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Introduction

The aim of this work is to extend the theory developed in BayesianPrevalence.pdf to the situation
where two prevalences are being compared by using the difference in prevalence. We consider
two different experimental designs:

Case 1: A test procedure is applied with two distinct groups of units and the difference in prevalence
between the two groups is estimated by using Bayesian posterior inference;

Case 2: Two different test procedures are applied with a single group of units and the difference is
prevalence between the two tests is estimated by using Bayesian posterior inference.

Case 1

Within each of the two distinct populations, the units are of two types: a unit either does or does
not possess a definable effect. In population 1, a proportion, γ1 possess the definable effect, while
the proportion of this population which do not possess this effect is 1−γ1. Similarly, in population
2 a proportion, γ2, possess a definable effect, while the proportion of this population which do not
possess this effect is 1− γ2.

A random sample of ni units is selected from the ith population (i = 1, 2) and each unit
undergoes a test procedure, in which the presence of the defined effect is investigated using a
significance test. It is assumed that for each unit the significance level for the ith test is ai (1 -
specificity), or false positive rate, and the power, or sensitivity, of the ith test is bi (0 < ai < bi ≤ 1).
Thus, for the ith test, the probability that a randomly selected unit from the population who does
not possess the defined effect will produce a significant result is ai, whereas the probability that
a randomly selected unit from the population who does possess the defined effect will produce a
significant result is bi.

A binary variable – shows a significant effect or does not show a significant effect – is recorded
for each unit in each of the samples and we suppose that the total number of units who show a
significant effect, out of the ni tested, is ki, (i = 1, 2). Let θi be the probability that a randomly
selected unit from the ith population would show a significant effect. Then

θi = (1− γi)ai + γibi = ai + (bi − ai)γi, (i = 1, 2) (1)
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We will develop the modelling in terms of the parameters θ1, θ2, and later use (1) to find ap-
propriate results in terms of the prevalence difference, γ1 − γ2.

In designed studies, the aim would be to set the levels of sensitivity and specificity to be
equal for both tests, i.e. a1 = a2 ≡ a and b1 = b2 ≡ b. Otherwise the comparison of the prevalences
would be biased, a priori. The general situation where specificity and sensitivity, respectively, are
not assumed to be equal for both tests will be described in the sequel.

Modelling

For each of the tests, we assume that the test results on the performance of the units are indepen-
dent and that the parameter θi is the same for all units who undertake the test. Let the random
variable Xi denote the number of units out of the ni tested which show a significant effect at sig-
nificance level a. Then Xi follows a binomial distribution and

Pr(Xi = ki|θi) =

(
ni

ki

)
θki

i (1− θi)
ni−ki , ki = 0, 1, . . . , ni, (0 < θi < 1, i = 1, 2). (2)

Also X1 and X2 are independent given θ1, θ2.

We now define prior distributions to characterise the prior uncertainty about the θi. First, we
note that under the uncontroversial assumption that bi > ai for the ith test, we find from (1) that
θi > ai. Also, since γi < 1, we find that θi < bi. The claim regarding the assumption that bi > ai is
perfectly reasonable since it would make no sense to employ a test procedure for which the power
is less than the significance level. It follows that a1 < θ1 < b1 and a2 < θ2 < b2

The conjugate prior for θi is the beta distribution so, bearing in mind the constraint on θi, we
assume that the prior distribution for θi is the following truncated beta distribution with probabil-
ity density function

p(θi|ri, si) =
1

B(ri, si)

θri−1
i (1− θi)

si−1

[F(b; ri, si)− F(a; ri, si)]
, ai < θi < bi, (ri > 0, si > 0, i = 1, 2), (3)

where F(x; ri, si) is the cumulative distribution function (cdf) of θi.
The selection of values for the parameters ri, si depends on prior information about θi. In the

absence of any prior information about θi we will use the choice ri = 1, si = 1 in practical appli-
cations, while keeping the notation general in the formulation. This corresponds to the a priori
assumption that the prior uncertainty regarding θi can be represented by a uniform distribution
on the interval (ai, bi), (i = 1, 2). We also assume a priori that θ1 and θ2 are independent. Given
the conditional independence of X1 and X2, given θ1, θ2, this means that θ1 and θ2 are independent
a posteriori given the binomial data from the test results. This means that the posterior distribu-
tion of (θ1, θ2) given the binomial data factorises into a product of two truncated beta distributions.

Defining mi1 ≡ ki + ri, mi2 ≡ ni − ki + si, (i = 1, 2), the posterior distribution for (θ1, θ2) given
the binomial data is

p(θ1, θ2|k1, k2, r1, r2, s1, s2) = C θm11−1
1 (1− θ1)

m12−1θm21−1
2 (1− θ2)

m22−1, a1 < θ1 < b1, a2 < θ2 < b2,

2



where

C =
1

Beta(m11, m12)[F(b; m11, m12)− F(a; m11, m12)]Beta(m21, m22)[F(b; m21, m22)− F(a; m21, m22)]
(4)

and F(x; λ, µ) is the cdf of a Beta distribution having parameters λ, µ.

Posterior density of prevalence difference by simulation

We wish to compute a HPD interval for the difference between the probabilities of a significant
result in the two tests, θ1− θ2 and then convert it into a corresponding HPD interval for the preva-
lence difference,

γ1 − γ2 =
θ1 − a1

b1 − a1
− θ2 − a2

b2 − a2
, (5)

making use of (1). Since the posterior distributions of θ1 and θ2 are independent, we can draw
values from truncated beta distributions independently for θ1 and for θ2.

How can we make a random draw from a truncated distribution? The following procedure
achieves this:

• First, draw a random number from the uniform distribution on the interval

[F(a1; m11, m12), F(b1; m11, m12)]

• Second, apply the inverse cdf method to find the corresponding random number which fol-
lows the Beta(m11, m12) distribution, truncated by a1 < θ1 < b1. This gives the first simulated
value for θ1. Repeat these steps for the required number of times.

Similarly, simulated values of θ2 are obtained as follows:

• First, draw a random number from the uniform distribution on the interval

[F(a2; m21, m22), F(b2; m21, m22)]

• Second, apply the inverse cdf method to find the corresponding random number which fol-
lows the Beta(m21, m22) distribution, truncated by a2 < θ2 < b2. This gives the first simulated
value for θ2. Repeat these steps for the required number of times.

The simulated values of the prevalence difference, γ1 − γ2 are then available from (5) for each
simulated pair (θ1, θ2).

Case II

In this case, two different test procedures are applied to a sample of n units. Within the population
of units there is a prevalence γ1 in relation to Test 1 and a prevalence γ2 in relation to Test 2. Let θi
be the probability that a randomly selected unit from the population will show a significant result
on the ith test (i = 1, 2) Then

θi = (1− γi)ai + γibi = ai + (bi − ai)γi, (i = 1, 2). (6)
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Modelling

Each unit provides one of four mutually exclusive results, and we denote the observed data by a
vector k = {k11, k120, k01, k00}, the elements of which are defined as follows:

• k11 is the number of subjects which have a significant result on both tests;

• k10 is the number of subjects which have a significant result on Test 1 and a non-significant
result on Test 2;

• k01 is the number of subjects which have a non-significant result on Test 1 and a significant
result on Test 2;

• k00 is the number of subjects which have a non-significant result on both tests;

and these observed frequencies sum to n, i.e. ∑
i,j

kij = n.

There is a vector θ of population parameters defined as follows:

• θ11 is the population proportion of subjects which have a significant result on both tests;

• θ10 is the population proportion of subjects which have a significant result on Test 1 and a
non-significant result on Test 2;

• θ01 is the population proportion of subjects which have a non-significant result on Test 1 and
a significant result on Test 2;

• θ00 is the population proportion of subjects which have a non-significant result on both tests;

with θij > 0 and ∑
i,j

θij = 1, so that θ. Let the random vector X describe the observed counts, kij.

Then X follows a multinomial model with pmf

Pr(X = k|θ) ∝ θk11
11 θk10

10 θk01
01 (1− θ11 − θ10 − θ01)

k00 .

We take the prior on θ to be a Dirichlet distribution which is defined on the 3-simplex:

p(θ) ∝ θr11
11 θr10

10 θr01
01 (1− θ11 − θ10 − θ01)

r00 .

Then the posterior distribution of θ, given the observed data k is

p(θ|k) ∝ θm11
11 θm10

10 θm01
01 (1− θ11 − θ10 − θ01)

m00 , (7)

where mij = kij + rij, (i = 0, 1).

In the absence of specific prior information, we assume in the simulations that rij = 1 for
i = 0, 1, so that the prior distribution is uniform on the 3-simplex; clearly other values could be
used, depending on the available prior information. Indeed, other forms of prior distribution
could be used in general.

The marginal probabilities θ1, θ2 may be expressed in terms of the components of θ as

θ1 = θ11 + θ10, θ2 = θ11 + θ01, (8)
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so that from (6), (8)

γ1 − γ2 =
θ11 + θ10 − a1

b1 − a1
− θ11 + θ01 − a2

b2 − a2
. (9)

The marginal probabilities θ1, θ2 are subject to the constraints

a1 < θ1 < b1, a2 < θ2 < b2 (10)

which are in terms of the elements of θ:

a1 < θ11 + θ10 < b1, a2 < θ11 + θ01 < b2. (11)

So the posterior distribution of θθθ given k is the truncated Dirichlet distribution defined by the
pdf in (7) subject to the constraints in (11). As in Case I, we determine the pdf of the prevalence
difference by making use of Monte Carlo simulation. We first describe the ’stick-breaking’ method
(Wikipedia, article on Dirichlet processes) for simulation from a standard Dirichlet distribution,
and then we extend this method to deal with simulation from a truncated Dirichlet distribution.

Simulating random Dirichlet data

When the parameters in θ are constrained only by the usual ’simplex’ constraints, a simple ap-
proach if given by the ’stick-breaking’ method. This is based on the following standard distribu-
tional results.

The marginal distribution of θ11 given the data is

θ11 ∼ Beta(m11, m10 + m01 + m00).

Consideration of the conditional distribution of θ10 given θ11 and the data leads to

θ10

1− θ11
∼ Beta(m10, m01 + m00)

Consideration of the conditional distribution of θ01 given θ11, θ10 and the data leads to

θ10

1− θ11 − θ10
∼ Beta(m01, m00)

Finally, θ00 is computed by using

θ00 = 1− θ11 − θ10 − θ01.

The resulting simulation scheme follows.

1. Draw u11 randomly from the Beta(m11, m10 + m01 + m00) distribution. Set θ11 = u11.

2. Draw u10 randomly from the Beta(m10, m01 + m00) distribution. Set θ10 = (1− u11)u10.

3. Draw u01 randomly from the Beta(m01, m00) distribution. Set θ01 = (1− u11 − u10)u01.

4. Set θ00 = 1− θ11 − θ10 − θ01.

Simulating random truncated Dirichlet data

Given the nature of the constraints on the parameters in θ, a new approach is required to define an
appropriate method of simulation. We adapt the ’stick-breaking’ method to our requirements and
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develop a ’stick-breaking’ method for Dirichlet data under truncation given by the constraints in
(11), as follows.

1. Set limits for θ11: lo = 0, hi = min(b1, b2).

2. Make a random draw, z11, from the uniform distribution on the interval

[F(lo; m11, m10 + m01 + m00), F(hi; m11, m10 + m01 + m00)].

3. Find the corresponding u11, by the inverse cdf method, which follows the required truncated
beta distribution. Set θ11 = u11.

4. Set limits for θ10: lo = max((a1 − θ11)/(1− θ11), 0), hi = (b1 − θ11)/(1− θ11).

5. Make a random draw, z10, from the uniform distribution on the interval

[F(lo; m10, m01 + m00), F(hi; m10, m01 + m00)].

6. Find the corresponding u10, by the inverse cdf method, which follows the required truncated
beta distribution. Set θ10 = (1− u11)u10.

7. Set limits for θ01: lo = max((a2 − θ11)/(1 − θ11 − θ10), 0), hi = min((b2 − θ11)/(1 − θ11 −
θ10), 1).

8. Make a random draw, z01, from the uniform distribution on the interval

[F(lo; m01, m00), F(hi; m01, m00)].

9. Find the corresponding u01, by the inverse cdf method, which follows the required truncated
beta distribution. Set θ01 = (1− u11 − u10)u01.

10. Set θ00 = 1− θ11 − θ10 − θ01.

11. Then (θ11, θ10, θ01, θ00) is a random draw from the Dirichlet distribution in (7) subject to the
constraints in (11).

12. Compute an estimate of the difference in prevalence:

γ1 − γ2 =
θ11 + θ10 − a1

b1 − a1
− θ11 + θ01 − a2

b2 − a2
.

For given data, this simulate procedure will provide an estimate of the posterior distribution for
γ1 − γ2, from which other posterior quantities can be estimated.

We finally consider how, given information about the true prevalences, a multinomial data
set can be randomly generated.

Simulating random multinomial data, given prevalence information

In this case, two different test procedures are applied to a sample of n units. Within the population
of units there are four different prevalences:
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γ11 the proportion of units in the population that possesses the ‘definable effect’ on both tests

γ10 the proportion of units in the population that possesses the ‘definable effect’ on test 1 but
not test 2

γ01 the proportion of units in the population that possesses the ‘definable effect’ on test 2 but
not test 1

γ00 the proportion of units in the population that possesses the ‘definable effect’ on neither test

It is of particular interest to estimate the difference between the marginal prevalences:

γ1 = γ11 + γ10, γ2 = γ11 + γ01

for Test 1 and for Test 2, respectively.

In order to simulate a random vector from the multinomial distribution, We require to express
the θij’s in terms of the γij’s.

Probabilities of the Tests’ outcomes

We denote the test outcomes by O. Then O can be ++,+−,−+,−−, which denote significant
result on both tests, significant result on Test 1 but not Test 2 etc. For each of these outcomes
there are four possible ground truth situations. Let G denote the ground truth. Then G has values
++,+−,−+,−−, which denote the possibilities ’has the definable effect on both tests’, ’has the
definable effect only on Test 2’, ’has the definable effect only on Test 2’, ’has teh definable effect on
neither test.

We assume that the test statistics for the two tests are conditionally independent given each
value of G. Then the conditional probability that the result is ++ given that the ground truth
is +− is given by b1b2. In fact there are sixteen possible combinations of outcomes and ground
truths. We illustrate how to obtain θ11, which is the (unconditional) probability of obtaining a
significant result on both tests, i.e. the outcome ++. Then

Pr(O = ++ |G = ++) = b1b2, Pr(O = ++ |G = +−) = b1a2,

Pr(O = ++ |G = −+) = a1b2, Pr(O = ++ |G = −−) = a1a2.

The ground truth probabilities are

Pr(G = ++) = γ11, Pr(G = +−) = γ10, Pr(G = −+) = γ01, Pr(G = −−) = γ00.

It follows from the law of total probability that

θ11 = b1b2γ11 + b1a2γ10 + a1b2γ01 + a1a2γ00.

By using similar arguments, we obtain

θ10 = b1(1− b2)γ11 + b1(1− a2)γ10 + a1(1− b2)γ01 + a1(1− a2)γ00,
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which may be expressed as
θ10 = a1 + (b1 − a1)γ1. − θ11.

Also

θ01 = (1− b1)b2γ11 + (1− b1)a2γ10 + (1− a1)b2γ01 + (1− a1)a2γ00,

which may be written as

θ01 = a2 + (b2 − a2)γ.1 − θ11.

θ00 is found by subtraction as 1− θ11 − θ10 − θ01.

It is worth noting that we recover equations of the marginal proportions of significant results
for the two tests, as

θ1 = θ11 + θ10 = a1 + (b1 − a1)γ1.,

and
θ2 = θ11 + θ01 = a2 + (b2 − a2)γ.1.

Independent prevalences

If the prevalences are assumed to be independent in the sense that

γ11 = γ1γ2, γ10 = γ1(1− γ2), γ01 = (1− γ1)γ2, γ00 = (1− γ1)(1− γ.2)

then, after some algebra, we find that

θ11 = θ1θ2, θ10 = θ1(1− θ2), θ01 = (1− θ1)θ2, θ00 = (1− θ1)(1− θ2).

It is worth considering the posterior distribution for θθθ in this case, which is proportional to

θm11+m10
1 (1− θ1)

m01+m00 × θm11+m01
2 (1− θ2)

m10+m00 .

In other words it factorises into the product of two beta pdfs – a form that is the same as in
Case 1. This indicates that making the assumption of independence in Case 2 doesn’t make sense,
since this just reduces to the case of two different groups and one test.

Defining general prevalences for data simulation

There is a simple way to express the general dependence among the the prevalences.

Re-consider the ground truth information. We define two binary variables to represent this.
Let G1 equal 1 when the defined effect associated with Test 1 is present in the population, and
zero otherwise. Let G2 equal 1 when the defined effect associated with Test 2 is present in the
population, and zero otherwise. Then, the joint distribution of G1 and G2 is

Pr(G1 = 1, G2 = 1) = γ11, Pr(G1 = 1, G2 = 0) = γ10,

Pr(G1 = 0, G2 = 0) = γ01, Pr(G1 = 0, G2 = 0) = γ00,

and the marginal distribution are
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Pr(G1 = 1) = γ1 , Pr(G1 = 0) = 1− γ1 ,

Pr(G2 = 1) = γ2 , Pr(G2 = 0) = 1− γ2 .

It seems natural to consider the correlation between G1 and G2. Denote this by ρ12. This is
the correlation between the presences of the defined effects associated with Test 1 and Test 2 in the
population. We now derive an expression for this correlation.

Using the probability distributions of G1 and G2, it follows that

E(G1) = γ1 , E(G2
1) = γ1 ,

E(G2) = γ2 , E(G2
2) = γ2 .

Hence, we may write the variances of G1 and G2, as well as the covariance of G1 and G2 as
follows.

var(G1) = E(G2
1)− E(G1)

2 = γ1(1− γ1),

var(G2) = E(G2
2)− E(G2)

2 = γ2(1− γ2),

cov(G1, G2) = E(G1G2)− E(G1)E(G2) = γ11 − γ1γ2 .

Therefore, when 0 < γ1 < 1 and 0 < γ2 < 1 we can expression the correlation between G1

and G2 as

ρ12 = cor(G1, G2) =
cov(G1, G2)√

var(G1)var(G2)
=

γ11 − γ1γ2√
γ1(1− γ1)γ2(1− γ2)

.

We see that the correlation is equal to zero when γ11 = γ1γ2, i.e. the prevalences are ’inde-
pendent’. The correlation is equal to 1 when γ10 = γ01 = 0, and then the marginal prevalences
are equal. The correlation is equal to -1 when γ11 = γ00 = 0, and the marginal prevalences are
typically unequal, but can be equal.

Note, however, that in the ‘edge cases’ in which one or both of the marginal prevalences,
γ1, γ2, is equal to zero there can be no correlation between G1 and G2, since their covariance is
equal to zero, and so ρ12 = 0.

In order to set up a simulation of the multinomial data we require to specify the marginal
prevalences, γ1 , γ2, as well the correlation between the presences of the defined effects, ρ12. Then
we set

γ11 = γ1γ2 + ρ12

√
γ1(1− γ1)γ2(1− γ2)

and also

γ10 = γ1 − γ11

γ01 = γ2 − γ11

γ00 = 1− γ11 − γ10 − γ01

This formula is also valid when either or both of the marginal prevalences is equal to zero.
We compute the θij as follows
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θ11 = b1b2γ11 + b1a2γ10 + a1b2γ01 + a1a2γ00,

θ10 = a1 + (b1 − a1)γ1. − θ11,

θ01 = a2 + (b2 − a2)γ.1 − θ11,

θ00 = 1− θ11 − θ10 − θ01.

These values of θij can then be used to generate random multinomial counts for the required
number of participants.
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