Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 3be46f8
  • /
  • GuidedSparseKmeans.Rd
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:b2eaf1a8ee3e682a4a3c114c8065affeb470c765
directory badge Iframe embedding
swh:1:dir:3be46f8173eab59483fef59edceaf2997f86a0d9
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
GuidedSparseKmeans.Rd
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/GuidedSparseKmeans.R
\name{GuidedSparseKmeans}
\alias{GuidedSparseKmeans}
\title{GuidedSparseKmeans}
\usage{
GuidedSparseKmeans(x, z, K, s, lam, model, nstart = 20, maxiter = 15,
  silence = F)
}
\arguments{
\item{x}{Gene expression matrix, n*p (rows for subjects and columns for genes).}

\item{z}{One phenotypic variable from clinical dataset, a vector.}

\item{K}{Number of clusters.}

\item{s}{The boundary of l1n weights, a vector.}

\item{lam}{The intensity of guidance.}

\item{model}{The model fitted to obtain R2, please select model from 'linear', 'logit', 'exp', 'polr','cox'.}

\item{nstart}{Specify the number of starting point for K-means.}

\item{maxiter}{Maximum number of iteration.}

\item{silence}{Output progress or not.}
}
\value{
m lists, m is the length of parameter s. Each list is consisting of
\item{weights}{weight for each feature, zero weight means the feature is not selected.}
\item{clusters}{cluster results.}
\item{object}{objective value.}
\item{bound}{a boundary of l1n weights}
\item{R2.per}{R-squared or pseudo R-squared between phenotypic variable and expression value of each gene, a vector.}
}
\description{
Guided Sparse K-means
}
\details{
Guided Sparse K-means integrating clinical dataset with gene expression dataset.
}
\author{
Lingsong Meng
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top