Guidelines for Software Quality
CLARIAH Task 54.100

Maarten van Gompel
Centre for Language & Speech Technology
Radboud University, Nijmegen
Jauco Noordzij
Huygens ING
Reinier de Valk & Andrea Scharnhorst

Data Archiving and Networked Services (DANS)
Royal Netherlands Academy of Arts and Sciences

September 30, 2016

version 1.1

Contents

T Motivation

2_Context|

[3

Introduction - glossary of terms|

(4

Developer Guidelines: Minimal Requirements|

|4.1 Configuration 1: Actively Supported End User Software
|4.2 Configuration 2: Unsupported End User Software|
|4.3 Configuration 3: Actively Supported Experimental Software|
|4.4 Configuration 4: Unsupported Experimental Software]

Quality Assessment Criteria - Usability|

5.1 Understandability]

5.3 Learnability]
5.4 Buildability|.
5.5 Installability]

Quality Assessment Criteria - Sustainability and Maintainability|

6.2 Copyright & Licensing|.

6.3 Accessibility]
6.4 Community]
6.5 Testability]

1.1

[6.6 Portability] 31

[6.7 Supportability] 32
[6.8 Analysability] 33
[6.9 Changeability] 34
[6.10 Reusability] 35
[6.11 Security & Privacy|. 36
[6.12 Interoperability]. 36
[6.13 Interoperability for CLARIAH| 36
614 Governancel 36
[7 Quality Measurement| 36
[8 Implementation| 37
[References| 37
[Appendix A: Assessment Form| 38
Motivation

CLARIAH aims to deliver a digital research infrastructure made explicitly accessible for re-
searchers from the social sciences and humanities (SSH). This makes the development of
advanced ICT tools a core activity within CLARIAH. To be able to assess the quality of the
research infrastructure as a whole, we need to be able to assess the quality of its individual
software parts, and their function inside of the research infrastructure including data compo-
nents. If we can establish a common set of software guidelines, we may more readily identify
weaker components of the software infrastructure and work on their improvement. We may
also be able to better direct software production processes towards issues of interoperability
and sustainability. A digital research infrastructure operates at the intersection of supporting
ICT and research practices. For the SSH those are far from being homogeneous. The practices
served by the infrastructure differ concerning the object of analysis, the processes of analysis,
and the required usability level.

The need for increased attention to software quality and sustainability in an academic context
is stressed by Doorn et al.|[2016]. They recognize the fundamental role software plays in
modern research and observe that good development practice is less followed in academia than
in the commercial sector, which leads to problems in maintenance and adoption. They thus
set out to promote good software development practice, good models of sustainability and
dissemination of the best software across application areas/disciplines. We fully agree with
these goals, and the guidelines presented here are intended to respond, on a practical level, to
these with specific software quality criteria, explicitly encompassing sustainability as well.

Structure of the Document

After a discussion of the context of questions of software quality in social sciences and hu-
manities research infrastructures, we start the main part of this document with the essentials:
definitions and the state-of-art of discussions around software quality criteria. Following that,
the guidelines—a number of actionable steps, intended to make software more usable and

discoverable for users and other developers—are described. Two categories of guidelines are
discerned:

o developer guidelines
e full assessment criteria

While the former are minimal requirements that software should adhere to, the latter constitute
more comprehensive guidelines that can help to achieve software of a higher quality. The
developer guidelines are specified in a form that leaves little room for discussion. They are
but one way of meeting the more generic assessment criteria. It is encouraged to follow them
as-is; doing so will make their implementation easier. It will also make consuming the results
easier, as there will be a firm structure that can be relied on. The full body of assessment
criteria does not just consist of boxes to tick, but offers ways to look at quality in software
and tips to make software better and more useful.

The assessment criteria are presented as questions that can be answered on a 5-point scale to
indicate the level of compliance. In addition to these answers, there is room for open-ended
comments here. In order to explain, for example, any trade-offs made while developing.

It should be noted that throughout this document, both categories are captured under the
umbrella term guidelines.

Context

Software quality is an issue for software engineering. In the same way that experimental
research depends on the quality of its instruments and the processes to use them properly, the
quality of software influences the outcome of any computational processes: its accuracy (it
should deliver what it was built for) as well as its efficiency (it should do this efficiently in time
and with respect to use of resources). At a first glance, software quality concerns the quality
of software code as a product (sometimes called its functional quality). However, software
products do not exist in isolation, but they often form part of an architecture. So the quality
of software concerns not only the level of source code, of a unit, but also its interplay with
technology and systems (called structural quality). E]

Software quality is a term that emerged within software engineering in the 1950's. The term
software sustainability, however, is far less widespread. One could also say that with a more
mature level of relying on software technologies, the aspect of their sustainability becomes
more prevalent. The more software (and hardware) become seamless, invisible and move to
the background, the more important becomes their quality also for use in the long term. The
latter is one aspect of sustainability.

For infrastructures that aim to be reliable and supportive, the reliability and sustainability of
elements they are built of is a must. For research infrastructures, an additional element that
enhances the complexity emerges. Research practices by their very nature are changing in time.
While we might rely on consolidated methods and theories to some extent—at least for the
phases of normal science outside of the Kuhnian scientific revolutions—the research questions
are supposed to change all the time, securely targeted towards the unknown. As a consequence,
the application of methods and theories—their recombination (to use an evolutionary term)—
is at the heart of research. For research based on the application of digital methods on digital

"https://en.wikipedia.org/wiki/Software_quality

https://en.wikipedia.org/wiki/Software_quality

material this implies a kind of constant revolution in software tools—those digital instruments.
For science history that is actually not new. If we look into the history of instrumentation
we will see outsourcing of instrument-making to industries and re-appropriating them for lab
research and the tailor-made development of instruments both occurring at the same time.
For an evaluation of software as part of a research infrastructure the differentiation between
tools which are explorative and tools which are stable and reproducible is crucial. It makes
sense to require quality assessment for both, but not all levels of the checklists presented in
these guidelines might be of equal importance for all tools developed. To differentiate between
them is one add-on task in developing these guidelines.

Introduction - glossary of terms

Assessing software (or data) quality is not a trivial matter.

Whenever we refer to software, we intend the term in a broad sense and encompassing all of
the following aspects:

e source code

e binary executables

user interfaces (including application programming interfaces (APIs) and web APlIs)
e associated essential data

e documentation (including tutorials, screencasts)

e support infrastructure (version control, build systems, issue trackers)

The assesment criteria for software quality are grouped into various assessment dimensions,
such as “Documentation” and “Installability”. Each dimension in turn consists of assessment
criteria, mostly formulated as a series of questions. This makes them directly applicable as an
instrument for software quality assessment.

These guidelines target developers, managers, and, primarily, users of software. Developers will
be more aware of the targets to meet, and able to identify and remedy weak areas. Managers
and users will be able to assess whether software is of sufficient quality for their purposes.
Although we intend to formulate the questions as plainly as possible, a certain degree of
technical expertise is demanded of all of these in order to attain a successful assessment.

Each criterion can be answered on a 5-point scale to indicate compliance. In addition, a
criterion may also be deemed not applicable. The response scale is as follows:

0. No — The criterion is not met

1. Minimal — The criterion is met only minimally. This is not a good score and better
compliance is recommended

2. Adequate — The criterion is met adequately. This is not a great score but it is sufficient
3. Good — The criterion is complied to well
4. Perfect — The criterion is complied to completely

Evaluators will need to determine for themselves what compliance level, per dimension, con-
stitutes an acceptable passing threshold.

The criteria we yield are to a large extent adopted from the Criteria-based Software Evaluation
Guide [Jackson et al., [2011] by the Software Sustainability Institute (SSI). Their work, in turn,
is modelled after ISO/IEC 9126-1 Software Engineering - Product Quality [ISO/IEC, |2001].

The Software Sustainability Institute[Crouch et al., 2013| is an academic institute explicitly
geared towards researchers and software developers in science. The criteria they drafted are
therefore deemed to form a very relevant basis for research projects such as CLARIAH. Software
quality assessment will have a large generic component regardless of the context of the larger
project. A large portion of these guidelines is therefore applicable in the broader context of
software quality in academics, software quality for open source projects, and software quality

in general.

The dimensions used by the SSI are shown in Table[I]

Usability

Understandability
Documentation

Is the software easily understood?
Comprehensive well-structured documentation?

Buildability Straightforward to build from source on a supported system?

Installability Straightforward to install and deploy on a supported system?

Learnability Easy/intuitive to learn how to use its functions?
Sustainability & Manageability

Identity Project/software identity is clear and unique?

Copyright Easy to see who owns the project/software?

Licencing Adoption of appropriate license?

Governance Easy to understand how the project is run and the development managed?

Community Evidence of current/future community?

Accessibility Evidence of good facilities to obtain versions of the software?

Testability Easy to verify if the software functions correctly?

Portability Usable on multiple platforms?

Supportability Evidence of current/future developer support?

Analysability Easy to understand at the source-code level?

Changeability Easy to modify and contribute changes?

Evolvability Evidence of current/future development?

Interoperability

Interoperable with other required/related software?

Table 1: Software quality dimensions according to the SSI [Jackson et al., 2011] (with some

minor paraphrasing).

We adopt this scheme with the following changes:

e Copyright & Licensing are merged.

e Evolvability was merged into Changeability.

e Security & Privacy dimension is added to Sustainability & Manageability

e Performance dimension was added to Usability.

e Reusability dimension was added to Sustainability & Manageability: To what extend is
the software reusable?

e The Interoperability dimension is split into a generic section and a CLARIAH-specific sec-
tion. The latter provides criteria to assess whether the software complies to requirements
for integration into the CLARIAH infrastructure.

Sections [B] and [6] lay out all dimensions with the individual assessment criteria. The individual
criteria are inspired by the SSI guidelines but are not directly copied. Our criteria are generally
more condensed and may group issues that were expressed as multiple criteria in the SSI guide.
Various criteria have also been added that did not exist in the SSI guide, and there were a few
we found too specific to use.

Each criterion carries an ID code for easy reference. Cross-references will be made whenever
there is a relationship between criteria.

Before the description of the full assessment criteria, a number of strict, minimal, requirements
that software should adhere to (see Section [1.1]), are described in the now following Section [4]

4 Developer Guidelines: Minimal Requirements

This section describes a set of guidelines for developers to adhere to, they are very straight-
forward to implement, follow common practice where possible, and take a firm stand where
interoperability benefits when a choice must be made. However, depending on the context,
more (or less) may be expected from peers or collaborators.

It should be noted that there are two sets of opposing scenarios: the first concerns end user
software versus experimental software, and the second software receiving active support versus
unsupported software.

e Not all software is intended exclusively for end users: some software is experimental,
and intended only for people who can modify the code. This makes such software less
usable—but when the goal of a project is to verify if something is at all possible, this
might be a valid trade-off.

e While everyone wants the software they use to receive active support, in practice this
is not always feasible. It is acceptable to release unsupported software—provided that
users are notified clearly and in advance.

Which of the following requirements apply depends on which configuration of these two sets
of opposing scenarios is applicable. Below are written out all four configurations: in each
case, non-applicable guidelines are grayed-out. The guidelines in these configurations may
summarise one or more of the full assessment criteria, as indicated by the codes.

4.1 Configuration 1: Actively Supported End User Software

1. The software must be stored in a version control system (VCS). The

source code must be published. To lower the barrier of entry the VCS must be
either in a Git, Mercurial or SVN repository. As much as possible should be stored
alongside the code in the VCS. CLARIAH is registered as an organization on Github
(https://github.com/CLARIAH/), it is recommended to host the VCS here.

2. There must be one command that installs all dependencies on the supported oper-
ating systems (OSs).

3. The software must be built with one command. This command must not write to the
file system outside of the source code directory and the temp directories (installation
actions should be part of a separate script). Of course, the code will not be buildable

https://github.com/CLARIAH/

on all OSs, and the command needs not to be platform independent—but there must
be one OS on which it works without further configuration necessary. The command
must call the multiple build steps if necessary. If there are tests, the command should
run them as part of the build. @ @ @

. The software must either result in a directory with artefacts that can be moved to an
arbitrary location on the system and still work, or it must contain one command that
will perform the installation.

. While a normal process can be easily daemonized, a daemonized process cannot be easily
kept in the foreground. The software must be therefore able to run in the foreground
after installation.

. All runtime dependencies must be available after installation. @

. If the software can be installed it must also have one uninstall script. This script must
provide a switch to also remove config files and leave them alone by default.

. The root folder of the software project contains a file called README (fully capitalised)
@ @ , which must be a readable plain text file. It may link to images, but the reader
must be able to follow along without them. A readable plain text file is a file that can
be read by a human using both wordpad.exe and vi. Formats such as markdown and
ReST are readable as plain text, but LaTeX and HTML are not. The text should be
encoded using UTF-8.

[

(b) Accurate support contact information must be provided at the top of the readme,
and an end date, until which this information can be assumed to be valid, must
also be added here. A suitable end date is the current end time of the project. If
no clear end date exists, it should be set no further than a year away, and it should

be reset regularly.
[

(d) The readme must contain an explanation of the intended audience of the software,
where the different user groups should be clearly named and described.

(e) The readme must describe the problems that these users face, which resulted in
the software. (U4

(f) The readme must describe what the software does to help solving these problems.
01 04 o D7

(g) The readme must contain a list of similar or related software, and a description
how the current software fits in.

(h) The readme must specify the commands used to build and install from point 2-6
above. Also, it should specifiy the OSes the commands will work on. Alternatively,
this may be described in a separate INSTALL file, but the README must then
clearly state this.

10.

11.

12.

13.

14.

15.

(i) The readme must contain either a quick start, explaining how the first task can be
performed with the system, or, in the more extensive documentation, a link to the

quick start. @

(J) The readme must specify system requirements, i.e. observed memory /file/processing
usage while doing the happy path and a moderate load path. @ @ It should
also clearly specify the platforms it is designed to work on. @

(k) The readme must contain a description of how the software scales (the load can be

shared over multiple instances, explicitly mentioning if this is not possible). @

(I) The readme must contain a non-exhaustive list of places where the software is

running. [CMI]
(m) The readme must specify until when the project is currently funded, as well as a
list of the funders.

Any documentation must be stored alongside the code. Long-form texts should live
in the folder docs/ in the root of the project.

All documentation must be also stored in an archivable format. Such documenta-
tion can of course be generated from another source format, but the archivable version
must also be stored in the VCS. An archivable format is a file format that will, with
great probability, still be readable in ten years’ time. Such formats are readable plain
text (see above), HTML that does not depend on external stylesheets or scripts, and
PDF/A. In the case of PDF/A, the source format must also be included—though it may

be a non-archivable format such as a Word file, a LaTeX file, etc. (D2
The project must have a website, containing, at the very least: @
(a) a typeset version of the readme

(b) screenshots/screencasts of the application, if applicable

(c) a link to the source code, i.e. the version controlled repository |AC2| , as well as a
link to where the latest stable release can be obtained

(d) contact information, or a link to the bug tracker

(e) a link to the documentation: either a direct link to the pdf or html, if available, or
a browseable list of the text files

(f) the website must be registered on Google, and a link to the project must be provided
to the CLARIAH Dissemination & Education workpackage

The user interface of the application should point to the website. If this user
interface is a website, where possible, a link should be visible on every page. If the user
interface is a command line tool, a man page should ideally be provided that mentions
the website. The help output should mention it as well.

The application’s user interface should point to the contact information or to a
place to report bugs.

Almost every application provides an APl. This APl must be discoverable. API doc-
umentation must be written as specifically crafted comments in the source code itself,
from which API documentation can be automatically extracted using tools like doxygen,

16.

17.

18.
19.

21.

javadoc or sphinx. The result must be published. Use descriptive names. What must be
provided is a list of function names, their parameter names, and the constraints placed
on their values. It would be helpful to know under what condition which function is
expected to be called. If the sofware provides a webservice, it's API should be clearly
documented as well, usually in a separate document.

If the software depends on configuration files, then a template or sample must be provided
in the repository for each file, containing all available options and set to sane defaults.
Comments in the configuration file should give clear descriptions what the options do.

5

The software must be distributed under an OSI approved licence in a LICENSE file
in root. . The copyright holder should be clearly mentioned in the header of each

source file
The software must have a CONTRIBUTING file :

The software must not store usernames and passwords ; instead, it must use
the federated authentication and group management facilities provided by CLARIAH.

This list of requirements must be distributed alongside the code. If a software quality
self-assessment is made using the full criteria described in this document, then include
these results alongside the code as well. All of this can be achieved by simply filling
our web-based survey at http://softwarequality.clariah.nl, and committing the
resulting markdown document to your VCS.

4.2 Configuration 2: Unsupported End User Software

1.

The software must be stored in a version control system (VCS). @ The
source code must be published. To lower the barrier of entry the VCS must be
either in a Git, Mercurial or SVN repository. As much as possible should be stored
alongside the code in the VCS. CLARIAH is registered as an organization on Github
(https://github.com/CLARIAH/), it is recommended to host the VCS here.

There must be one command that installs all dependencies on the supported oper-
ating systems (OSs). @

The software must be built with one command. This command must not write to the
file system outside of the source code directory and the temp directories (installation
actions should be part of a separate script). Of course, the code will not be buildable
on all OSs, and the command needs not to be platform independent—but there must
be one OS on which it works without further configuration necessary. The command
must call the multiple build steps if necessary. If there are tests, the command should

run them as part of the build. @ @ @

The software must either result in a directory with artefacts that can be moved to an
arbitrary location on the system and still work, or it must contain one command that

http://softwarequality.clariah.nl
https://github.com/CLARIAH/

will perform the installation.

. While a normal process can be easily daemonized, a daemonized process cannot be easily
kept in the foreground. The software must be therefore able to run in the foreground
after installation.

. All runtime dependencies must be available after installation. @

. If the software can be installed it must also have one uninstall script. This script must
provide a switch to also remove config files and leave them alone by default.

. The root folder of the software project contains a file called README (fully capitalised)
@ @ , which must be a readable plain text file. It may link to images, but the reader
must be able to follow along without them. A readable plain text file is a file that can
be read by a human using both wordpad.exe and vi. Formats such as markdown and
ReST are readable as plain text, but LaTeX and HTML are not. The text should be
encoded using UTF-8.

[

T [

(c) It must be mentioned explicitly that the software is unsupported.

(d) The readme must contain an explanation of the intended audience of the software,
where the different user groups should be clearly named and described.

(e) The readme must describe the problems that these users face, which resulted in
the software.

(f) The readme must describe what the software does to help solving these problems.
01 [0 bg b7

(g) The readme must contain a list of similar or related software, and a description
how the current software fits in.

(h) The readme must specify the commands used to build and install from point 2-6
above. Also, it should specifiy the OSes the commands will work on. Alternatively,
this may be described in a separate INSTALL file, but the README must then
clearly state this.

(i) The readme must contain either a quick start, explaining how the first task can be
performed with the system, or, in the more extensive documentation, a link to the

quick start. @

(J) The readme must specify system requirements, i.e. observed memory /file/processing
usage while doing the happy path and a moderate load path. @ @ It should

10

10.

11.

12.

13.

15.

also clearly specify the platforms it is designed to work on.

(k) The readme must contain a description of how the software scales (the load can be
shared over multiple instances, explicitly mentioning if this is not possible). @

(I) The readme must contain a non-exhaustive list of places where the software is

running. [CM1]
(m) The readme must specify until when the project is currently funded, as well as a
list of the funders. |[CP3]

Any documentation must be stored alongside the code. Long-form texts should live
in the folder docs/ in the root of the project. @

All documentation must be also stored in an archivable format. Such documenta-
tion can of course be generated from another source format, but the archivable version
must also be stored in the VCS. An archivable format is a file format that will, with
great probability, still be readable in ten years’ time. Such formats are readable plain
text (see above), HTML that does not depend on external stylesheets or scripts, and
PDF/A. In the case of PDF/A, the source format must also be included—though it may
be a non-archivable format such as a Word file, a LaTeX file, etc. @

The project must have a website, containing, at the very least: @
(a) a typeset version of the readme
(b) screenshots/screencasts of the application, if applicable

(c) a link to the source code, i.e. the version controlled repository |AC2| , as well as a
link to where the latest stable release can be obtained

=

(e) a link to the documentation: either a direct link to the pdf or html, if available, or
a browseable list of the text files

(f) the website must be registered on Google, and a link to the project must be provided
to the CLARIAH Dissemination & Education workpackage

note that the readme as typeset by GitHub fulfils almost all these criteria.

The user interface of the application should point to the website. If this user
interface is a website, where possible, a link should be visible on every page. If the user
interface is a command line tool, a man page should ideally be provided that mentions
the website. The help output should mention it as well.

Almost every application provides an APl. This APl must be discoverable. API doc-
umentation must be written as specifically crafted comments in the source code itself,
from which API documentation can be automatically extracted using tools like doxygen,
javadoc or sphinx. The result must be published. Use descriptive names. What must be
provided is a list of function names, their parameter names, and the constraints placed
on their values. It would be helpful to know under what condition which function is
expected to be called. If the sofware provides a webservice, it's APl should be clearly
documented as well, usually in a separate document.

11

16. If the software depends on configuration files, then a template or sample must be provided
in the repository for each file, containing all available options and set to sane defaults.
Comments in the configuration file should give clear descriptions what the options do.

17. The software must be distributed under an OSI approved licence in a LICENSE file
in root. . The copyright holder should be clearly mentioned in the header of each

source file
[T

19. The software must not store usernames and passwords . instead, it must use
the federated authentication and group management facilities provided by CLARIAH.

21. This list of requirements must be distributed alongside the code. If a software quality
self-assessment is made using the full criteria described in this document, then include
these results alongside the code as well. All of this can be achieved by simply filling
our web-based survey at http://softwarequality.clariah.nl, and committing the
resulting markdown document to your VCS.

4.3 Configuration 3: Actively Supported Experimental Software

1. The software must be stored in a version control system (VCS). [CH3 The
source code must be published. To lower the barrier of entry the VCS must be
either in a Git, Mercurial or SVN repository. As much as possible should be stored
alongside the code in the VCS. CLARIAH is registered as an organization on Github
(https://github.com/CLARIAH/), it is recommended to host the VCS here.

2. There must be one command that installs all dependencies on the supported oper-
ating systems (OSs). @

3. The software must be built with one command. This command must not write to the
file system outside of the source code directory and the temp directories (installation
actions should be part of a separate script). Of course, the code will not be buildable
on all OSs, and the command needs not to be platform independent—but there must
be one OS on which it works without further configuration necessary. The command
must call the multiple build steps if necessary. If there are tests, the command should

run them as part of the build. @ @ @

=1

12

http://softwarequality.clariah.nl
https://github.com/CLARIAH/

8. The

=3

above requirements regarding installation can be omitted if the software can be

run from the source directory and during running will not write outside of the source
directory or temporary directories.

9. The root folder of the software project contains a file called README (fully capitalised)
@ @ , which must be a readable plain text file. It may link to images, but the reader
must be able to follow along without them. A readable plain text file is a file that can
be read by a human using both wordpad.exe and vi. Formats such as markdown and
ReST are readable as plain text, but LaTeX and HTML are not. The text should be
encoded using UTF-8.

()

(b)

(d)

(¢)

(f)

(g)

(h)

The readme must start by explicitly mentioning the experimental nature of the
software..

Accurate support contact information must be provided at the top of the readme,
and an end date, until which this information can be assumed to be valid, must
also be added here. A suitable end date is the current end time of the project. If
no clear end date exists, it should be set no further than a year away, and it should

be reset regularly.
[

The readme must contain an explanation of the intended audience of the software,
where the different user groups should be clearly named and described.

The readme must describe the problems that these users face, which resulted in
the software. (U4

) The readme must describe what the software does to help solving these problems.
01 [0 B b7

The readme must contain a list of similar or related software, and a description
how the current software fits in.

The readme must specify the commands used to build and install from point 2-6
above. Also, it should specifiy the OSes the commands will work on. Alternatively,
this may be described in a separate INSTALL file, but the README must then
clearly state this.

I

13

(m) The readme must specify until when the project is currently funded, as well as a
list of the funders.

10. Any documentation must be stored alongside the code. Long-form texts should live
in the folder docs/ in the root of the project.

11. All documentation must be also stored in an archivable format. Such documenta-
tion can of course be generated from another source format, but the archivable version
must also be stored in the VCS. An archivable format is a file format that will, with
great probability, still be readable in ten years' time. Such formats are readable plain
text (see above), HTML that does not depend on external stylesheets or scripts, and
PDF/A. In the case of PDF/A, the source format must also be included—though it may
be a non-archivable format such as a Word file, a LaTeX file, etc. @

[

O

I

14. The application’s user interface should point to the contact information or to a
place to report bugs.

14

17. The software must be distributed under an OSI approved licence in a LICENSE file
in root. . The copyright holder should be clearly mentioned in the header of each

source file
18. The software must have a CONTRIBUTING file)

E

20. Experimental software must be provided to end users in a way that makes it impossible
for them to mistake the experimental nature. For example: they should be required to
build it from source themselves, or it should refuse to store their data for a longer period
of time..

21. This list of requirements must be distributed alongside the code. If a software quality
self-assessment is made using the full criteria described in this document, then include
these results alongside the code as well. All of this can be achieved by simply filling
our web-based survey at http://softwarequality.clariah.nl, and committing the
resulting markdown document to your VCS.

4.4 Configuration 4: Unsupported Experimental Software

1. The software must be stored in a version control system (VCS). [CH3 The
source code must be published. To lower the barrier of entry the VCS must be
either in a Git, Mercurial or SVN repository. As much as possible should be stored
alongside the code in the VCS. CLARIAH is registered as an organization on Github
(https://github.com/CLARIAH/), it is recommended to host the VCS here.

2. There must be one command that installs all dependencies on the supported oper-
ating systems (OSs). @

3. The software must be built with one command. This command must not write to the
file system outside of the source code directory and the temp directories (installation
actions should be part of a separate script). Of course, the code will not be buildable
on all OSs, and the command needs not to be platform independent—but there must
be one OS on which it works without further configuration necessary. The command
must call the multiple build steps if necessary. If there are tests, the command should
run them as part of the build. @ 59 @ @

=1

15

http://softwarequality.clariah.nl
https://github.com/CLARIAH/

8. The above requirements regarding installation can be omitted if the software can be
run from the source directory and during running will not write outside of the source
directory or temporary directories.

9. The root folder of the software project contains a file called README (fully capitalised)
@ @ , which must be a readable plain text file. It may link to images, but the reader
must be able to follow along without them. A readable plain text file is a file that can
be read by a human using both wordpad.exe and vi. Formats such as markdown and
ReST are readable as plain text, but LaTeX and HTML are not. The text should be
encoded using UTF-8.

(a) The readme must start by explicitly mentioning the experimental nature of the
software..

T [

(c) It must be mentioned explicitly that the software is unsupported.

(d) The readme must contain an explanation of the intended audience of the software,
where the different user groups should be clearly named and described.

(e) The readme must describe the problems that these users face, which resulted in
the software. @

(f) The readme must describe what the software does to help solving these problems.
0T [04 [ps (7]

(g) The readme must contain a list of similar or related software, and a description
how the current software fits in.

(h) The readme must specify the commands used to build and install from point 2-6
above. Also, it should specifiy the OSes the commands will work on. Alternatively,
this may be described in a separate INSTALL file, but the README must then
clearly state this.

I

[T

(m) The readme must specify until when the project is currently funded, as well as a
list of the funders. @

16

10. Any documentation must be stored alongside the code. Long-form texts should live
in the folder docs/ in the root of the project. @

11. All documentation must be also stored in an archivable format. Such documenta-
tion can of course be generated from another source format, but the archivable version
must also be stored in the VCS. An archivable format is a file format that will, with
great probability, still be readable in ten years’ time. Such formats are readable plain
text (see above), HTML that does not depend on external stylesheets or scripts, and
PDF/A. In the case of PDF/A, the source format must also be included—though it may
be a non-archivable format such as a Word file, a LaTeX file, etc.

[

O

[

17. The software must be distributed under an OSI approved licence in a LICENSE file
in root. . The copyright holder should be clearly mentioned in the header of each
source file

17

E

20. Experimental software must be provided to end users in a way that makes it impossible
for them to mistake the experimental nature. For example: they should be required to
build it from source themselves, or it should refuse to store their data for a longer period
of time..

21. This list of requirements must be distributed alongside the code. If a software quality
self-assessment is made using the full criteria described in this document, then include
these results alongside the code as well. All of this can be achieved by simply filling
our web-based survey at http://softwarequality.clariah.nl, and committing the
resulting markdown document to your VCS.

5 Quality Assessment Criteria - Usability

5.1 Understandability

U1 - Is it clear what the software does?

Software must be accompanied be a clear and concise high-level description, describing what
exactly it does. Both the README file that ships with the software (see [57]) as well as the

project website (see @) should contain this information.

U2 - Is it clear for whom the software is intended?

It should be clear who are the intended users for the software. Software is usually not appro-
priate for all audiences. Gearing software at multiple audiences however, through for instance
offering multiple interfaces (command line interface (CLI) , graphical user interface (GUI),
web-user interface (WUI), web service) is good practice. References to projects already using
the software are recommended (see also)-

U3 - Is it clear how the software works?

There should be a high-level description explaining how the software accomplishes its task.
Links to publications are recommended. Also, a schema offering an architectural overview is
suggested where appropriate.

U4 - Is the software motivated?

There should be a written motivation for why the software does things the way it does and
why it was designed in the first place. It should be clear what problems are solved by it. Links
to publications and comparisons to similar software are strongly recommended.

18

http://softwarequality.clariah.nl

5.2

U5 - Is the development status of the software clear?

It should be clear in what stage of development the software is. Is it ready for production use
or is it experimental software and in a alpha or beta stage? If the software is not ready for
production use, the README /documentation should clearly state so.

U6 - Is the support status of the software clear?

It should be clear whether the software is actively supported, and if so until when. Actively
supported software should have clear support structures in place ([SP1] , [SP2]).

Unsupported supported should be clearly marked as such in the README /documentation. If
the software likely ceases to be supported after project funding ends, this should be indicated
as well.

Documentation
When we refer to documentation, we refer to the set of all documentation available for the

software. This may consists of different types of documentation for different audiences, and
may include published papers.

D1 - Is the software documented?

All software should be properly documented. Software without any documentation is as good
as useless. At the very least, there should be some documentation at a minimum level, targeted
at the intended audience. A README (see @) that attempts to meet some of guidelines in

this section (such as , ,) can be considered a bare minimum level of documentation.

D2 - Is the documentation accessible?

Documentation must be publicly accessible and in an acceptable standard format such as
HTML or PDF.

D3 - Is the documentation clear?

Documentation should be written in clear language, use proper spelling, and clearly describe
the software. Step-by-step and task-oriented instructions are recommended.

See also @)

D4 - Is the documentation complete?

Documentation should cover the entire software, including advanced features. Features that
are not documented in any way are generally useless. If the software consists of multiple
tools, are all documented? Are there no tasks the software can perform that are not properly
explained?

19

D5 - Is the documentation accurate?

Documentation should describe the advertised version and not be out-of-date with the latest
release. Examples should be in line with how the tool looks and behaves.

D6 - Does the documentation provide a high-level overview of the software?

A high-level overview of the software should be an integral part of the documentation, alongside
more detailed instruction where appropriate. Documentation should not immediately dive into
the details. It is important to first provide users with the necessary high-level insights so they
can understand how these details form a part of the larger picture.

D7 - Are all the necessary audiences addressed, at their appropriate levels?

Different groups of users require different documentation. Developers require APIs if the
software is a library (see), end-users require a walkthrough of the GUI if the software has
one. A different level of expertise may be expected of different user groups, the documentation

should assume the appropriate level.

D8 - Does the documentation make use of adequate examples?

Documentation should contain examples appropriate for the interface that is described. Command-
line interfaces should see examples of invocation and input and output. Graphical user inter-
faces should be illustrated through screenshots or screencasts. API references should contain
source code examples of usage.

D9 - Is there troubleshooting information?

Documentation should include information on troubleshooting, i.e. a specification of possible
error messages and explanation for resolution. A frequently asked questions (FAQ) section is
appropriate to cover questions that are repeatedly asked by the user base.

D10 - Is the documentation available from the project website?

Documentation must be clearly linked from the project website.

D11 - Is the documentation under version control?

The sources for documentation must be under version control like the source code, preferably
alongside the code itself.

20

5.3

D12 - Does the documentation describe the latest version?

Documentation should be up to date and describe the latest version of the software, rather
than lag several version behind.

To facilitate this in case of APl documentation or other documentation that can be automat-
ically generated from sources; consider using services such as http://readthedocs.io that
can automatically build and serve documentation upon each commit to for example github.

Learnability

This category partially overlaps with the documentation criterion, but explicitly focusses on
how straightforward it is to learn to use the software.

L1 - Is there a “Getting started” guide?

A Getting started guide, or similar, outlines how to quickly get started with the software using
a basic yet practical example and is usually task-oriented. It helps people to quickly get their
hands dirty prior to diving in the remainder of the documentation.

L2 - Are there instructions for basic use cases?

Instructions should be provided for at least basic use cases, and ideally for all possible use cases
if this is feasible.

L3 - Does the interface provide a help reference?

Help options should be provided by the interface. Command line interfaces must have a
-h/--help pair describing usage and all options, and ideally also a man page. GUIs should
use tooltips/hints to clarify their widgets (or through whatever convention is customary for
the platform/ecosystem). Alternatively, they can provide a help option referring to the docu-
mentation.

The project website should be mentioned from the help reference.

L4 - Is there APl documentation for developers?

If the software is a programming library, APl documentation must be provided. If the software
is a web service, a specification of the web APl must be provided.

API documentation should be auto-generated from comments in the source code, see @ :

L5 - If the software is configurable, are the configuration options clearly explained?

If the software is configurable, through for instance an external configuration files, a preferences
window in a GUI, or by any other means, then the configuration options and their effect should
be clearly documented.

21

http://readthedocs.io

5.4

5.5

Moreover, default values for configuration parameters, and their effect, should be made clear.

Buildability

Buildability applies to all software written in languages that compile to either native machine
code or any intermediate byte code to be interpreted by a VM. This is contrasted to software
that is interpreted at run-time from source code. This section is therefore applicable only to
languages such as C, C++, Java, Pascal, Haskell, Scala, Rust, Cython but not to scripting
languages such as Python, Ruby, Perl. Note that buildability does not include installation,
packaging, or deployment.

B1 - Are there good instructions for building/compiling the software?

Build /compilation instruction should be available and clear enough. They should be distributed
alongside the software's source distribution (as part of an INSTALL file or README), and/or be
addressed in the documentation. If the source distribution is the primary means of distribution,
then build instructions should be prominently displayed on the project website as well.

B2 - Is an established automated build system used?

Established build systems should be used. For example the GNU Build Systean] or CMake for
C/C++ (this is preferred over a static Makefile); or Ant or Maven for Java.

Solutions that are not tied to a single IDE are always preferred.

B3 - Are the dependencies listed and available?

(related to @)

All required or optional dependencies necessary to build the software should be listed, includ-
ing those by third parties (with references to their websites). If the build system supports
automatically obtaining dependencies, then this is a preferred solution. If the platform has
a package manager that can install these dependencies, then add instructions (i.e. package
names) to accomplish this. Ideally all dependencies should be installable by one command.

Moreover, all listed dependencies should be available, unobtainable software can not be used
as a dependency. Higher-order dependencies need not be listed.

B4 - Are there tests to verify the build has succeeded?

A build process should terminate with a testing stage that verifies its success.

Installability

Installability concerns the deployment of software on the target platform, also including con-
figuration of the software to the user's needs.

2Also known as the autotools.

22

IS1 - Are there easily accessible installation instructions?

All software must come with installation instructions. Those instructions should be easily
accessible and presented on the project website as well as shipped with the software in the
README or INSTALL file (see also @). Build and installation instructions can be combined
if the software is published as a source distribution.

IS2 - Are the dependencies listed and available?

(related to @)

All required or optional dependencies should be listed, including those by third parties (with
references to their websites). If the installation procedure supports automatically obtaining
dependencies, then this is a preferred solution (see also @). If the platform has a package
manager that can install these dependencies, then add instructions (i.e. package names) to
accomplish this. Ideally all dependencies should be installable with one command.

Moreover, all listed dependencies should be available, unobtainable software can not be used
as a dependency. Higher-order dependencies need not be listed.

IS3 - Are programming language’s best installation practices followed?

The ecosystem surrounding programming languages may come with standard procedures for
installation. Software should comply to these rather than use ad-hoc mechanisms. If the
ecosystem has facilities for dependency management (automatic download of dependencies),
these should be used.

e Python software should have a setup.py based on Distutils, Setuptools, or their rela-
tives.

e Installation of C/C++ software is generally an extension of the build process, often
culminating in a make install.

e Java software is delivered as a jar file.

e Perl software should use systems such as Module: :Build, ExtUtils: :MakeMaker, or
Module: :Install. Resulting in a Build.PL or Makefile.PL.

Complying to these installation practices often means your installable package is fit for inclusion
into the programming language’s public package repository (see [ACH|).

IS4 - Is the software packaged according to standards for the target platform?

If the software has a well-defined target platform and is intended for adoption by a wider
audience, it is recommended to package it in the appropriate form. This may however conflict
with 1S3, be rendered obsolete by @ , or render @ obsolete. The decision whether to use
packaging methods for the target platform and/or packaging methods for the ecosystem sur-
rounding the programming language (@) should be made on an individual basis, considering
the nature and audience of the software.

e Linux/BSD/Unix — Distributions generally have their own package manager

23

— Arch Linux: Use the Arch User Repository (AUR)
— Debian/Ubuntu (and other derivates): Use Debian Packages (deb)
— RedHat/CentOS/Fedora (and other derivates): Use Red Hat Packages (rpm)

e Mac OS X: Use PKG or DMG for traditional Mac applications intended for end-users;
for the more Unix-style software, use a system such as Homebrew or MacPorts

e Android: Use Android Application Packages (APK)
¢ i0S: (TODO)
e Windows: (TODO)

It is not always time- and cost-effective to package the software, especially not when there are
multiple target platforms.

IS5 - Is the software package properly structured?

The contents of the package should be properly organised in sub-directories (for documentation,
headers, source, etc..). Conventions may differ between programming languages.

If software is distributed as a plain archive (tar.gz, tar.bz2, zip or otherwise), it must create
a single directory when unpacked rather than spread its contents over the current working
directory.

I1S6 - Is the software properly structured when installed?

When the software is installed, it should adhere to file placement standards set by the target
platform. On Unix-like operating systems (excluding Mac OS X), the Filesystem Hierarchy
Standard?] (FHS) should be followed.

IS7 - The software must include a README.

The README file must contain links to the project website, as well as license and copyright
information. The README should be either plain-text or preferably in an unobtrusive mark-up
format such as Markdown or ReStructured Text?]

If a public version control platform such as GitHub is used (see), the README will
usually be visualised on the repository page.

IS8 - Are there facilities to uninstall the software?

This is usually trivial when the software complies to 1S4 and /or 1S3, or if the software installation
is self-contained in a single directory. In all other instances, proper uninstallation facilities
should be explicitly implemented.

%http://refspecs.linuxfoundation.org/fhs.shtml
*http://daringfireball .net/projects/markdown/
*http://docutils.sourceforge.net/rst.html

24

http://refspecs.linuxfoundation.org/fhs.shtml
http://daringfireball.net/projects/markdown/
http://docutils.sourceforge.net/rst.html

5.6

1S9 - Are the system requirements such as target platform clearly advertised?

The project website must clearly state what target platform(s) the software is expected to
run on. System requirements in terms of computing resources must be stated if the software
employs more than insignificant resources (see). (related also to @ and [IS2))

1S10 - Is the software deployable through an established container or virtualisation solution?

Certain software projects benefit from being installable either in a containerised form, or in fully
virtualised form (i.e. a virtual machine). This applies particularly to software that instead of
being a standalone tool, is a complex interplay between different components. Such software
is often a web application or webservice that builds on a large number of dependencies that
may be non-trivial to install or configure. A container or virtual machine offers a solution
to facilitate deployment. For CLARIAH this usually implies easier deployment by a CLARIN
centre.

Containerisation solutions:
e Docker —https://docker.com
e Ansible —https://ansible.com
Virtualisation solutions:
e Vagrant — https://www.vagrantup.com (builds on VirtualBox or VMWare)

This criterion can either complement or completely replace @ and @ . In such a case, the

solutions offered by @ and @ are often not sufficient for a simple deployment. For simple
standalone tools, however, this guideline is generally not applicable.

Performance

The guidelines in this category are typically hard to assess, as they require an intricate knowl-
edge of the design of the system.

PF1 - Does the software perform its function(s) efficiently?

Software should employ efficient algorithms to perform its task. This is quite non-trivial to
assess, especially from a third party perspective, but obvious performance bottlenecks may be
an indication of sub-optimal design choices.

(Consider also U4)

PF2 - Does the software make a reasonable demand on computing resources?

Software should not place an unreasonable demand on computing resource (memory, CPU
time). Overuse of resources may be an indication of sub-optimal design choices. This is not
easy to assess, but if the software does make high demand on particular resources, then this
should be clearly advertised and explained (in the documentation for instance) and also stated
as part of the system requirements.

25

https://docker.com
https://ansible.com
https://www.vagrantup.com

6.1

Be aware that there is often a trade-off between speed and memory usage. The developer of
the decision must make an appropriate decision favouring one or the other given the task at
hand.

PF3 - Does the software make efficient use of available resources?

Software should make use of available resources if it helps getting the job done faster. For
instance, if multiple CPU cores are available and the task at hand would benefit significantly
from parallelisation, then the implementation should be multithreaded to make use of said
cores.

PF4 - Is the interface responsive?

GUIs and WUIs should be responsive and deliver clear feedback when the user is to await
the completion of the task. GUIs and WUIs should use asynchronous methods for handling
user-interface interaction. Interaction with the interface should not be blocked needlessly.

Webservice interfaces need to be similarly responsive and not time out. Server interfaces fur-
thermore demand multi-threading and need to be able to handle multiple clients concurrently.

PF5 - Does the software scale as intended?

Proper facilities should be implemented to allow scaling if the software is intended to handle
big data and/or large user bases. Performance should remain acceptable at such levels. Scaling
can be horizontal, where multiple CPU cores or multiple machines are put to work to distribute
the load, or vertically by simply adding more resources. In a data-sense, horizontal scaling often
implies a partitioning of the data.

Quality Assessment Criteria - Sustainability and Maintainability

Identity

ID1 - Does the software provide a clear and unique identity?

Software should be identifiable by a clear name that does not clash with others in its application
domain and in the wider generic software domain.

ID2 - Does the software have a website?

The software should have a website that describes it, allows users to obtain it as well as its
documentation. The website should be a portal to everything related to the software.

It is recommended to have a dedicated domain name or subdomain.

26

6.2

ID3 - Does the project name not violate an existing trade-mark?

The project name should not infringe on existing trade-marks.

Copyright & Licensing

CP1 - Has an appropriate open-source license been adopted?

Software should be released as open source under an appropriate license. The license should be
recognised by the Open Source Initiativeﬁ] or Free Software FoundatiorE]. Open source licenses
generally fall somewhere on a spectrum between the following two flavours:

e Copyleft license (GNU Public License (GPL) and variants): If the code is modified and
distributed, the modified code must be distributed under the same license. Also, if your
code is licensed in this way and is used as a library or imported module by other software,
then that software too is considered a derivate work and must be distributed under the
same license. This ensures that anybody who derives a work from your code is obliged
to distribute it as open source (freef| software) as well.

e Permissive license (MIT, Apache License, BSD license): Allows modifications and reuse
with fewer restrictions. Generally anybody is free to use the code and use it in closed-
source (non-free) software.

The decision which license is most appropriate should be made on an individual basis. Note
that none of the major licenses prohibits commercial use, nor is it recommended to do so.

The license chosen for the software may never violate the licenses of any of the software's
dependencies, if there are linking clauses in those. [}

Any form of closed-source software is strongly discouraged as it is found to be at odds with a
scientific method that relies on methodological transparency, reproducibility and peer review.
The CLARIAH project is explicitly committed to open source and “aims to create an inclusive
open-source engineering community that will carry on providing new tools and support for
users after the end of the CLARIAH project” [Filarski, [2015].

CP2 - Is it clear who wrote the software, who owns the copyright, and what the license is?

Authors, copyright and license should be clearly mentioned on the project website, as well as
in the source code. We strongly recommend each source file to contain a comment header
stating this information.

CP3 - Are the funders acknowledged?

Any external funders of the software should be publicly acknowledged on the project website,
and in the README.

Chttps://opensource.org

http://fsf.org

8Free as in free speech, not free beer.

9This implies you that if you use GPL libraries, you can no longer release your software under a more
permissive license such as MIT.

27

6.3 Accessibility

AC1 - Is the source code maintained in a version control system?

Source code must always be kept under version control. This enables developers to collaborate,
maintains a perfect version history, and allows everyone keep a track of changes. Absence of
version control is bad development practice and unsustainable.

AC2 - Is the source code in a public version-controlled repository?

The version control repository should be public (read only) in the spirit of both open source,
as well as the scientific method (transparency, peer review, reproducibility).

It is recommended to use a large sustainable third-party platform (GitHulf_U], GitLabE], Bit-
BucketE], LaunchpacE]), as it offers a social dimension and is more likely to live beyond the
lifetime of any current project funding line. Use of sourceforge.net, de-facto standard prior
to the advent of current leader Github, is strongly discouraged as it is under ill management
and no longer deemed secure. Public repositories tend to be free on these platforms and often
come with many additional benefits, such as a good public issue tracker (see).

We motivate our reasoning in favour of public version control repositories as follows:
1. increased visibility for the project, especially if a major external platform is used.
2. facilitates judgement of development activity of a software project.
3. facilitates collaboration, especially from external partners.

4. invites peer review

5

. allows users to be more intimately aware of changes, which in an academic context may
impact their experimental results.

(depends on)

AC3 - Is there no restricted data in the public source code repository?

Privacy and security sensitive data (passwords, APl keys), as well as other restricted data,
should never be checked into public version control systems.

AC4 - Are there clearly marked formal releases of the software?

The software should be formally released when the developers deem it a good time. Each
release should be clearly marked with the version number of the software, according to a
consistent scheme. The version control system should also have clearly identifiable tags that
mark the state of the repository at the time of this release.

Ohttps://github. com
Uhttps://gitlab.com
Zhttps://bitbucket.org
Bhttps://launchpad.net

28

https://github.com
https://gitlab.com
https://bitbucket.org
https://launchpad.net

AC5 - Is the software deposited in a public repository for the language?

The ecosystems surrounding various high-level programming languages offer public repositories
in which installable software release packages should be deposited. These repositories function
as a primary source for installation (see also @) and generally offer automatic dependency
management.

Use of these repositories is strongly recommended practice if available.

e Python — Releases of Python software should be deposited in the Python Package Index:
https://pypi.python.org

e Perl — Perl modules should be deposited in the Comprehensive Perl Archive Network
(CPAN): http://www.cpan.org.

e Java — Java components built using Maven and various other build systems should be
deposited in The Central Repository: http://central.sonatype.org/

e R — R packages should be deposited in the Comprehensive R Archive Network (CRAN):
https://cran.r-project.org

e Javascript — Javascript software should be deposited in NPM: https://www.npmjs.
com

e Ruby — Ruby software should be deposited to RubyGems: https://rubygens.org

ACO6 - Is the software available in the target platform’s software repository?

If the software has a well-defined target platform and the target platform has a public software
repository available, then it is recommended to submit the packages to this public repository.

This may however conflict with AC5, be rendered obsolete by AC5, or render AC5 obsolete.
The decision which form of installation takes precedence should be made on an individual
basis, considering the nature and audience of the software.

e Linux/BSD/Unix — Distributions generally have their own official repositories. Package
inclusion can be a lengthy process.

— Arch Linux: Submit your package to the Arch User Repository{ijl (AUR)

CentOS: Consult https://wiki.centos.org/HowTos/Packages/ContributeYourRPMs

Debian: Consult https://wiki.debian.org/Packaging

Fedora: Consult https://fedoraproject.org/wiki/Packaging:Guidelines

Ubuntu: Ubuntu inherits Debian’s packages, therefore submitting Debian is recom-
mended. Users can submit software to Package Archive (PPA).

e Mac OS X: use the Apple Store for traditional Mac applications intended for end-users;
for the more Unix-style software, use a system such as Homebrew or MacPorts.

e Android: use the Google Store, fully open-source software may also be submitted to

F-Droid®

“https://aur.archlinux.org
Bhttps://f-droid.org

29

https://pypi.python.org
http://www.cpan.org
http://central.sonatype.org/
https://cran.r-project.org
https://www.npmjs.com
https://www.npmjs.com
https://rubygems.org

6.4

e iOS: Use the Apple Store
e Windows: (TODO)

It is not always time -and cost-effective to package and deposit the software, especially not
when there are multiple target platforms. When the software is not intended for adoption by
a wider audience, it can be considered to ignore this guideline.

AC7 - Is each software release deposited in a persistent store with a unique DOI?

Persistent stores aim to preserve research output. They aim for a longevity that can not
be guaranteed by normal software repositories. Each software release should be deposited in
a persistent store and receive a unique Digital Object Identifier (DOI), a persistent ID that
is ubiquitous in the academic world. The DOI can in turn be referenced in citations from
publications.

Users using Github (see) and Zenod can set this up with little effort. . Any
releases made on GitHub will then automatically transfer to Zenodo and receive a DOI, no
user intervention is necessary.

Community

This aspect concerns to what extent an active user community exists for the software.

CML1 - Is there evidence of the software being in use by others?

It is recommended to list on the project website if the software has users aside from the
primary developers and their immediate institution, this may facilitate further adoption. It
is also recommended to mention (on the project website) a citable publication that discusses
software, and to actively recommend or even require others to cite this if they use the software.

A list of third-party publications citing the software is also recommended for the project page.
Alternatively, it is lightly recommended to incorporate success stories or quotes from satisfied
users on the project website.

In addition to the aforementioned, evidence for this activity may also be sought in contributions
to the software by external developers (assuming compliance with), or questions in the
issue/bug tracker or mailing lists.

CM2 - Is there evidence of external developers?

External developers, not related to the original developers or their institution, are a good sign
of community interest. The threshold for contributing is relatively high. Compliance with this
criterion is greatly facilitated by compliance with :

®https://zenodo.org, a research data repository.
7 A"guide for this is provided at https://guides.github.com /activities/citable-code/.

30

https://zenodo.org

6.5

6.6

CM3 - Are there statistics available on software use?

To gain an impression of user interest, it is recommended to have statistics available on how
often the software is downloaded or how often the project page is visited. Public availability
of these statistics (stripped of any privacy sensitive information), is recommended.

Testability

TS1 - Does the project have unit tests, is there sufficient coverage?

Software should have unit tests that automatically test individual units of the source code. They
verify the data and logic flow by testing whether the output, given certain input, confirms to
expectation.

It is important that the tests cover enough of the source code. This is not trivial to assess,
but automated tools and platforms are available that can help in this assessment, such as
https://coveralls.io and https://codacy.com.

TS2 - Does the project have integration tests, is there sufficient coverage?

Software should have integration tests that combine invididual parts of modules and see how
they function as a group.

TS3 - Does the project have automated GUI tests?

If the software offers a non-trivial GUI or WUI, it should have automated tests that verify
whether the interface functions as intended.

TS4 - Are tests run automatically?

It is recommended that tests be run automatically at the end of the build or installation process.
This is best accomplished through continuous integration testing. Free public continuous
integration platforms such as Travis-C[*¥] Gitlab-C[™® Jenking™] can be hooked into version
control systems (see :) with minimal effort, resulting in an automatic run of the
test suite upon each commit and notifying the developer when the test suite fails.

It is strongly recommended that test results are publicly available, so users can more quickly
assess software quality.

Portability

Portability concerns the extent to which software can be used on multiple platforms.

Bhttps://travis-ci.org
Phttps://gitlab.com
PDhttps://jenkins-ci.org

31

https://coveralls.io
https://codacy.com

6.7

PB1 - Is it clear for what platforms the software is written?

It should be clear, from at least the project website, for what platforms the software is intended.

PB2 - Is the software portable for multiple platforms?

It is recommended to support a wide variety of platforms rather than a single one. This,
however, is not always feasible or cost and time effective.

PB3 - Does the software work on multiple browsers?

This concerns only web-based software with a significant client-side component. Such software
should function under recent versions of all major browsers (Mozilla Firefox, Google Chrome,
Internet Explorer / Edge, Safari, Opera), and never be limited to just one.

Moreover, it is recommended that such software does not rely on browser plugins that are
themselves not portable. Adobe Flash or Microsoft Silverlight are two examples of badly
portable legacy technologies that should be avoided, always use modern substitutes (HTMLS5)
instead.

Supportability

To what extent will the product be supported currently and in the future?

SP1 - Is it clear whom to contact for support?

It should be clear where to go for support. A project must have a contact e-mail address. If
an issue tracker is present (SP2), it should be clearly advertised as well.

SP2 - Are there public support channels available?

A public issue/bug tracker is strongly recommended. It allows everyone to post bugs or features
requests and allows users to see what issues are current, how they are resolved, and if they
are resolved in a timely fashion. It also prevents duplication of issues, and gives a platform for
tracking feature requests.

Alternatively, a mailing list may as a lesser substitute for an issue tracker. It can also serve as
an extra line of communications between users and developers. The mailing list must allow
anyone to subscribe and must have a public archive allowing users to follow any issues and
follow development.

Other extra support channels may take the form of an IRC channel or services such as SlackE-]

or Gitterf??]

Hhttps://slack.com/
Zhttps://gitter.com

32

https://slack.com/
https://gitter.com

6.8 Analysability

This section concerns the extent to which the source code can be understood. At this level,
the source code is inspected in closer detail.

ANL1 - Is the source code structured adequately?

Source code should be modular, i.e. it should be structured into multiple modules/packages,
following the requirements and conventions of the programming language.

The structure of the source code should bear a clear relationship to the architecture or design
of the software.

(See also @)

AN2 - Is the source code commented adequately?

The source code should contain comments explaining what major blocks do.

AN3 - Do the comments generate APl documentation?

The comments use a mark-up that allows them to be used directly as the source for the gen-
eration of the API reference documentation. This is accomplished using document generation

tools such as Doxygen?3} Sphinx??] or Javadod®]

AN4 - Is the source code cleanly laid out?

The source code should follow a proper indentation convention.

AND - Are sensible names used?

Do the classes, functions and variables in the source code use sensible names and do they
follow a consistent naming scheme that is conventional for the programming language?

ANG - Are there no (large) blocks of commented out code or obsolete files?

There should be no large blocks of commented-out code, nor obsolete or alternate versions of
files that bypass proper version control. (this depends on compliance with)

ANY - Are all TODO comments resolved?

There should be no important TODO comments, if there are they should at least be clearly
described in the issue tracker (See)-

Bhttp: //www.doxygen. org
*http://www.sphinx-doc.org
Phttp://www.oracle.com/technetwork/java/javase/documentation/index- jsp- 135444 . html

33

http://www.doxygen.org
http://www.sphinx-doc.org
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

6.9

ANS8 - Does the project have recommended coding standards?

A project should have recommended coding standards to which contributors should adhere.
These standards should be consistent with the larger community of generic coding standards
for the programming language.

Changeability

CH1 - Is the project open to contributions from third parties?

A project is recommended to be open to outside contributions. Community involvement is a
major factor in the success of a software project.

This depends on , , and facilitates [CMI] and [CM2] .

CH2 - Does the project have guidelines for contributions?

If contributions are desired, a project is recommended to have guidelines for contributors.
These must be publicly available. See also JANS| .

CH3 - Are all source code changes, and their authorship, publicly visible?

Collaboration requires awareness of what changes, when it changes, and who changes it. This
depends on ACL, heavily facilitated by AC2.

Alternatively, commit messages can be forwarded to mailing lists, Slack, IRC chat, or whatever
is deemed appropriate.

CHA4 - Is the software sufficiently backward compatible?

Software should be backward compatible with old versions of itself with respect to public
interfaces and data input. Backward compatibility changes and deprecation may occur but
should always be clearly announced ahead of time.

CHS5 - Is there a roadmap for future changes?

Software still under active development should have a roadmap. This may take shape either as
an explicit roadmap or implicit in the issue tracker (SP2) through the assignment of milestones.

CH6 - Does the website mention how the software is funded and when funding ends?

Funders should be acknowledged publicly and people should be aware when software is no
longer actively developed.

34

6.10 Reusability

R1 - Does the software offer all the appropriate interfaces?

The use of multiple interfaces enables reusability. Different users should be able to access the
software at different levels. End-users usually require a GUI or WUI, developer-users prefer a
command line interface (CLI) and/or webservice interface, developers needs a software library
with API.

Assessment of this depends greatly on the intended audience of the software (see) and
desired level of reusability.

R2 - Is the software modular, can the software support multiple interfaces?

Software should be set up in such a manner that higher-level interfaces can be constructed
on its lower-level components. This implies that there should be a clear separation between
front-end and back-end. In order to achieve this it we strongly recommend software to be set
up in a modular fashion, allowing reuse of its components without the need to modify these
components.

Modularity can be expressed as layers, from low-level to high-level:

e Classes and functions are defined at the source code level. (see @)

Libraries group and expose these publicly, described by APIs.

Command Line Interfaces use the libraries.

Servers/daemons use the libraries, networked clients use the server/daemons.

GUIs and WUIs use either the libraries, the CLI tools, or act as a networked client to the
servers/daemons.

Whenever two or more of these layers are intrinsically merged, reusability potential is lost. For
instance, monolithic software that offers only a GUI interface can not be readily adapted to
add a CLI or web interface.

Maximum reusability is not always desired or time- and cost-effective. The desired degree of
modularity and reusability is to be assessed on an individual basis.

R3 - Is the software’s source code set up in a modular fashion?

The software’s source code should define clearly delimited classes and functions, following the
paradigm of the programming language.

(See also [ANT|)

35

6.11

6.12

6.13

6.14

Security & Privacy

SC1 - Is the software free of obvious security flaws?

Software should be secure and have no holes that allow unauthorised users to gain access.
Developers should take care to avoid common attack vectors such as shell injection, SQL
injection, cross-site request forgery, buffer overflow. Proper validation of user input is a major
factor in preventing security holes

Assessment of security is an art in itself and non-trivial.

SC2 - Is user privacy secured effectively?

Privacy-sensitive user data must be treated with care. Passwords must never be stored in
unhashed form, private keys must never be shared. Any compromises to privacy must be
clearly laid out in a privacy policy. Strongly related to SC1. Also see .

Interoperability

IP1 - Does the software use appropriate open standards for data?

Software should adhere to appropriate open standards as much as possible, i.e. it should be
able to read input files and write output files in open standards. Support of multiple open
standards is recommended. Conversion may also be mediated through other third party tools.
A counter indication for this is when software uses its own ad hoc format when decent open
alternatives already exist.

Interoperability for CLARIAH

TODO

What specific interoperabilities does CLARIAH demand from software for
integration into the larger infrastructure? External input is greatly appreci-
ated here!

Governance

TODO
What are quality criteria for how software projects are run and managed?
This is more on a high-level organizational level.

Quality Measurement

To achieve a measure of quality, evaluators can compute a quality score (@, expressed as a
percentage) per dimension, by taking the sum of the scores for the individual criteria. Responses
yield scores on a scale from 0 (No) to 4 (Perfect).

36

A score for the dimension can be computed following the simple formula in Equation [I} here
s corresponds to the cummulative score, and n is the number of questions, except those that
are deemed not applicable.

Q = (s/(4n)) - 100 (1)

A score of 100 is achieved if all criteria are adhered to perfectly. This threshold may be lowered
by using for instance 2n or 3n instead of 4n, in which case scores over 100 are possible.

TODO
What quality thresholds do we set for CLARIAH, or is it up to institutions
or even projects themselves? Do we need pre-set thresholds at all?

Implementation

The guidelines have been implemented as an interactive survey on http://softwarequality.
clariah.nl. Developers are encouraged to use this to self-assess their projects. Project
managers or end users can use this to assess whether others’ software meets their quality
expectations.

For developers, filling the interactive survey will result in a MarkDown document which is to
be checked in alongside the code in the software's version control repository.

References

S. Crouch, N. C. Hong, S. Hettrick, M. Jackson, A. Pawlik, S. Sufi, L. Carr, D. De Roure,
C. Goble, and M. Parsons. The software sustainability institute: Changing research software
attitudes and practices. Computing in Science Engineering, 15(6):74-80, Nov 2013. ISSN
1521-9615. doi: 10.1109/MCSE.2013.133.

Peter Doorn, Patrick Aerts, and Scott Luscher. Research software at the heart of discovery.
Technical report, DANS, NLeSC, 2016. URL https://www.esciencecenter.nl/pdf/
Software_Sustainability DANS_NLeSC_2016.pdf.

Gertjan Filarski. CLARIAH Technical Plan v1. Technical report, CLARIAH, 2015. URL
http://www.clariah.nl/files/wp/WP2_CLARIAH_Technical_Plan.pdf.

ISO/IEC. ISO/IEC 9126. Software engineering — Product quality. 1SO/IEC, 2001. URL
http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749.

M. Jackson, S. Crouch, and R. Baxter. Software Evaluation: Criteria-based Assessment.
Technical report, Software Sustainability Institute, 2011. URL http://software.ac.uk/
sites/default/files/SSI-SoftwareEvaluationCriteria.pdf.

37

http://softwarequality.clariah.nl
http://softwarequality.clariah.nl
https://www.esciencecenter.nl/pdf/Software_Sustainability_DANS_NLeSC_2016.pdf
https://www.esciencecenter.nl/pdf/Software_Sustainability_DANS_NLeSC_2016.pdf
http://www.clariah.nl/files/wp/WP2_CLARIAH_Technical_Plan.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749
http://software.ac.uk/sites/default/files/SSI-SoftwareEvaluationCriteria.pdf
http://software.ac.uk/sites/default/files/SSI-SoftwareEvaluationCriteria.pdf

Appen

dix A: Assessment Form

Assessment is best conducted using our online survey athttp://softwarequality.clariah.
nl instead. Alternatively, you can use this paper form presented here. Note that criteria that
are deemed not applicable can be striked through.

ID Criterion No Min | Adq | Good| Perfect
0 1 2 3 4
5.1 |Understandabi|ity|
' Is it clear what the software does? O O O O O
2 Is it clear for whom the software is intended? | [O O] Il
Is it clear how the software works? O O O O O
4 Is the software motivated? O O O O O
Ub Is the development status of the software | [O O O O
clear?
U6 Is the support status of the software clear? | [J O O O O
5.2 |Docu mentation|
DI Is the software documented? O O [l O O
D2 Is the documentation accessible? [O [l] O
D3 Is the documentation clear? O O O O O
D4 Is the documentation complete? O O O O O
D5 Is the documentation accurate? O O O O O
Do) Does the documentation provide a high-level | [J O O d d
o overview of the software?
D7 Are all the necessary audiences addressed, at | [O O O O
their appropriate levels?
Does the documentation make use of ade- | [J O [l O Il
quate examples?
Is there troubleshooting information? O O O O O
% Is the documentation available from the | [O Il] O
project website?
D11 Is the documentation under version control? | [O O O O
D12 Does the documentation describe the latest | [J O O O O
version?
5.3|[Learnability|
E Is there a “Getting started” guide? O (| O O O
Are there instructions for basic use cases? O O O O O
3 Does the interface provide a help reference? | [O Il] O
L4 Is there APl documentation for developers? | [J O O O O
E If the software is configurable, are the con- | [J O O O O

figuration options clearly explained?

Table 2: Quality Assessment Criteria - Usability (1)

38

http://softwarequality.clariah.nl
http://softwarequality.clariah.nl

ID Criterion No Min | Adq | Good| Perfect
0 1 2 3 4

[5.4[Buildability]

B1 Are there good instructions for build- | J O O O O
ing/compiling the software?

B2 Is an established automated build system | O (]] g g
used?

@ Are the dependencies listed and available? O O O O O

@ Are there tests to verify the build has suc- | [O O O O
ceeded?

5.5/[Installability|

1S1] Are there easily accessible installation in- | O (]] g g

o structions?

@ Are the dependencies listed and available? O O O O O

@ Are programming language's best installa- | [O O O O
tion practices followed?

Is the software packaged according to stan- | [J O O O O
dards for the target platform?

@ Is the software package properly structured? | [J O O O O

@ Is the software properly structured when in- | [O O O O
stalled?
7 The software must include a README. O O O O O
% Are there facilities to uninstall the software? | [J O O O O
@ Are the system requirements such as target | [O O O O
platform clearly advertised?

[IS10] Is the software deployable through an estab- | [O O O O
lished container or virtualisation solution?

5.6||Performance]

PF1 Does the software perform its function(s) ef- | OJ O O O O
ficiently?

Does the software make a reasonable de- | [J ([(I O O
mand on computing resources?

Does the software make efficient use of avail- | [J O O O O
able resources?

PF4] Is the interface responsive? O O [l O O

PF5 Does the software scale as intended? O O O O O

Table 3: Quality Assessment Criteria - Usability (2)

39

ID Criterion No Min | Adq | Good| Perfect
0 1 2 3 4

6.1 Identityl

ID1 Does the software provide a clear and unique | [J O O O O
identity?

D2 Does the software have a website? O (] O O OJ

ID3 Does the project name not violate an existing | U U (Il O O
trade-mark?

6.2||Copyright & Licensingl

CP1 Has an appropriate open-source license been | [O O O O
adopted?

s it clear who wrote the software, who owns | [O O O O
the copyright, and what the license is?

CP3 Are the funders acknowledged? O O O O O

6.3[|Accessibility|

ACI Is the source code maintained in a version | [J (| O O O
control system?

Is the source code in a public version- | [J O O O O
controlled repository?

Is there no restricted data in the public | O O O O O
source code repository?

Are there clearly marked formal releases of | [O O O O
the software?

Is the software deposited in a public reposi- | [J O O O O
tory for the language?

[ACH| Is the software available in the target plat- | [O O O O
form's software repository?

Is each software release deposited in a per- | [J O O O O
sistent store with a unique DOI?

6.4|Community|

CM1 Is there evidence of the software being in use | [J (] O O O
by others?

CM2 Is there evidence of external developers? O O O O O

CM3 Are there statistics available on software use? | [O O O O

Table 4: Quality Assessment Criteria - Sustainability and Maintainability (1)

40

ID Criterion No Min | Adq | Good| Perfect
0 1 2 3 4
6.5 |Testabi|ity|
ﬂ] Does the project have unit tests, is there suf- | [O O O O
ficient coverage?
Does the project have integration tests, is | [J O O O O
there sufficient coverage?

S3 Does the project have automated GUI tests? | [O O O O
154 Are tests run automatically? O O O O O
6.6|[Portability|
E] Is it clear for what platforms the software is | [J O O O O

written?
PB2 Is the software portable for multiple plat- | OJ O O O O
forms?
PB3 Does the software work on multiple | OJ O O O O
browsers?
6.7 |Supportabi|ity|
SP1 Is it clear whom to contact for support? O O O O O
SP2 Are there public support channels available? | [J O O O O
6.8 Analysability|
AN1 Is the source code structured adequately? O O O (] O
AN2 Is the source code commented adequately? | [O O O O
AN3 Do the comments generate APl documenta- | O ([(I O (|
tion?
AN4 Is the source code cleanly laid out? O (] O O O
AN5 Are sensible names used? O O O O O
ANG Are there no (large) blocks of commented | O O O O O
out code or obsolete files?
AN7 Are all TODO comments resolved? O (| O O O
AN Does the project have recommended coding | U O O O O

standards?

Table 5: Quality Assessment Criteria - Sustainability and Maintainability (2)

41

ID Criterion No Min | Adq | Good| Perfect
0 1 2 3 4
6.9 Changeability|
CHI Is the project open to contributions from | [J O O O O
third parties?
Does the project have guidelines for contri- | [J O O O O
butions?
Are all source code changes, and their au- | O O O O O
thorship, publicly visible?
Is the software sufficiently backward compat- | [J O O O O
ible?
CHb Is there a roadmap for future changes? O (] O O O
CHo6 Does the website mention how the software | [J O O O O
is funded and when funding ends?
6.10||Reusabi|ity|
@ Does the software offer all the appropriate | [J O O O O
interfaces?
Is the software modular, can the software | [J O O O O
support multiple interfaces?
Is the software's source code set up in a mod- | [O [l] O
ular fashion?
6.11 |Security & Privacy|
SCI Is the software free of obvious security flaws? | [J O O O O
SC2 Is user privacy secured effectively? O (| O O O
6.12 |Interoperabi|ity|
IP1 Does the software use appropriate open stan- | [J O O O O
dards for data?
[6.13][Interoperability for CLARIAH]
| [TODO] |0 [O0 O O |O
6.14/|Governance]
\[TODO] \D \D \D \D \D

Table 6: Quality Assessment Criteria - Sustainability and Maintainability (3)

42

	Motivation
	Structure of the Document

	Context
	Introduction - glossary of terms
	Developer Guidelines: Minimal Requirements
	Configuration 1: Actively Supported End User Software
	Configuration 2: Unsupported End User Software
	Configuration 3: Actively Supported Experimental Software
	Configuration 4: Unsupported Experimental Software

	Quality Assessment Criteria - Usability
	Understandability
	Documentation
	Learnability
	Buildability
	Installability
	Performance

	Quality Assessment Criteria - Sustainability and Maintainability
	Identity
	Copyright & Licensing
	Accessibility
	Community
	Testability
	Portability
	Supportability
	Analysability
	Changeability
	Reusability
	Security & Privacy
	Interoperability
	Interoperability for CLARIAH
	Governance

	Quality Measurement
	Implementation
	References
	Appendix A: Assessment Form

