Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/sparseFLMM
01 July 2021, 10:59:25 UTC
  • Code
  • Branches (9)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.1.0
    • refs/tags/0.1.1
    • refs/tags/0.2.0
    • refs/tags/0.2.2
    • refs/tags/0.3.0
    • refs/tags/0.3.1
    • refs/tags/0.4.0
    • refs/tags/0.4.1
    No releases to show
  • d18745c
  • /
  • R
  • /
  • fpc_famm_estimation.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:b8fc42f4a64793cc72cbdc4872d907eabcbebb1a
origin badgedirectory badge Iframe embedding
swh:1:dir:ca88c084abe4a2a855a7fd17cd28a8b909270766
origin badgerevision badge
swh:1:rev:5f8586c66031f53974ac4cb296fe3f6c49923ba6
origin badgesnapshot badge
swh:1:snp:a7e81d59d1c390b08089952db41e90a1abb796ee

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 5f8586c66031f53974ac4cb296fe3f6c49923ba6 authored by Jona Cederbaum on 02 October 2019, 03:50:02 UTC
version 0.3.0
Tip revision: 5f8586c
fpc_famm_estimation.R
##################################################################################################
# author: Jona Cederbaum
##################################################################################################
# description: FPCA-FAMM which predicts FPC weights and B, C, E and re-estimates the mean function
# including covariates as functional additive mixed model.
##################################################################################################
estimate_fpc_famm_fun <- function(curve_info, my_grid, phi_B_hat_grid, phi_C_hat_grid, phi_E_hat_grid, 
                                  nu_B_hat, nu_C_hat, nu_E_hat, t, N_B, N_C, N_E, use_bam_famm, 
                                  num_covariates, interaction, which_interaction, n, use_RI, 
                                  method, bs_y_famm, bs_int_famm, sigmasq, covariate, para_estim_famm, 
                                  para_estim_famm_nc, covariate_form, save_model_famm,
                                  use_discrete){
  
  ###################
  # initialize output
  ###################
  results <- list() 
  
  ######################
  # extract curve values
  ######################
  y_vec <- curve_info$y_vec
  
  ##########################
  # construct data and ydata 
  # for function pffr
  ##########################
  if(!use_RI){
    data <- data.table(id_subject = as.factor(curve_info$subject_long), 
                       id_word = as.factor(curve_info$word_long), 
                       id_n = as.factor(curve_info$n_long))
  }else{
    data <- data.table(id_subject = as.factor(curve_info$subject_long), 
                       id_n = as.factor(curve_info$n_long))
  }
  
  if(covariate){
    for(i in 1:num_covariates){
      data[, paste0("covariate.", i) := curve_info[[paste0("covariate.", i)]]]      
      if(interaction){
        for(k in 1:num_covariates){
          if(which_interaction[i, k] & (i < k)){
            prod_help <- curve_info[[paste0("covariate.", i)]] * curve_info[[paste0("covariate.", k)]]
            data[, paste0("inter_", i, "_", k) := prod_help]              
          }
        }  
      }
    }
  }
  
  
  data <- data[!duplicated(data$id_n), ]  # only need one row per curve not per observation in data
  ydata <- data.frame(.obs = curve_info$n_long, .index = t, .value = y_vec)
  rownames(data) <- 1:n
  
  ################
  # construct pcre
  # terms for famm
  ################
  names <- vector()
  N_vec <- c(N_B, N_C, N_E)
  
  if(!is.null(N_vec)){
    funs_names <- c("_B", "_C", "_E")
    for(i in seq_along(funs_names)){
      if(i == 1){
        id <- "id_subject"
      }
      if(i == 2){
        id <- "id_word"
      }
      if(i == 3){
        id <- "id_n"
      }
      if(N_vec[i] > 0){
        names <- cbind(names, paste("pcre(id = ", id, ", efunctions = phi", funs_names[i], 
                                    "_hat_grid, evalues = nu", funs_names[i], "_hat, yind = my_grid)", 
                                    sep = ""))
      }
    }
    listofbys_pc <- c(as.vector(names))
    
    if(covariate){
      names <- vector()
      
      for(i in 1:num_covariates){
        if(covariate_form[i] == "by"){
          name_help <- paste("covariate.", i, "", sep = "")
        }
        if(covariate_form[i] == "smooth"){
          if(all(data[[paste0("covariate.", i)]] %in% c(0, 1))){
            stop("no smooth effects for dummy covariates allowed,  
               please use covariate_form = 'by' for dummy covariates")
          }
          name_help <- paste0("s(covariate.", i, ")")
        }
        names <- cbind(names, name_help)
      }
      
      if(interaction == FALSE){
        listofbys_cov <- as.vector(names)
      }else{
        inter_names <- vector(mode = "character")
        inter_by <- numeric()
        for(i in 1:num_covariates){
          for(k in 1:num_covariates){
            if(which_interaction[i, k] & (i < k)){
              if(!all(data[[paste0("covariate.", i)]] %in% c(0, 1))|!all(data[[paste0("covariate.", k)]] %in% c(0, 1))){
                stop("interaction effects are only implemented between dummy covariates")
              }
              if(covariate_form[i] == "by" & covariate_form[k] == "by"){
                inter_names <- cbind(inter_names, paste("inter_", i, "_", k, "", sep = ""))
              }else{
                warning("interaction effects are only implemented between dummy covariates acting as varying-coefficients")
              }
            }
          }
        }
        listofbys_cov <- c(as.vector(names), c(inter_names))
      }
      
      listofbys <- c(listofbys_pc, listofbys_cov)
    }else{
      listofbys <- listofbys_pc
    }
    
    pred <- as.formula(paste("y_vec ~ 1 + ", paste(listofbys, collapse = " + "), sep = ""))
    
    ####################################
    # get design matrices to get S.scale
    ####################################
    if(use_bam_famm){
      #######################
      # FPC famm estimation/
      # prediction using bam
      #######################
      famm_setup_get_scale <- pffr(pred, yind = my_grid, data = data, ydata = ydata, 
                                   algorithm = "bam", control = gam.control(trace = TRUE), 
                                   method = method, bs.yindex = bs_y_famm, 
                                   bs.int = bs_int_famm, fit = FALSE)
    }else{
      #######################
      # FPC famm estimation/
      # prediction using gam
      #######################
      famm_setup_get_scale <- pffr(pred, yind = my_grid, data = data, ydata = ydata, 
                                   algorithm = "gam", control = gam.control(trace = TRUE), 
                                   method = method, bs.yindex = bs_y_famm, 
                                   bs.int = bs_int_famm, fit = FALSE)
    } 
    
    #################
    # extract S.scale
    #################
    if(N_B > 0){
      scale_B <- famm_setup_get_scale$smooth[[2]]$S.scale    
      if(N_C > 0){
        scale_C <- famm_setup_get_scale$smooth[[3]]$S.scale    
        if(N_E > 0){
          scale_E <- famm_setup_get_scale$smooth[[4]]$S.scale    
          scale_res <- c(scale_B, scale_C, scale_E)
        }else{
          scale_res <- c(scale_B, scale_C)
        }
      }else{
        if(N_E > 0){
          scale_E <- famm_setup_get_scale$smooth[[3]]$S.scale    
          scale_res <- c(scale_B, scale_E)
        }else{
          scale_res <- c(scale_B)
        }
      }  
    }else{
      if(N_C > 0){
        scale_C <- famm_setup_get_scale$smooth[[2]]$S.scale  
        if(N_E > 0){
          scale_E <- famm_setup_get_scale$smooth[[3]]$S.scale  
          scale_res <- c(scale_C, scale_E)
        }else{
          scale_res <- c(scale_C)
        }
      }else{
        if(N_E > 0){
          scale_E <- famm_setup_get_scale$smooth[[2]]$S.scale  
          scale_res <- c(scale_E)  
        }else{
          scale_res <- NULL
          warning("no FPCs chosen at all")
        }
      }
    }
    
    #################
    # specify sp_fix
    #################
    if(covariate){
      num_smooth <- sum(covariate_form == "smooth") # add -1 for smooth effects
      sp_fix <- c(-1, scale_res * sigmasq, rep(-1, (length(listofbys_cov) + num_smooth)))  
    }else{
      sp_fix <- c(-1, scale_res * sigmasq)  
    }
    
    ##############
    # set cluster
    # if specified
    ##############
    if(para_estim_famm & !use_discrete){
      if(detectCores() > 1){
        nc_use <- min(detectCores(), para_estim_famm_nc)
        if(.Platform$OS.type == "unix"){
          cl_estim <- makeForkCluster(nnodes = nc_use) # only runs on linux
        }else{
          cl_estim <- makeCluster(nc_use) # also runs on windows
        }
      }else{
        cl_estim <- NULL
      }
    }else{
      cl_estim <- NULL
    }
    
    
    ###############
    # estimate famm
    ###############
    if(use_bam_famm){
      if(use_discrete){
        famm_estim <- pffr(pred, sp = sp_fix, yind = my_grid, data = data, ydata = ydata, 
                           algorithm = "bam", control = gam.control(trace = TRUE), method = method, 
                           bs.yindex = bs_y_famm, bs.int = bs_int_famm, discrete = TRUE, nthreads = para_estim_famm_nc)
      }else{
        famm_estim <- pffr(pred, sp = sp_fix, yind = my_grid, data = data, ydata = ydata, 
                           algorithm = "bam", control = gam.control(trace = TRUE), method = method, 
                           bs.yindex = bs_y_famm, bs.int = bs_int_famm, cluster = cl_estim)  
      }
      
      
    }else{
      famm_estim <- pffr(pred, sp = sp_fix, yind = my_grid, data = data, ydata = ydata, 
                         algorithm = "gam", control = gam.control(trace = TRUE), method = method, 
                         bs.yindex = bs_y_famm, bs.int = bs_int_famm)
    }
    
    
    ##########################
    # stop cluster if existing
    ##########################
    if(!is.null(cl_estim)) stopCluster(cl_estim) 
    
    results[["intercept"]] <- famm_estim$coefficients[1]
    results[["sigmasq"]] <- famm_estim$sig2
    
    ###############
    # get residuals
    ###############
    results[["residuals"]] <- famm_estim$residuals
    
    #####################
    # predict in parts
    # to avoid many
    # doubles
    #####################
    if(N_B > 0){
      pred1 <- coef(famm_estim, n2 = length(my_grid))$smterms[[2]]$coef
      pred1_sorted <- cbind(pred1[order(pred1$id_subject.vec), c("id_subject.vec", "value")],
                            use = rep(1:length(my_grid), times = length(unique(curve_info$subject_long))))
      
      pred1_sorted_reshaped <- as.matrix(subset(reshape(pred1_sorted, idvar = "id_subject.vec", direction = "wide", 
                                                        timevar = "use", times = "value", v.names = "value"), 
                                                select = - c(id_subject.vec)),
                                         nrow = length(unique(curve_info$subject_long)), ncol = length(my_grid))
      
      dimnames(pred1_sorted_reshaped)[[1]] <- unique(curve_info$subject_long_orig)
      dimnames(pred1_sorted_reshaped)[[2]] <- NULL
      results[["famm_predict_B"]] <- pred1_sorted_reshaped
    }else{
      results[["famm_predict_B"]] <- NA
    }
    if(N_C > 0){
      if(N_B > 0){
        pred2 <- coef(famm_estim, n2 = length(my_grid))$smterms[[3]]$coef
      }else{
        pred2 <- coef(famm_estim, n2 = length(my_grid))$smterms[[2]]$coef
      }
      pred2_sorted <- cbind(pred2[order(pred2$id_word.vec), c("id_word.vec", "value")],
                            use = rep(1:length(my_grid), times = length(unique(curve_info$word_long))))
      
      pred2_sorted_reshaped <- as.matrix(subset(reshape(pred2_sorted, idvar = "id_word.vec", direction = "wide", 
                                                        timevar = "use", times = "value", v.names = "value"), 
                                                select = - c(id_word.vec)),
                                         nrow = length(unique(curve_info$word_long)), ncol = length(my_grid))
      
      dimnames(pred2_sorted_reshaped)[[1]] <- unique(curve_info$word_long_orig)
      dimnames(pred2_sorted_reshaped)[[2]] <- NULL
      
      results[["famm_predict_C"]] <- pred2_sorted_reshaped
    }else{
      results[["famm_predict_C"]] <- NA
    }
    if(N_E > 0){
      if(N_B > 0){
        if(N_C > 0){
          pred3 <- coef(famm_estim, n2 = length(my_grid))$smterms[[4]]$coef
        }else{
          pred3 <- coef(famm_estim, n2 = length(my_grid))$smterms[[3]]$coef
        }
      }else{
        pred3 <- coef(famm_estim, n2 = length(my_grid))$smterms[[2]]$coef
      }
      pred3_sorted <- cbind(pred3[order(pred3$id_n.vec), c("id_n.vec", "value")],
                            use = rep(1:length(my_grid), times = length(unique(curve_info$n_long))))
      
      pred3_sorted_reshaped <- as.matrix(subset(reshape(pred3_sorted, idvar = "id_n.vec", direction = "wide", 
                                                        timevar = "use", times = "value", v.names = "value"), 
                                                select = - c(id_n.vec)),
                                         nrow = length(unique(curve_info$n_long)), ncol = length(my_grid))
      
      dimnames(pred3_sorted_reshaped)[[1]] <- unique(curve_info$n_long_orig)
      dimnames(pred3_sorted_reshaped)[[2]] <- NULL
      
      results[["famm_predict_E"]] <- pred3_sorted_reshaped
      
    }else{
      results[["famm_predict_E"]] <- NA
    }
    
    ##################
    # get covariate
    # effects and
    # confidence bands
    ##################
    coef_use <- coef(famm_estim, n1 = length(my_grid), n2 = length(my_grid))  
    if(any(covariate_form == "smooth")){
      newdata_smooth_mean <- data.table(id_subject = rep(1, length = length(my_grid)), 
                                        id_word = rep(1, length = length(my_grid)), 
                                        id_n = rep(1, length = length(my_grid)))
      if(covariate){
        for(i in 1:num_covariates){
          if(covariate_form[i] == "by"){
            mean_use <- mean(curve_info[!duplicated(n_long), ][[paste0("covariate.", i)]])
            newdata_smooth_mean[, paste0("covariate.", i) := rep(mean_use, length(my_grid))]    
          }else{
            mean_use <- mean(curve_info[!duplicated(n_long), ][[paste0("covariate.", i)]])
            newdata_smooth_mean[, paste0("covariate.", i) := rep(mean_use, length(my_grid))]  
          }
          
          if(interaction){
            for(k in 1:num_covariates){
              if(which_interaction[i, k] & (i < k)){
                if(all(data[[paste0("covariate.", i)]] %in% c(0, 1)) & all(data[[paste0("covariate.", k)]] %in% c(0, 1))){
                  mean_use <- mean(curve_info[!duplicated(n_long), ][[paste0("covariate.", i)]]) * mean(curve_info[!duplicated(n_long), ][[paste0("covariate.", k)]])
                  newdata_smooth_mean[, paste0("inter_", i, "_", k) := rep(mean_use, length(my_grid))]
                }else{
                  warning("interaction effects are only implemented between dummy covariates")
                }
              }
            }  
          } 
        }
      }
      
      pred_smooth_mean <- predict(famm_estim, type = "iterms", newdata = newdata_smooth_mean)
      results[["pred_smooth_mean"]] <- pred_smooth_mean
    }
    
    coef_use_sm <- coef_use$smterms
    results[["famm_cb_mean"]] <- coef_use_sm[[1]]$coef
    
    if(covariate){
      for(i in 1:num_covariates){
        if(covariate_form[i] == "by"){
          results[[paste0("famm_cb_covariate.", i)]] <- coef_use_sm[[paste0("covariate.", i, "(yindex)")]][["coef"]]
        }
        if(covariate_form[i] == "smooth"){
          results[[paste0("famm_cb_covariate.", i)]] <- coef_use_sm[[paste0("s(covariate.", i, ")")]][["coef"]]
          results[[paste0("famm_cb_covariate.", i, "_mean")]] <- pred_smooth_mean[[paste0("ti(covariate.", i, ", yindex.vec)")]]
        }
        if(interaction){
          for(k in 1:num_covariates){
            if(which_interaction[i, k] & (i < k)){
              if(all(curve_info[[paste0("covariate.", i)]] %in% c(0, 1)) & all(curve_info[[paste0("covariate.", k)]] %in% c(0, 1))){
                results[[paste0("famm_cb_inter_", i, "_", k)]] <- coef_use_sm[[paste0("inter_", i, "_", k, "(yindex)")]][["coef"]]
              }else{
                warning("interaction effects are only implemented between dummy covariates")
              }
            }
          }
        }
      }
    }
    
    ###################################################
    # get original basis weights of FPC-FAMM estimation
    ###################################################
    #######
    # for B
    if(N_B > 0){
      xid <- diag(length(unique(data$id_subject)))
      xef <- phi_B_hat_grid
      xi_B_hat_famm_help <- qr.coef(qr(xid %x% xef), as.vector(t(results[["famm_predict_B"]])))
      xi_B_hat_famm <- t(matrix(xi_B_hat_famm_help, ncol = length(unique(data$id_subject)), nrow = N_B))
      row.names(xi_B_hat_famm) <- unique(curve_info$subject_long_orig)
    }else{
      xi_B_hat_famm <- NA
    }
    results[["xi_B_hat_famm"]] <- xi_B_hat_famm
    
    #######
    # for C
    if(N_C > 0){
      xid <- diag(length(unique(data$id_word)))
      xef <- phi_C_hat_grid
      xi_C_hat_famm_help <- qr.coef(qr(xid %x% xef), as.vector(t(results[["famm_predict_C"]])))
      xi_C_hat_famm <- t(matrix(xi_C_hat_famm_help, ncol = length(unique(data$id_word)), nrow = N_C))
      row.names(xi_C_hat_famm) <- unique(curve_info$word_long_orig)
    }else{
      xi_C_hat_famm <- NA
    }
    results[["xi_C_hat_famm"]] <- xi_C_hat_famm
    
    #######
    # for E
    if(N_E > 0){
      xid <- diag(length(unique(data$id_n)))
      xef <- phi_E_hat_grid
      xi_E_hat_famm_help <- qr.coef(qr(xid %x% xef), as.vector(t(results[["famm_predict_E"]])))
      xi_E_hat_famm <- t(matrix(xi_E_hat_famm_help, ncol = length(unique(data$id_n)), nrow = N_E))
      row.names(xi_E_hat_famm) <- unique(curve_info$n_long_orig)
    }else{
      xi_E_hat_famm <- NA
    }
    results[["xi_E_hat_famm"]] <- xi_E_hat_famm
    
    
    ##################
    # save famm object
    # if specified
    ##################
    if(save_model_famm){
      results[["famm_estim"]] <- famm_estim
    }
    famm_estim <- NULL
  }else{
    warning(" no FPCs chosen at all")
  }
  
  ###############
  # return output
  ###############
  return(results)
}

###################################################################################################

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API