Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/uberparagon/mgn
22 June 2021, 16:13:34 UTC
  • Code
  • Branches (5)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/1.1.2
    • refs/tags/v1.0.4
    • refs/tags/v1.0.5
    • refs/tags/v1.0.9
    No releases to show
  • 97085ea
  • /
  • topintersections
  • /
  • tau.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:b3f31177d458217de17db4463bca4f6f2a070f81
origin badgedirectory badge Iframe embedding
swh:1:dir:370d394cc10295b17330f0bd86b2e47ea9df92ec
origin badgerevision badge
swh:1:rev:87eacb93177c9d41edb525bb71ae03ae45f18d14
origin badgesnapshot badge
swh:1:snp:6e9d4128140ea9fc091a9d1ff362de9d8be50de2
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 87eacb93177c9d41edb525bb71ae03ae45f18d14 authored by Drew Johnson on 20 March 2020, 16:48:33 UTC
added a ps and ps_ member to strataalgebra
Tip revision: 87eacb9
tau.py
"""
Computes the Witten tau function, i.e. the top intersections of psi classes.

Uses the genus recursion of Liu and Xu from [LX07].
"""
from __future__ import absolute_import

try:
    from sage.all import *
    from numpy import zeros, array, vectorize, hstack
    #from checkin import *
    from .remember import *
except ImportError:
    pass

def ee(k,n):
    """
    Returns the k-th n-dimensional "basis vector". 
    """
    v = zeros(n, dtype = Integer)
    v[k] = 1
    return v

#@breadth_first_tree
def tau_no_g(a):
    """
    Like tau, but computes the genus that makes it non-zero, if possible.
    """
    h = 3 + sum([(i-1)*ai for i,ai in enumerate(a)])
    if h % 3 != 0:
        return 0
    else:
        return tau(h/3, a)
        
#@breadth_first_tree
#@remember
#stored_values = dict()

master_table = dict() 

@remember_convert_args(lambda g,a: (g, tuple(a)), master_table) #shares the master_table with intersect_monomial_with_data
def tau(g,a):
    """
    INPUT:
     - g -- The genus.
     - a -- A vector.  The first entry is the number of psi classes with exponent 0, the second in the number with exponent 1, etc.
     
     Uses the recursion of Liu and Xu [LX07].
    """
    
    n = sum(a)
    deg = sum([ai*i for i, ai in enumerate(a)])
    if deg != 3*g-3+n:
        return 0
    if g == 0:
        return multinomial(get_exp_list(a))
    if g == 1 and deg == 1:
        return Rational((1,24))
    if n > 0:
        if a[1] !=0: #dialoton
            return (2*g - 3 + n) * tau(g,a - ee(1,len(a)))
        if a[0] !=0: #string
            return sum( [(ai) * tau(g,a - ee(0, len(a)) + ee(i, len(a)) - ee(i+1,len(a))) for i, ai in enumerate(a[1:]) if ai != 0 ] )


    d = Integer(a.nonzero()[0][0])
    last_index = a.nonzero()[0][-1]
    a1 = array(hstack( (a[0:(last_index+1)],array([0])))) 
    k = len(a1)
    
    a1 -= ee(d, k)    

    ans = Rational((2*d + 3,12)) * tau(g-1, 4*ee(0, k) + ee(d + 1, k) + a1) \
        - Rational((2*g + n -1,6)) * tau(g-1, 3*ee(0,len(a)) + a) \
        + sum(( (binomial_product(a1,b)) * \
            (
                  (2*d + 3) *
                  tau_no_g(2*ee(0,k) + ee(d+1, k) + b) *
                  tau_no_g(2*ee(0,k) + a1 - b) 
                - (2*g + n - 1) *
                  tau_no_g(ee(0,k) + ee(d,k) + b) *
                  tau_no_g(2*ee(0,k) + a1 - b)
            ) for b in splittings(a1)))
            
    return Rational((1,(2*g+n-1)*(2*g+n-2)))*ans

    
def binomial_product(v1,v2):
    """
    See implementation.
    """
    #return prod([binomial(a,b) for a,b in zip(v1, v2)])
    #had to change after update broke it
    return prod([binomial(int(a),int(b)) for a,b in zip(v1, v2)])
    
def splittings(a):
    """
    Important for tau.
    """
    #return [array(c) for c in CartesianProduct(*[range(i+1) for i in a])]
    #sage update broke this
    return [array(c) for c in cartesian_product([list(range(i+1)) for i in a])]
    
def get_exp_list(a):
    """
    Turns a Witten tau list into my traditional list of the exponents of the psis.
    """
    l = []
    for i, ai in enumerate(a):
        l +=[i]*ai
    return l
    
def psi_intersect(g, n, a):
    """
    Here ``a`` is a traditional (to me) list of the exponents of the psis.  This will convert it into a Witten tau list and call the tau function, and return the answer.
    """
    if 3*g - 3 + n != sum(a):
        return 0
     
    d = from_exp_list_to_tau(g,n,a)
     
    return tau(g, array(d, dtype = Integer))
    
def from_exp_list_to_tau(g,n,a):
    """
    Converts a list of psi exponents into a Witten tau list.
    """
    d = [0] * (max(a) +1)
    for ai in a:
        d[ai] += 1
    d[0] = n - len([ai for ai in a if ai != 0])
    return d


    
    
    

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top