// The code is open source under the MIT license. // Copyright 2019-2020, Phillip Keldenich, TU Braunschweig, Algorithms Group // https://ibr.cs.tu-bs.de/alg // // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies // of the Software, and to permit persons to whom the Software is furnished to do // so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // // Created by Phillip Keldenich on 29.11.19. // #pragma once #include "fn_aux.hpp" #include namespace top_packing { using namespace ivarp; using aux_functions::T_inv; using aux_functions::sigma; using aux_functions::s1_star; using CTX = DefaultContextWithNumberType; const auto s1 = args::x0; const auto l1 = sqrt(1_Z - square(T_inv(s1))) - 0.5_X * s1; const auto sigma_2sq2 = (1_Z / (2_Z*sqrt(ensure_expr(2_Z)))) * sigma(s1); const auto s1d = variable(s1, "s_1", 0.295_X, sqrt(ensure_expr(1.6_X))); namespace proof1 { const auto xp1 = 0.5_X * s1 + sigma_2sq2; const auto yp1 = if_then_else(s1 <= s1_star, T_inv(s1) + sigma(s1) + sigma_2sq2, 0.5_X * sigma + sigma_2sq2); const auto F_TP1 = square(xp1) + square(yp1); const auto system = constraint_system(s1d, s1 >= l1, F_TP1 > 1_Z); const auto input = prover_input>(system); } namespace proof2 { const auto xp2 = 0.5_X * s1 + 0.645_X * sigma(s1); const auto yp2 = if_then_else(s1 <= s1_star, T_inv(s1) + 2_Z * 0.645_X * sigma(s1), 0.79_X * sigma(s1)); const auto F_TP2 = square(xp2) + square(yp2); const auto system = constraint_system(s1d, s1 >= l1, F_TP2 > 1_Z); const auto input = prover_input>(system); } }