#include #include #include "methas.h" #include "dist2.h" /* for debugging code, include #define DEBUG 1 */ /* Conditional intensity computation for Multitype Hardcore process */ /* NOTE: types (marks) are numbered from 0 to ntypes-1 */ /* Storage of parameters and precomputed/auxiliary data */ typedef struct MultiHard { int ntypes; double *hc; /* hc[i,j] = hc[j+ntypes*i] for i,j = 0... ntypes-1 */ double *hc2; /* squared radii */ double range2; /* square of interaction range */ double *period; int per; } MultiHard; /* initialiser function */ Cdata *multihardinit(state, model, algo) State state; Model model; Algor algo; { int i, j, ntypes, n2; double h, h2, range2; MultiHard *multihard; multihard = (MultiHard *) R_alloc(1, sizeof(MultiHard)); multihard->ntypes = ntypes = model.ntypes; n2 = ntypes * ntypes; #ifdef DEBUG Rprintf("initialising space for %d types\n", ntypes); #endif /* Allocate space for parameters */ multihard->hc = (double *) R_alloc((size_t) n2, sizeof(double)); /* Allocate space for transformed parameters */ multihard->hc2 = (double *) R_alloc((size_t) n2, sizeof(double)); /* Copy and process model parameters*/ range2 = 0.0; for(i = 0; i < ntypes; i++) { for(j = 0; j < ntypes; j++) { h = model.ipar[i + j*ntypes]; h2 = h * h; MAT(multihard->hc, i, j, ntypes) = h; MAT(multihard->hc2, i, j, ntypes) = h2; if(range2 > h2) range2 = h2; } } multihard->range2 = range2; /* periodic boundary conditions? */ multihard->period = model.period; multihard->per = (model.period[0] > 0.0); #ifdef DEBUG Rprintf("end initialiser\n"); #endif return((Cdata *) multihard); } /* conditional intensity evaluator */ double multihardcif(prop, state, cdata) Propo prop; State state; Cdata *cdata; { int npts, ntypes, ix, ixp1, j, mrk, mrkj; int *marks; double *x, *y; double u, v; double d2, range2, cifval; double *period; MultiHard *multihard; DECLARE_CLOSE_D2_VARS; multihard = (MultiHard *) cdata; range2 = multihard->range2; period = multihard->period; u = prop.u; v = prop.v; mrk = prop.mrk; ix = prop.ix; x = state.x; y = state.y; marks = state.marks; npts = state.npts; #ifdef DEBUG Rprintf("computing cif: u=%lf, v=%lf, mrk=%d\n", u, v, mrk); #endif cifval = 1.0; if(npts == 0) return(cifval); ntypes = multihard->ntypes; #ifdef DEBUG Rprintf("scanning data\n"); #endif ixp1 = ix+1; /* If ix = NONE = -1, then ixp1 = 0 is correct */ if(multihard->per) { /* periodic distance */ if(ix > 0) { for(j=0; j < ix; j++) { if(CLOSE_PERIODIC_D2(u,v,x[j],y[j],period,range2,d2)) { mrkj = marks[j]; if(d2 < MAT(multihard->hc2, mrk, mrkj, ntypes)) { cifval = 0.0; return(cifval); } } } } if(ixp1 < npts) { for(j=ixp1; jhc2, mrk, mrkj, ntypes)) { cifval = 0.0; return(cifval); } } } } } else { /* Euclidean distance */ if(ix > 0) { for(j=0; j < ix; j++) { if(CLOSE_D2(u, v, x[j], y[j], range2, d2)) { mrkj = marks[j]; if(d2 < MAT(multihard->hc2, mrk, mrkj, ntypes)) { cifval = 0.0; return(cifval); } } } } if(ixp1 < npts) { for(j=ixp1; jhc2, mrk, mrkj, ntypes)) { cifval = 0.0; return(cifval); } } } } } #ifdef DEBUG Rprintf("returning positive cif\n"); #endif return cifval; } Cifns MultiHardCifns = { &multihardinit, &multihardcif, (updafunptr) NULL, YES};