Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:a568cc5cff39965992895669038ed8c43a59eedd
  • Code
  • Branches (1)
  • Releases (0)
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    No releases to show
  • bbb89f8
  • /
  • Figure 2 -- Known Reward Thresholds
  • /
  • Figure 2S2 -- Multi-Switch Reward Change Task
  • /
  • RC_Bellmans.m
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
content badge Iframe embedding
swh:1:cnt:baee99e972b21afa68e09e79b484406af065550e
directory badge Iframe embedding
swh:1:dir:7fcb59b130474d562278d776c61583e067ae6fc7
revision badge
swh:1:rev:2878a3d9f5a3b9b89a0084a897bef3414e9de4a2
snapshot badge
swh:1:snp:a568cc5cff39965992895669038ed8c43a59eedd

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 2878a3d9f5a3b9b89a0084a897bef3414e9de4a2 authored by nwbarendregt on 03 May 2022, 15:08:29 UTC
Add files via upload
Tip revision: 2878a3d
RC_Bellmans.m
% RC_Bellmans.m
% Function used to obtain normative thresholds via dynamic programming for 
% reward change task from Barendregt et al., 2022.

function [theta,rho] = RC_Bellmans(T,dt,t_i,dg,m,c,R)

% Define time and likelihood discretizations:
t = 0:dt:T;
g = dg:dg:(1-dg); g_i = find(g==0.5);

% Calculate Gaussian mean from SNR m (assuming standard deviation of 1):
mu = sqrt(m/2);

% Construct likelihood transfer function given by Eq. (14):
P_gg = diag(g)*exp(-0.5/dt*(log(((g-1)'*g)./(g'*(g-1)))/(2*mu)-mu*dt).^2)/sqrt(2*pi*dt)./(2*g*mu-2*g.^2*mu)+...
    diag(1-g)*exp(-0.5/dt*(log(((g-1)'*g)./(g'*(g-1)))/(2*mu)+mu*dt).^2)/sqrt(2*pi*dt)./(2*g*mu-2*g.^2*mu);
P_gg = P_gg*diag(1./sum(P_gg,2));

% Initialize secant method:
rho = 0.1; tol = 1e-5; k = 1;

% Pre-allocate value function V and maximal index of value function V_I:
V = NaN(length(g),length(t)); V_I = NaN(length(g),length(t));

% Calculate value function using backward induction:
[V(:,end),V_I(:,end)] = max([g'*R(end)-t_i*rho(k) (1-g)'*R(end)-t_i*rho(k)],[],2);
for j = (length(t)-1):-1:1
    [V(:,j),V_I(:,j)] = max([g'*R(j)-t_i*rho(k) (1-g)'*R(j)-t_i*rho(k) P_gg*V(:,j+1)-c(t(j))*dt-rho(k)*dt],[],2);
end

% Store initial value to measure convergence and perform second
% initialization of secant method:
V_rho(k) = V(g_i,1); rho = [rho 0.9]; k = 2;

V = NaN(length(g),length(t)); V_I = NaN(length(g),length(t));
[V(:,end),V_I(:,end)] = max([g'*R(end)-t_i*rho(k) (1-g)'*R(end)-t_i*rho(k)],[],2);
for j = (length(t)-1):-1:1
    [V(:,j),V_I(:,j)] = max([g'*R(j)-t_i*rho(k) (1-g)'*R(j)-t_i*rho(k) P_gg*V(:,j+1)-c(t(j))*dt-rho(k)*dt],[],2);
end
V_rho(k) = V(g_i,1);

% Continue interating using secant method until initial value has
% sufficiently converged:
while abs(V_rho(k)) > tol

    % Update new reward rate using secant method:
    k = k+1; rho(k) = rho(k-1)-V_rho(k-1)*(rho(k-1)-rho(k-2))/(V_rho(k-1)-V_rho(k-2));
    
    V = NaN(length(g),length(t)); V_I = NaN(length(g),length(t));
    [V(:,end),V_I(:,end)] = max([g'*R(end)-t_i*rho(k) (1-g)'*R(end)-t_i*rho(k)],[],2);
    for j = (length(t)-1):-1:1
        [V(:,j),V_I(:,j)] = max([g'*R(j)-t_i*rho(k) (1-g)'*R(j)-t_i*rho(k) P_gg*V(:,j+1)-c(t(j))*dt-rho(k)*dt],[],2);
    end
    V_rho(k) = V(g_i,1); 
end
% Return reward rate for converged thresholds:
rho = rho(end);

% Pre-allocate normative thresholds in likelihood space:
g_theta = NaN(1,length(t));

% Construct normative thresholds in likelihood space based off maximal
% index V_I:
for i = length(t):-1:1
    if ~isempty(find(V_I(:,i)==1,1))
        if sum(V_I(:,i)==1)==length(g)
            g_theta(i) = 0.5;
        else
            g_theta(i) = g(find(V_I(:,i)==1,1));
        end
    else
        g_theta(i) = 1;
    end
    if g_theta(i) == 0.5
        g_theta((i+1):end) = 0.5;
    end
end

% Convert normative thresholds to LLR space:
theta = log(g_theta./(1-g_theta));

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API