swh:1:snp:18ef956b602668aadd1027bd3add90630713e6b5
Tip revision: 44f72a1e27db1bafefb159cdc26bc71f3691bf54 authored by Behzad Yaghmaeian Salmani on 07 March 2024, 16:41:19 UTC
First commit
First commit
Tip revision: 44f72a1
figureSupl_7_2.R
suppressPackageStartupMessages({
library(Seurat)
library(stringr)
library(sctransform)
library(future)
require(scales)
library(RColorBrewer)
library("readxl")
library(dplyr)
library(dendextend)
})
# After alignment with cellranger, (see cellrangercount.sh)
# the "filtered_feature_bc_matrix" per sample are read.
# List of the 6 intact (6 mo) samples and 3 untreated young mice (3 mo) and 3 untreated old mice (18 mo).
# for mice sample IDs see supplementary file#1, sampleinfo_intact_wt.
# Read sample info from CSV file
sample_info <- read.csv("/path/to/dir/sampleinfo_intact_wt.csv")
# List of sample IDs
sample_ids <- sample_info$`10X_Serial_ID`
base_dir <- "/common/path/string/to/cellranger/output/files/"
# List to store Seurat objects
seurat_objs <- list()
# Iterate over each sample ID
for (sample_id in sample_ids) {
# File path for filtered_feature_bc_matrix
file_path <- paste0(base_dir, sample_id, "/outs/filtered_feature_bc_matrix")
# Read in the data
data <- Read10X(file_path)
# Create Seurat object
seurat_obj <- CreateSeuratObject(counts = data, project = sample_id)
# Add Seurat object to the list
seurat_objs[[sample_id]] <- seurat_obj
}
# Merge all Seurat objects into one object
merged_obj <- merge(x = seurat_objs[[1]], y = seurat_objs[-1],
add.cell.ids = sample_ids)
# Calculate percentage of mitochondrial genes
merged_obj <- PercentageFeatureSet(merged_obj, "^mt-", col.name = "percent_mito")
# Calculate percentage of ribosomal genes
merged_obj <- PercentageFeatureSet(merged_obj, "^Rp[sl]", col.name = "percent_ribo")
# Cell cycle scoring
merged_obj <- CellCycleScoring(merged_obj, g2m.features = str_to_title(cc.genes$g2m.genes),
s.features = str_to_title(cc.genes$s.genes))
# Define a function to assign batch based on condition
assign_batch <- function(condition) {
return(condition)
}
# Add batch to metadata using sample info
merged_obj$batch <- sapply(merged_obj$orig.ident, function(sample_id) {
condition <- sample_info[sample_info$sample_ID == sample_id, "condition"]
if (length(condition) > 0) {
return(condition)
} else {
return("unknown") # or any default value you prefer
}
})
# Define a function to assign age based on age
assign_age <- function(age) {
return(age)
}
# Add age to metadata using sample info
merged_obj$age <- sapply(merged_obj$orig.ident, function(sample_id) {
age <- sample_info[sample_info$sample_ID == sample_id, "age"]
if (length(age) > 0) {
return(assign_age(age))
} else {
return("unknown") # or any default value you prefer
}
})
# Save merged Seurat object
saveRDS(merged_obj, file = "/path/to/dir/merged_seurat_obj.rds")
### cell / gene filtering
selected_cells <- WhichCells(merged_obj, expression = nFeature_RNA > 500 & nFeature_RNA < 10000 & percent_mito < 5)
selected_genes <- rownames(merged_obj)[Matrix::rowSums(merged_obj) > 5]
sobj <- subset(merged_obj, features = selected_genes, cells = selected_cells)
# remove Malat1
sobj <- sobj[ ! grepl("Malat1", rownames(sobj)), ]
# dopaminergic nuclei filtering (mDA)
sobj <- subset(sobj, subset = Slc6a3 > 0 | Th > 0)
sobj <- SCTransform(sobj, variable.features.n = 1000)
sobj <- RunPCA(sobj, npcs = 100, verbose = FALSE)
ElbowPlot(sobj, reduction = "pca", ndims = 100)
sobj <- RunUMAP(sobj, dims = 1:30)
sobj <- RunTSNE(sobj, dims = 1:30)
DefaultAssay(sobj) <- "RNA"
sobj <- NormalizeData(sobj)
sobj <- FindVariableFeatures(sobj, selection.method = "vst", nfeatures = 1000)
all.genes <- rownames(sobj)
sobj <- ScaleData(sobj, features = all.genes)
# PC 1:30 kmeans clustering
pcmat <- Embeddings(sobj, reduction = 'pca')[,1:30]
set.seed(84)
km69s84 <- kmeans(pcmat, centers = 69, nstart = 50, iter.max = 1000, algorithm="MacQueen")
# add clusters to object
sobj@meta.data$km69s84 <- km69s84$cluster
### identify and annotate clusters on this dataset based on markers' expression, dendrogram, etc,
# create new metadata entry named "class" from annotated clusters
sobj$class <- plyr::mapvalues(
x = sobj$km69s84,
from = c('34', '9', '69', '6', '21', '13', '62', '39', '60', '7', '59',
'20', '63', '3', '12', '10', '19', '68', '1', '47', '31', '50',
'52', '23', '28', '53', '64', '65', '41', '2', '24', '27', '35',
'4', '42', '29', '44', '61', '55', '26', '37', '11', '8', '15',
'22', '32', '49', '14', '30', '51', '25', '46', '36', '67', '16',
'38', '56', '66', '18', '17', '40', '54', '58', '33', '5', '57',
'43', '45', '48'),
to = rep(c('mDA', 'mODC', 'unassigned', 'Glut', 'Hy_DA', 'GABA', 'Glut'),
c(47, 1, 2, 4, 3, 10, 2)))
DimPlot(sobj, group.by = "class", cols = c("mODC" = "#B35806", "mDA" = "#2171B5",
"Glut" = "#DF65B0", "Hy_DA"="#00441B",
"GABA"="#FB9A99", "unassigned"="#969696"),
label = F, order = c('mODC', 'unassigned', 'GABA')) + coord_fixed() +
theme(text = element_text(size = 8, face = "bold"), legend.text=element_text(size = 14, face = 'bold'))
DimPlot(sobj, reduction = "umap", split.by = "batch", order = "untreated",
cols = c("intact"="#08519C", "untreated"="green")) + coord_fixed()
DefaultAssay(sobj) <- 'RNA'
markers <- c('Th', 'Slc6a3', 'Ddc', 'En1', 'Sox6', 'Calb1', 'Aldh1a1', 'Slc32a1', 'Gad2',
'Prlr', 'Satb2', 'Slc17a6', 'Nfib', 'Mog', 'Mag')
FeaturePlot(sobj, features = markers, slot = 'data', ncol = 5, coord.fixed = T)
sessionInfo()