\name{waller} \alias{waller} %- Waller. \title{ Computations of Bayesian t-values for multiple comparisons } \description{ A Bayes rule for the symmetric multiple comparisons problem. } \usage{ waller(K, q, f, Fc) } \arguments{ \item{K}{ Is the loss ratio between type I and type II error } \item{q}{ Numerator Degrees of freedom } \item{f}{ Denominator Degrees of freedom } \item{Fc}{ F ratio from an analysis of variance } } \details{ K-RATIO (K): value specifies the Type 1/Type 2 error seriousness ratio for the Waller-Duncan test. Reasonable values for KRATIO are 50, 100, and 500, which roughly correspond for the two-level case to ALPHA levels of 0.1, 0.05, and 0.01. By default, the procedure uses the default value of 100. } \value{ \item{K }{Numeric integer > 1, examples 50, 100, 500} \item{q }{Numeric} \item{f }{Numeric} \item{Fc}{Numeric} ... } \references{ Waller, R. A. and Duncan, D. B. (1969). A Bayes Rule for the Symmetric Multiple Comparison Problem, Journal of the American Statistical Association 64, pages 1484-1504. Waller, R. A. and Kemp, K. E. (1976) Computations of Bayesian t-Values for Multiple Comparisons, Journal of Statistical Computation and Simulation, 75, pages 169-172. Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997. } \author{ Felipe de Mendiburu } \seealso{\code{\link{waller.test}}} \examples{ # Table Duncan-Waller K=100, F=1.2 pag 649 Steel & Torry library(agricolae) K<-100 Fc<-1.2 q<-c(8,10,12,14,16,20,40,100) f<-c(seq(4,20,2),24,30,40,60,120) n<-length(q) m<-length(f) W.D <-rep(0,n*m) dim(W.D)<-c(n,m) for (i in 1:n) { for (j in 1:m) { W.D[i,j]<-waller(K, q[i], f[j], Fc) }} W.D<-round(W.D,2) dimnames(W.D)<-list(q,f) print(W.D) } \keyword{ distribution }% at least one, from doc/KEYWORDS