\name{dnacopula} \alias{dnacopula} \title{Copula Density Evaluation} \description{ Evaluates the density of an Archimedean copula. } \usage{ dnacopula(x, u, log=FALSE, \dots) } \arguments{ \item{x}{an object of class \code{"\linkS4class{outer_nacopula}"}.} \item{u}{argument of the copula x. Note that u can be a matrix in which case the density is computed for each row of the matrix and the vector of values is returned.} \item{log}{logical indicating if the \code{\link{log}} of the density should be returned.} \item{\dots}{ optional arguments passed to the copula's \code{dacopula} function (slot), such as \code{n.MC} (non-negative integer) for possible Monte Carlo evaluation (see \code{dacopula} in \code{\linkS4class{acopula}}).} } \details{ If it exists, the density of an Archimedean copula \eqn{C} with generator \eqn{\psi}{psi} at \eqn{\bm{u}\in(0,1)^d}{u in (0,1)} is given by \deqn{c(\bm{u})=\psi^{(d)}(\psi^{-1}(u_1)+\dots+\psi^{-1}(u_d))\prod_{j=1}^d(\psi^{-1}(u_j))^\prime = \frac{\psi^{(d)}(\psi^{-1}(u_1)+\dots+\psi^{-1}(u_d))}{ \prod_{j=1}^d\psi^\prime(\psi^{-1}(u_j))}. }{c(u) = psi^{(d)}(psi^{-1}(u_1)+...+psi^{-1}(u_d)) prod(j=1..d) (psi^{-1}(u_j))' = psi^{(d)}(psi^{-1}(u_1)+...+psi^{-1}(u_d)) / (psi'(psi^{-1}(u_1))*...*psi'(psi^{-1}(u_d))).} } \value{ A \code{\link{numeric}} vector containing the values of the density of the Archimedean copula at \code{u}. } \author{Marius Hofert, Martin Maechler} \references{ Hofert, M., \enc{Mächler}{Maechler}, M., and McNeil, A. J. (2011a), Estimators for Archimedean copulas in high dimensions: A comparison, to be submitted. Hofert, M., \enc{Mächler}{Maechler}, M., and McNeil, A. J. (2011b), Likelihood inference for Archimedean copulas, submitted. } \seealso{ For more details about the derivatives of an Archimedean generator, see, for example, \code{psiDabs} in class \code{\linkS4class{acopula}}. } \examples{ ## Construct a twenty-dimensional Gumbel copula with parameter chosen ## such that Kendall's tau of the bivariate margins is 0.25. theta <- copJoe@tauInv(.25) C20 <- onacopula("J", C(theta, 1:20)) ## Evaluate the copula density at the point u = (0.5,...,0.5) u <- rep(0.5, 20) dnacopula(C20, u) ## the same with Monte Carlo based on 10000 simulated "frailties" dnacopula(C20, u, n.MC = 10000) ## Evaluate the exact log-density at several points u <- matrix(runif(100), ncol=20) dnacopula(C20, u, log = TRUE) } \keyword{distribution}