Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:b3f31177d458217de17db4463bca4f6f2a070f81
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
"""
Computes the Witten tau function, i.e. the top intersections of psi classes.

Uses the genus recursion of Liu and Xu from [LX07].
"""
from __future__ import absolute_import

try:
    from sage.all import *
    from numpy import zeros, array, vectorize, hstack
    #from checkin import *
    from .remember import *
except ImportError:
    pass

def ee(k,n):
    """
    Returns the k-th n-dimensional "basis vector". 
    """
    v = zeros(n, dtype = Integer)
    v[k] = 1
    return v

#@breadth_first_tree
def tau_no_g(a):
    """
    Like tau, but computes the genus that makes it non-zero, if possible.
    """
    h = 3 + sum([(i-1)*ai for i,ai in enumerate(a)])
    if h % 3 != 0:
        return 0
    else:
        return tau(h/3, a)
        
#@breadth_first_tree
#@remember
#stored_values = dict()

master_table = dict() 

@remember_convert_args(lambda g,a: (g, tuple(a)), master_table) #shares the master_table with intersect_monomial_with_data
def tau(g,a):
    """
    INPUT:
     - g -- The genus.
     - a -- A vector.  The first entry is the number of psi classes with exponent 0, the second in the number with exponent 1, etc.
     
     Uses the recursion of Liu and Xu [LX07].
    """
    
    n = sum(a)
    deg = sum([ai*i for i, ai in enumerate(a)])
    if deg != 3*g-3+n:
        return 0
    if g == 0:
        return multinomial(get_exp_list(a))
    if g == 1 and deg == 1:
        return Rational((1,24))
    if n > 0:
        if a[1] !=0: #dialoton
            return (2*g - 3 + n) * tau(g,a - ee(1,len(a)))
        if a[0] !=0: #string
            return sum( [(ai) * tau(g,a - ee(0, len(a)) + ee(i, len(a)) - ee(i+1,len(a))) for i, ai in enumerate(a[1:]) if ai != 0 ] )


    d = Integer(a.nonzero()[0][0])
    last_index = a.nonzero()[0][-1]
    a1 = array(hstack( (a[0:(last_index+1)],array([0])))) 
    k = len(a1)
    
    a1 -= ee(d, k)    

    ans = Rational((2*d + 3,12)) * tau(g-1, 4*ee(0, k) + ee(d + 1, k) + a1) \
        - Rational((2*g + n -1,6)) * tau(g-1, 3*ee(0,len(a)) + a) \
        + sum(( (binomial_product(a1,b)) * \
            (
                  (2*d + 3) *
                  tau_no_g(2*ee(0,k) + ee(d+1, k) + b) *
                  tau_no_g(2*ee(0,k) + a1 - b) 
                - (2*g + n - 1) *
                  tau_no_g(ee(0,k) + ee(d,k) + b) *
                  tau_no_g(2*ee(0,k) + a1 - b)
            ) for b in splittings(a1)))
            
    return Rational((1,(2*g+n-1)*(2*g+n-2)))*ans

    
def binomial_product(v1,v2):
    """
    See implementation.
    """
    #return prod([binomial(a,b) for a,b in zip(v1, v2)])
    #had to change after update broke it
    return prod([binomial(int(a),int(b)) for a,b in zip(v1, v2)])
    
def splittings(a):
    """
    Important for tau.
    """
    #return [array(c) for c in CartesianProduct(*[range(i+1) for i in a])]
    #sage update broke this
    return [array(c) for c in cartesian_product([list(range(i+1)) for i in a])]
    
def get_exp_list(a):
    """
    Turns a Witten tau list into my traditional list of the exponents of the psis.
    """
    l = []
    for i, ai in enumerate(a):
        l +=[i]*ai
    return l
    
def psi_intersect(g, n, a):
    """
    Here ``a`` is a traditional (to me) list of the exponents of the psis.  This will convert it into a Witten tau list and call the tau function, and return the answer.
    """
    if 3*g - 3 + n != sum(a):
        return 0
     
    d = from_exp_list_to_tau(g,n,a)
     
    return tau(g, array(d, dtype = Integer))
    
def from_exp_list_to_tau(g,n,a):
    """
    Converts a list of psi exponents into a Witten tau list.
    """
    d = [0] * (max(a) +1)
    for ai in a:
        d[ai] += 1
    d[0] = n - len([ai for ai in a if ai != 0])
    return d


    
    
    

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API