for the first trajectory: Controller 2
and Controller 2+
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