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Rigid Body Dynamics Notes

SHINJIRO SUEDA, Texas A&M University

This writeup is a step-by-step instruction guide for learning how to write your own rigid body dynamics code. We first use maximal
coordinates, where each rigid body is represented with 6 degrees of freedom, with both the angular and translation velocities expressed
in axis-aligned body coordinates. Then, we switch to reduced coordinates, where each body is represented not with respect to the
world, but with respect to its parent.
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1 MAXIMAL COORDINATES

Following the notation of Cline and Pai [2003] and Kaufman et al. [2008], we use bold letters, 𝒙 , to denote vectors and
points in R3, and sans serif letters, q, to denote generalized coordinates and related quantities. Everywhere possible, q
refers to the generalized coordinates of a body, and 𝒙 refers to a point on the body in R3. Time derivatives are indicated
with a dot: ¤𝒙 ≡ 𝑑𝒙/𝑑𝑡 ; and material derivatives are indicated with a prime: 𝒙 ′ ≡ 𝑑𝒙/𝑑𝑢.

1.1 Position Representation

The configuration of a rigid body is represented by the usual 4 × 4 transformation matrix consisting of rotational and
translational components:

0
𝑖 E =

(
0
𝑖
R 0𝒑

0 1

)
. (1.1)

The leading subscripts and superscripts indicate that the coordinates of rigid body (or frame) 𝑖 are defined with respect to
the world frame, 0. Thus each column of 0

𝑖
R corresponds to the frame’s basis vectors, 𝒆𝑘 , expressed in world coordinates,

and 0𝒑 is the position of the frame’s origin expressed in world coordinates. In other words, the first three columns of
0
𝑖
E express the 𝑖𝑡ℎ frame’s x, y, and z axis directions in 0𝑡ℎ coordinate frame, and the last column of 0

𝑖
E expresses the

2019-10-28 14:51. Page 2 of 1–51.
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Rigid Body Dynamics Notes 3

𝑖𝑡ℎ frame’s position in the 0𝑡ℎ coordinate frame. Given a local position 𝑖𝒙 on a rigid body, its world position is

0𝒙 = 0
𝑖 E

𝑖𝒙, (1.2)

where we have omitted the homogeneous coordinates for brevity. Unless otherwise stated, we assume that the reference
frame is the world frame, and use a trailing subscript to indicate the frame of a rigid body, as in E𝑖 . With this notation,
E𝑖 transforms a position from the local space of the 𝑖𝑡ℎ rigid body to world space.

The rotation matrix, R, has the following properties:

RR⊤ = R⊤R = 𝐼 , det(R) = 1. (1.3)

This implies that the columns of R are mutually orthonormal and follow the right-hand rule. Also, the inverse of a
rotation matrix is the transpose, which is a very useful property! All 3 × 3 matrices with the properties above form a
group called the special orthogonal group in 3 dimensions, or SO(3). We can write this as R ∈ SO(3).

The group of all 4 × 4 transformation matrices of the form Eq. (1.1) is called the special Euclidean group in 3 dimensions,
or SE(3). We can write this as E ∈ SE(3). Because of its special structure, taking the inverse of E is easy:(

R 𝒑

0 1

)−1
=

(
R⊤ −R⊤𝒑
0 1

)
(1.4)

The inverse matrix reverses the transformation: 0
𝑖
E−1 = 𝑖

0
E. In other words, 0

𝑖
E transforms points from 𝑖 to 0, whereas

0
𝑖
E−1 transforms points from 0 to 𝑖 .

1.2 Velocity Representation

The spatial velocity 𝑖𝜙𝑖 of a rigid body 0
𝑖
E describes the motion of the rigid body at time 𝑡 . The spatial velocity, also

called a “twist,” is composed of the angular component, 𝑖𝝎𝑖 , and the linear component, 𝑖𝝂𝑖 , both expressed in body
coordinates:1

𝑖𝜙𝑖 =

(
𝑖𝝎𝑖

𝑖𝝂𝑖

)
. (1.5)

This 6 × 1 vector can also be expressed as a 4 × 4 matrix similar to the transformation matrix in Eq. (1.1), with the
rotational part in the 3 × 3 upper-left block and the translational part in the 3 × 1 upper-right block.[

𝑖𝜙𝑖
]
=

(
[𝑖𝝎𝑖 ] 𝑖𝝂𝑖

0 0

)
, (1.6)

where the 3 × 3 matrix, [𝒂], is the cross-product matrix such that [𝒂]𝒃 = 𝒂 × 𝒃 :

[𝒂] =
©«
0 −𝑎𝑧 𝑎𝑦

𝑎𝑧 0 −𝑎𝑥
−𝑎𝑦 𝑎𝑥 0

ª®®®¬ . (1.7)

The twist is related to the time derivative of the frame with:

0
𝑖
¤E = 0

𝑖 E

(
[𝑖𝝎𝑖 ] 𝑖𝝂𝑖

0 0

)
. (1.8)

1Some authors, such as Murray et al. [1994], put the translational component above the angular component.
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4 Sueda

The intuition behind Eq. (1.8) is that we must multiply the twist by 0
𝑖
E to transform it to world space, since 0

𝑖
¤E is in

world space whereas 𝑖𝜙𝑖 is in local space. Again, we sometimes suppress the leading superscript for brevity and write
𝜙𝑖 , assuming that all spatial velocity quantities are expressed in local coordinates. If we simplify Eq. (1.8), we see that
the time derivative of the rotation matrix is its upper left 3 × 3 portion:

0
𝑖
¤R = 0

𝑖 R [𝑖𝝎𝑖 ] . (1.9)

1.3 Logarithms and Exponentials

Recall that:
• A rotation matrix belongs to the special orthogonal group in 3D: R ∈ SO(3).
• A rigid body configuration belongs to the special Euclidean group in 3D: E ∈ SE(3).

For each of these, there exists a corresponding velocity, or “Lie algebra” to be more technically precise:
• Angular velocity belongs to so(3), the Lie algebra of SO(3): 𝝎 ∈ so(3).
• Spatial velocity belongs to se(3), the Lie algebra of SE(3): 𝜙 ∈ se(3).

As shown in Eq. (1.6) Angular velocity, 𝝎 ∈ so(3), can also be expressed as a vector 𝝎 ∈ R3 or as a 3 × 3 skew symmetric
matrix, [𝝎]. Similarly, spatial velocity, 𝜙 ∈ se(3), can also be expressed as a vector 𝜙 ∈ R6 or as a 4 × 4 matrix, [𝜙].

We use the matrix logarithm and exponential to go back and forth between SO(3) and so(3), as well as between SE(3)
and se(3).

R = exp( [𝝎]), [𝝎] = log(R),

E = exp( [𝜙]), [𝜙] = log(E) .
(1.10)

Intuitive interpretation is that if a frame undergoes an angular velocity of 𝝎 for 1 unit of time, then the frame will be
rotated by R. Similarly, if a frame undergoes a spatial velocity of 𝜙 for 1 unit of time, then the frame will be transformed
by E. For general matrices, these operations can be expensive, but for these types of matrices, there are efficient formulas.
See Examples A.11 through A.15 by Murray et al. [1994].

2019-10-28 14:51. Page 4 of 1–51.
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Rigid Body Dynamics Notes 5

MATLAB example. Here, E is a random SE(3) matrix, and [𝜙] = log(E) is the 4 × 4 matrix that represents
the “velocity” that transforms the identity matrix into E. We can recover E from 𝜙 by taking the exponential:
E = exp( [𝜙]). Both builtin functions and functions defined in se3.m are used.

>> E = se3.randE() % Random transformation matrix

E =

-0.7372 -0.2659 0.6211 0.6877

-0.1676 -0.8186 -0.5493 0.3886

0.6545 -0.5091 0.5589 0.9371

0 0 0 1.0000

>> phibrac = logm(E) % Builtin matrix logarithm

phibrac =

-0.0000 -2.7242 -0.9257 1.3245

2.7242 -0.0000 -1.1157 -0.6727

0.9257 1.1157 0.0000 0.3156

0 0 0 0

>> phibrac = se3.log(E) % SE(3) matrix logarithm

phibrac =

0 -2.7242 -0.9257 1.3245

2.7242 0 -1.1157 -0.6727

0.9257 1.1157 0 0.3156

0 0 0 0

>> expm(phibrac) % Builtin matrix exponential

ans =

-0.7372 -0.2659 0.6211 0.6877

-0.1676 -0.8186 -0.5493 0.3886

0.6545 -0.5091 0.5589 0.9371

0 0 0 1.0000

>> se3.exp(phibrac) % SE(3) matrix logarithm

ans =

-0.7372 -0.2659 0.6211 0.6877

-0.1676 -0.8186 -0.5493 0.3886

0.6545 -0.5091 0.5589 0.9371

0 0 0 1.0000

2019-10-28 14:51. Page 5 of 1–51.
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6 Sueda

We can verify Eq. (1.8) with finite differencing. Since this quantity involves SE(3), finite differencing is non-trivial
and so we must be careful. E is a function of time, so we can write

¤E ≈ E(𝑡 + Δ𝑡) − E(𝑡)
Δ𝑡

, E(𝑡 + Δ𝑡) = E(𝑡) exp(Δ𝑡𝜙 (𝑡)) . (1.11)

Given some E and 𝜙 , we can verify ¤E as above using Δ𝑡 = 1e-8.

>> E = se3.randE()

E =

-0.9227 -0.3845 -0.0274 -0.5020

0.2865 -0.6364 -0.7162 0.4564

0.2579 -0.6687 0.6973 -1.5617

0 0 0 1.0000

>> phi = randn(6,1)

phi =

-0.1285

1.2666

0.8058

-0.6903

-0.5538

-0.1246

>> dt = 1e-8;

>> E1 = E*se3.exp(dt*phi)

E1 =

-0.9227 -0.3845 -0.0274 -0.5020

0.2865 -0.6364 -0.7162 0.4564

0.2579 -0.6687 0.6973 -1.5617

0 0 0 1.0000

>> (E1-E)/dt % Finite difference

ans =

-0.2751 0.7470 -1.2181 0.8533

0.3944 -0.1388 0.2811 0.2439

-1.4221 -0.2974 0.2408 0.1054

0 0 0 0

>> E*se3.brac(phi) % Analytical derivative

ans =

-0.2751 0.7470 -1.2181 0.8533

0.3944 -0.1388 0.2811 0.2439

-1.4221 -0.2974 0.2408 0.1054

0 0 0 0

1.4 Material Jacobian

If a rigid body is moving with spatial velocity, 𝜙𝑖 , the world velocity of a point, 𝑖𝒙 , affixed to the rigid body is computed
as: 0 ¤𝒙 = J𝜙𝑖 . More spefically,

0 ¤𝒙 = R𝑖

Γ∈R3×6︷        ︸︸        ︷(
[𝑖𝒙]⊤ 𝐼

)
︸            ︷︷            ︸

J∈R3×6

𝜙𝑖 , (1.12)

where the 3 × 6 matrix, J, the material Jacobian, transforms the local spatial velocity of the rigid body, 𝜙𝑖 , into the
velocity of a local point on the rigid body in world coordinates, 0 ¤𝒙 . Its transpose, a 6 × 3 matrix, transforms a point
force in world space, 𝒇0 into a local wrench acting on the rigid body.

f𝑖 = J⊤𝒇0 . (1.13)

2019-10-28 14:51. Page 6 of 1–51.
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Rigid Body Dynamics Notes 7

This “transpose” relationship works in a variety of generalized coordinate settings. If there is a matrix that maps
generalized velocities into world velocities, then its transpose will map forces in world coordinates back to generalized
forces.

MATLAB example

>> E = eye(4);

>> phi = [0 0 0 1 0 0]'; % no rotation, x translation

>> R = E(1:3,1:3);

>> xlocal = [1 0 0]'; % Local point at (1 0 0)

>> G = se3.Gamma(xlocal)

G =

0 0 0 1 0 0

0 0 1 0 1 0

0 -1 0 0 0 1

>> J = R*G;

>> vworld = J*phi % World velocity of the local point

vworld =

1

0

0

>> phi = [0 0 1 0 0 0]'; % Z rotation, no translation

>> vworld = J*phi % World velocity of the local point

vworld =

0

1

0

1.5 Adjoint

Just like how 3D points and vectors must be in the same coordinate space before they can be added (and dotted, crossed,
etc.), spatial velocities must also be in the same coordinate space. The spatial velocity transforms from one frame to
another according to the adjoint of the coordinate transform, which is defined from the rigid transform 0

𝑖
E.

0
𝑖 Ad =

(
0
𝑖
R 0

[0
𝑖
𝒑] 0

𝑖
R 0

𝑖
R

)
. (1.14)

The spatial velocity of the 𝑖𝑡ℎ rigid body in world coordinates is then

0𝜙𝑖 =
0
𝑖 Ad

𝑖𝜙𝑖 , (1.15)

which is the spatial velocity of the 𝑖𝑡ℎ rigid body with respect to the world, now expressed in world coordinates.
Let’s look at the time derivative of the adjoint, which we’ll need to derivate the equations of motion. Dropping the

superscripts and subscripts for brevity, we have, from Eq. (1.14),

¤Ad =

(
¤R 0

¤[𝒑]R + [𝒑] ¤R ¤R

)
. (1.16)

Looking at the rotational component of Eq. (1.8) gives us ¤R = R[𝜔]. The point derivative, ¤[𝒑], is a little trickier. (Note
¤[𝒑] ≠ [𝝂].) Instead, note that ¤𝒑 is the velocity of the frame origin expressed in world coordinates. So, ¤[𝒑] = [R𝝂], since

𝝂 is expressed in local coordinates, and R rotates a vector from local to world coordinates. But [R𝝂] = R[𝝂]R⊤, because

2019-10-28 14:51. Page 7 of 1–51.
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8 Sueda

for an arbitrary 𝒙 ,2

[R𝝂] (R𝒙) = (R𝝂) × (R𝒙)

= R(𝝂 × 𝒙)

= R[𝝂]𝒙

= (R[𝝂]R⊤) (R𝒙),

(1.17)

and so ¤[𝒑]R = [R𝝂]R = R[𝝂]. So the final form of the time derivative of the adjoint is

¤Ad =

(
R[𝝎] 0

R[𝝂] + [𝒑]R[𝝎] R[𝝎]

)
. (1.18)

This can be factored into a product of two matrices:

¤Ad(E, 𝜙) =
(

R 0

[𝒑]R R

)
︸        ︷︷        ︸

Ad(E)

(
[𝝎] 0

[𝝂] [𝝎]

)
︸          ︷︷          ︸

ad(𝜙 )

, (1.19)

where we have added the parameter list to more be explicit. The second factor, ad = Ad−1 ¤Ad, is the spatial cross
product matrix, which is the adjoint action of the Lie algebra on itself [Kim 2012; Selig 2004].

We can verify the equation above with finite differencing. Since this quantity involves SE(3), finite differencing
is non-trivial and so we must be careful. Since the adjoint is a function of time, we can write

¤Ad ≈ Ad(𝑡 + ℎ) − Ad(𝑡)
ℎ

, Ad(𝑡) = Ad(E(𝑡)), Ad(𝑡 + ℎ) = Ad(E(𝑡) exp(ℎ𝜙 (𝑡))) . (1.20)

Given some E and 𝜙 , we can verify ¤Ad as above using ℎ = 1e-8.

1.6 Equations of Motion

The Newton-Euler equations of motion of a rigid body can be written in a compact form as

M𝑖
¤𝜙𝑖 = [Coriolis forces] + [body forces (e.g., gravity)]

= ad(𝜙𝑖 )⊤M𝑖𝜙𝑖 + 𝑓body (E𝑖 ).
(1.21)

Here, M𝑖 is the spatial inertia of the rigid body, and ad(𝜙𝑖 ) is the spatial cross product matrix from Eq. (1.19). If gravity
is the only force involved, then the body force is

𝑓body (E𝑖 ) =
(

0

R⊤
𝑖
𝑚𝒈

)
, (1.22)

where𝑚 is the linear mass and 𝒈 is the gravity vector in world coordinates. The top zero indicates that gravity does not
affect the angular velocity. For the translational velocity, the multiplication by the transpose of the rotation matrix
transforms the gravity direction into body coordinates.

2https://math.stackexchange.com/questions/2418256/property-of-skew-symmetric-matrices-of-vectors-multiplied-by-rotation-matrices
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Rigid Body Dynamics Notes 9

Eq. (1.21) can be rearranged to take on the more familiar form as given by Murray et al. [1994] in their Equation
(4.16). Let I be the rotational inertia, and𝑚𝐼 be the translational inertia. Then(

I 0

0 𝑚𝐼

) (
¤𝝎
¤𝝂

)
=

(
[𝝎]⊤ [𝝂]⊤

0 [𝝎]⊤

) (
I 0

0 𝑚𝐼

) (
𝝎

𝝂

)
+

(
𝜏

𝒇

)
=

(
[𝝎]⊤ [𝝂]⊤

0 [𝝎]⊤

) (
I𝝎
𝑚𝝂

)
+

(
𝜏

𝒇

)
=

(
[𝝎]⊤I𝝎 + [𝝂]⊤𝑚𝝂

[𝝎]⊤𝑚𝝂

)
+

(
𝜏

𝒇

)
=

(
[𝝎]⊤I𝝎
[𝝎]⊤𝑚𝝂

)
+

(
𝜏

𝒇

)
// since [𝝂]⊤𝝂 = −𝝂 × 𝝂 = 0

= −
(
𝝎 × I𝝎
𝝎 ×𝑚𝝂

)
+

(
𝜏

𝒇

)
,

(1.23)

which is the same as the Newton-Euler equation in body coordinates, as given by Murray et al. [1994] in their Equation
(4.16).

1.7 Maximal Inertia

Expressing the spatial velocity of a rigid body in local coordinates is advantageous in that the mass matrix is diagonal
and can be precomputed at the beginning of the simulation. Wikipedia’s article on “List of moments of inertia” is a
good reference for some common shapes.3 For a triangular mesh, we can compute the body-centered frame and its
associated mass matrix using volume integration [Mirtich 1996].

For example, the 6 × 6 mass matrix of a cuboid whose side lengths are (Δ𝑥,Δ𝑦,Δ𝑧) is

M =

©«

𝑚
12

(
Δ𝑦2 + Δ𝑧2

)
0 0 0 0 0

0 𝑚
12

(
Δ𝑧2 + Δ𝑥2

)
0 0 0 0

0 0 𝑚
12

(
Δ𝑥2 + Δ𝑦2

)
0 0 0

0 0 0 𝑚 0 0

0 0 0 0 𝑚 0

0 0 0 0 0 𝑚

ª®®®®®®®®®®¬
, (1.24)

where𝑚 = 𝜌Δ𝑥Δ𝑦Δ𝑧 is the total mass of the cuboid with density 𝜌 .

1.7.1 Composite rigid bodies. We can easily combine multiple rigid bodies into a single composite rigid body. This new
rigid body will have its own inertia matrix and local (body) coordinate space. Let a composite rigid body be composed
of 𝑛 rigid bodies. The composite rigid body’s total mass is simply the sum of the individual mass values. A necessary
condition for getting a diagonal inertia matrix is that the origin of the composite rigid body’s local frame must be at the
mass-weighted average:

𝑚𝑐 =

𝑛∑
𝑘=1

𝑚𝑘 , 𝒑𝑐 =

𝑛∑
𝑘=1

𝑚𝑘

𝑚𝑐
𝒑𝑘 . (1.25)

3https://en.wikipedia.org/wiki/List_of_moments_of_inertia

2019-10-28 14:51. Page 9 of 1–51.
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10 Sueda

Let E𝑐 be an axis-aligned frame with 𝒑𝑐 as its origin. We can sum up the individual inertia matrices by first transforming
them to E𝑐 .

M𝑐 =

𝑛∑
𝑘=1

𝑘
𝑐 Ad

⊤M𝑘
𝑘
𝑐 Ad, (1.26)

The resulting inertia matrix is not diagonal—the top-left 3 × 3 portion, corresponding to the rotations, is a dense matrix.
We can diagonalize this with the eigenvalue decomposition. Let 𝐽 be the 3 × 3 rotational inertia matrix. We take the
eigen decomposition of 𝐽 : [V,D] = eig(J). Then the eigenvalues in D are the diagonalized inertia entries. The eigen
vector matrix, V, might be a left-handed matrix, which can be checked by making sure the determinant is +1, or by
dotting the 3rd column by the cross product of 1st and 2nd columns. The right-handed eigen vector matrix is then the
rotational portion of E𝑐 .

MATLAB code for computing the diagonalized inertia. Given 𝐽 , a non-diagonalized inertia, computes 𝐼 and E,
the diagonalized inertia and the corresponding transformation matrix, respectively.

E = eye(4);

[V,D] = eig(J);

I(1:3) = diag(D); % Rotational inertia

I(4:6) = mass*eye(3); % Translational inertia

E(1:3,1:3) = V; % V is the axis-aligned frame

E(1:3,4) = r; % r is the center of mass

% Check for right-handedness

x = E(1:3,1);

y = E(1:3,2);

z = E(1:3,3);

if cross(x,y)'*z < 0.0

E(1:3,3) = -z;

end

1.8 Euler Integration with Maximal Coordinates

For now, we will work with the simplest integration method. If we discretize the acceleration as

¤𝜙 =
𝜙 (𝑘+1) − 𝜙 (𝑘)

ℎ
, (1.27)

where ℎ = 𝑡 (𝑘+1) − 𝑡 (𝑘) is the time step size, then we can rewrite Eq. (1.21) to be at the velocity level at time 𝑡 (𝑘) .

M𝑖𝜙
(𝑘+1)
𝑖

= M𝑖𝜙
(𝑘)
𝑖

+ ℎ
(
ad(𝜙 (𝑘)

𝑖
)⊤M𝑖𝜙

(𝑘)
𝑖

+ fbody (E
(𝑘)
𝑖

)
)
, (1.28)

which can be solved for the new velocities, 𝜙 (𝑘+1)
𝑖

.
The rigid body configuration E(𝑘+1)

𝑖
can be obtained by integrating 𝜙 (𝑘+1)

𝑖
. We must be careful here, because E𝑖

belongs to a non-Euclidean space (SE(3), the Special Euclidean group in 3 dimensions). We use a first order implicit
discretization, with the time step ℎ:

E(𝑘+1)
𝑖

= E(𝑘)
𝑖

exp

(
ℎ

(
[𝝎 (𝑘+1)

𝑖
] 𝝂 (𝑘+1)

𝑖

0 0

))
. (1.29)

The matrix exponential can be computed efficiently using Rodrigues’ formula [Murray et al. 1994].

2019-10-28 14:51. Page 10 of 1–51.
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Rigid Body Dynamics Notes 11

We can finally write the first rigid body dynam-
ics simulator. Run the sample simulation code,
testRigid.m:
>> testRigid

rigid1: 10.00 g

Try changing the initial velocity. In the figure to the
right, the initial translational velocity is positive in
X an Z, while the initial angular velocity is positive
in Y.

1.9 Elastic and Damping Forces

Following the approach of Baraff and Witkin [1998], we can add implicit damping and elastic forces using the linearly
implicit Euler integration. They linearize the forces about the current position and velocity, and move the resulting
matrices to the left-hand-side (see §2.5):(

M + ℎD − ℎ2K
)
𝜙 (𝑘+1) = M𝜙 (𝑘) + ℎf, (1.30)

where D is the damping matrix, K is the stiffness matrix, and f is the sum of all forces. What goes into D, K, and f

depends on the type of forces involved.

1.9.1 Damping Force. With simple viscous damping, D = 𝑑𝐼 is a diagonal matrix, where 𝑑 is the damping coefficient.
There is no contribution to the right-hand-side force vector, f.

1.9.2 Directional Point Force. Let’s say that we want to pull on a point 𝑖𝒙 on a rigid body in a particular direction
0𝒂. (𝑖𝒙 is in local coords, and 0𝒂 is in world coords.) Then the linear wrench to be applied to the rigid body can be
computed as follows:

f = 𝑘Γ⊤R⊤ 0𝒂, (1.31)

where 𝑘 is the stiffness constant, Γ = ( [𝑖𝒙]⊤ 𝐼 ) transforms twists to local point velocities (Eq. (1.12)), and R is the
rotation matrix of the rigid body. The corresponding potential energy is

𝑉 = −𝑘 0𝒙⊤ 0𝒂, (1.32)

where 0𝒙 is the position of the force application point in world coordinates. The force in Eq. (1.31) is the negative
gradient of this potential energy with respect to the 6 rigid degrees of freedom. We obtain the stiffness matrix if we
differentiate again:

K = 𝑘

(
[𝑖𝒙] [R⊤ 0𝒂] 0

[R⊤ 0𝒂] 0

)
, (1.33)

where we used the following identity for the derivatives with respect to the 6 rigid DOFs:

𝜕R⊤𝒂
𝜕𝝎

= [R⊤𝒂], 𝜕R𝒂
𝜕𝝎

= −R[𝒂], 𝜕𝒑

𝜕𝝂
= R. (1.34)

2019-10-28 14:51. Page 11 of 1–51.
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12 Sueda

The stiffness matrix is non-symmetric, which makes sense, since the force is not a function of the rigid translations (𝝂 ),
and so the second column is zero. We follow Baraff and Witkin [1998] and symmetrize: K = 1

2 (K + K⊤).

1.9.3 Point-to-Point Force. For a linear force between two points on two different bodies, the wrenches acting on these
two bodies are

f = 𝑘

(
Γ⊤
1
R⊤
1
Δ𝒙

−Γ⊤
2
R⊤
2
Δ𝒙

)
, (1.35)

where Δ𝒙 = 0𝒙2 − 0𝒙1, and 0𝒙1 and 0𝒙2 are the world coordinate positions of the two points, which are obtained by
transforming the corresponding local coordinate positions. This force is the negative gradient of the potential energy:

𝑉 =
1

2
𝑘Δ𝒙⊤Δ𝒙 . (1.36)

As before, we obtain the stiffness matrix by differentiating the force with respect to the DOFs:

K = 𝑘

©«
[1𝒙1] [R⊤1 (𝒑1 − 0𝒙2)] [1𝒙1] [1𝒙1]R⊤1 R2 [

2𝒙2] −[1𝒙1]R⊤1 R2
[R⊤

1
(𝒑1 − 0𝒙2)] 𝐼 R⊤

1
R2 [2𝒙2] −R⊤

1
R2

[2𝒙2]R⊤2 R1 [
1𝒙1] −[2𝒙2]R⊤2 R1 [2𝒙2] [R⊤2 (𝒑2 − 0𝒙1)] [2𝒙2]

R⊤
2
R1 [1𝒙1] −R⊤

2
R1 [R⊤

2
(𝒑2 − 0𝒙1)] 𝐼

ª®®®®®¬
. (1.37)

Again, we symmetrize this: K = 1
2 (K + K⊤).

1.9.4 Muscle Force. We use a muscle dynamics model from the biomechanics literature [Millard et al. 2013]. For now,
we will assume that we have inextensible tendons, which are called “rigid” tendons in biomechanics, and that the
pennation angle is zero. The scalar tension force produced by a muscle is defined to be

𝑓 = 𝑓opt
(
𝑎𝑓L (𝑙) 𝑓V (𝑣) + 𝑓P (𝑙)

)
, (1.38)

where 𝑓opt is the peak isometric force, 𝑎 is the activation level, 𝑓L, 𝑓V, and 𝑓P are the active force length, active force
velocity, and passive force length curves, which are described below. Once this scalar force is computed, the final
generalized forces acting on the two points on the rigid bodies are

f =
𝑓

∥Δ𝒙 ∥

(
Γ⊤
1
R⊤
1
Δ𝒙

−Γ⊤
2
R⊤
2
Δ𝒙

)
, (1.39)

which is the same as the point-to-point force from before, but with the constant stiffness factor replaced by the new
muscle scalar force. The division by ∥Δ𝒙 ∥ normalizes Δ𝒙 in the expression to produce a unit direction for the force to
be applied in.

The active force length, active force velocity, and passive force length curves are functions the define some important
properties of the muscle. For now, we’ll use a simplified versions of these curves, but we can always swap in the more
computationally expensive, full-fledged models.

Each curve is composed of a sequence of cubic segments (i.e., piece-wise cubics):

𝑓𝑖 (𝑥) = 𝑎𝑖𝑥3 + 𝑏𝑖𝑥2 + 𝑐𝑖𝑥 + 𝑑𝑖 , 𝑓 ′𝑖 (𝑥) = 3𝑎𝑖𝑥
2 + 2𝑏𝑖𝑥 + 𝑐𝑖 , 𝑓 ′′𝑖 (𝑥) = 6𝑎𝑖𝑥 + 2𝑏𝑖 . (1.40)

By specifying some conditions on these cubics, we can solve for the coefficients, 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , and 𝑑𝑖 .
As an example, let’s look at the active force length curve, shown in Fig. 1a. Here, we have two cubics: 𝑓1 (𝑥) : 𝑥 ∈

[1.0, 1.3] and 𝑓2 (𝑥) : 𝑥 ∈ [1.3, 1.7]. So we have 8 coefficients to solve for, and so we need 8 conditions. We want the

2019-10-28 14:51. Page 12 of 1–51.
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(a) Passive Force Length Curve
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(b) Active Force Length Curve
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(c) Force Velocity Curve

Fig. 1. (a) Passive force length curve, composed of two cubic segments. (b) Active force length curve, composed of three cubic segments.
(c) Force velocity curve, composed of three cubic segments.

left cubic to go through (1.0, 0.0) and (1.3, 0.126110265892917)4, which can be encoded as 𝑓1 (𝑥) = 𝑦 (first two rows of
the matrix). We want the right cubic to go through (1.8, 1.0), which can be encoded as 𝑓2 (𝑥) = 𝑦 (row 3). We want the
derivative of the left cubic to be 0.0 at 𝑥 = 1.0 and 1.07051016402631 at 𝑥 = 1.3, which can be encoded as 𝑓 ′

1
(𝑥) = 𝑑𝑦

(rows 4 and 5). We want the derivative of the right cubic to be 2.85714285714286 at 𝑥 = 1.7, which can be encoded as
𝑓 ′
2
(𝑥) = 𝑑𝑦 (row 6). Finally, we want the left and right segments to share the same function and derivative at 𝑥 = 1.0,

which can be encoded as 𝑓1 (1.3) − 𝑓2 (1.3) = 0 and 𝑓 ′1 (1.3) − 𝑓
′
2
(1.3) = 0 (rows 7 and 8). This gives us a square matrix

that can be solved for the 8 coefficients of the cubics.

©«

1.03 1.02 1.0 1 0 0 0 0

1.33 1.32 1.3 1 0 0 0 0

0 0 0 0 1.83 1.82 1.8 1

3(1.02) 2(1.0) 1 0 0 0 0 0

3(1.32) 2(1.3) 1 0 0 0 0 0

0 0 0 0 3(1.72) 2(1.7) 1 0

1.33 1.32 1.3 1 −1.33 −1.32 −1.3 −1
3(1.32) 2(1.3) 1 0 −3(1.32) −2(1.3) −1 0

ª®®®®®®®®®®®®®®®¬

©«

𝑎1

𝑏1

𝑐1

𝑑1

𝑎2

𝑏2

𝑐2

𝑑2

ª®®®®®®®®®®®®®®®¬

=

©«

0.0

0.126110265892917

1.0

0.0

1.07051016402631

2.85714285714286

0.0

0.0

ª®®®®®®®®®®®®®®®¬

. (1.41)

Solving this linear system gives us the required coefficients:

𝑎1 = 2.55305620081729 𝑎2 = −2.76122280853939
𝑏1 = −7.02386028610914 𝑏2 = 14.6587935048229

𝑐1 = 6.38855196976641 𝑐2 = −23.0429533092186
𝑑1 = −1.91774788447456 𝑑2 = 11.3749950550874.

(1.42)

The first cubic is for 𝑥 ∈ [1.0, 1.3], and the second cubic is for 𝑥 ∈ [1.3, 1.7].

4These hard-coded values are extracted from OpenSim [Delp et al. 2007].
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For the active force length curve, we have three cubic segments: 𝑓1 (𝑥) : 𝑥 ∈ [0.4, 0.7], 𝑓2 (𝑥) : 𝑥 ∈ [0.7, 1.2], and
𝑓3 (𝑥) : 𝑥 ∈ [1.2, 1.81]. The conditions are:

𝑓1 (0.4) = 0.0, 𝑓 ′
1
(0.4) = 0.0, 𝑓2 (1.0) = 1.0,

𝑓 ′
2
(1.0) = 0.0, 𝑓3 (1.81) = 0.0, 𝑓 ′

3
(1.81) = 0.0,

𝑓1 (0.7) − 𝑓2 (0.7) = 0, 𝑓 ′
1
(0.7) − 𝑓 ′

2
(0.7) = 0, 𝑓2 (1.2) − 𝑓3 (1.2) = 0,

𝑓 ′
2
(1.2) − 𝑓 ′

3
(1.2) = 0, 𝑓1 (0.7) = 0.767020368396388, 𝑓2 (1.2) = 0.89.

(1.43)

The required coefficients are then:

𝑎1 = −39.881247949014 𝑎2 = −0.322674853252855 𝑎3 = 4.85118460831817

𝑏1 = 68.3443204612586 𝑏2 = −1.71744046959073 𝑏3 = −20.9908796589089
𝑐1 = −35.5324573534802 𝑐2 = 4.40290549894003 𝑐3 = 28.3080866793169

𝑑1 = 5.83029153632759 𝑑2 = −1.36279017609645 𝑑3 = −11.2356843095252.

(1.44)

The first cubic is for 𝑥 ∈ [0.4, 0.7], the second cubic is for 𝑥 ∈ [0.7, 1.2], and the third cubic is for 𝑥 ∈ [1.2, 1.81].
For the force velocity curve, we have three cubic segments: 𝑓1 (𝑥) : 𝑥 ∈ [−1.0,−0.05], 𝑓2 (𝑥) : 𝑥 ∈ [−0.05, 0.05], and

𝑓3 (𝑥) : 𝑥 ∈ [0.05, 1.0]. The conditions are:

𝑓1 (−1.0) = 0.0, 𝑓 ′
1
(−1.0) = 0.0, 𝑓 ′′

1
(−1.0) = 0.0,

𝑓3 (1.0) = 1.4, 𝑓 ′
3
(1.0) = 0.0, 𝑓 ′′

3
(1.0) = 0.0,

𝑓1 (−0.05) − 𝑓2 (−0.05) = 0, 𝑓 ′
1
(−0.05) − 𝑓 ′

2
(−0.05) = 0, 𝑓2 (0.05) − 𝑓3 (0.05) = 0,

𝑓 ′
2
(0.05) − 𝑓 ′

3
(0.05) = 0, 𝑓2 (0.0) = 1.0, 𝑓 ′

2
(0.0) = 5.0.

(1.45)

The required coefficients are then:

𝑎1 = 0.915253473864379 𝑎2 = −453.333333333333 𝑎3 = 0.266648649866

𝑏1 = 2.74576042159314 𝑏2 = −8.78048780487805 𝑏3 = −0.799945949598001
𝑐1 = 2.74576042159314 𝑐2 = 5 𝑐3 = 0.799945949598001

𝑑1 = 0.915253473864378 𝑑2 = 1 𝑑3 = 1.133351350134.

(1.46)

The first cubic is for 𝑥 ∈ [−1.0,−0.05], the second cubic is for 𝑥 ∈ [−0.05, 0.05], and the third cubic is for 𝑥 ∈ [0.05, 1.0].
To use these curves in Eq. (1.38), we need the normalized muscle length, 𝑙 , and the normalized muscle velocity, 𝑣 .

These quantities are computed from the muscle path, which we assume is a straight line for now: given two points on
two rigid bodies, the length is simply 𝑙MT = ∥Δ𝒙 ∥. Out of this total musculotendon (MT) length, some portion of it is
the tendon length, 𝑙T, so the muscle length is 𝑙 = 𝑙MT − 𝑙T. The normalized muscle length is obtained by dividing by the
“optimal muscle length,” which is often set to the rest length of the muscle:

𝑙 =
𝑙MT − 𝑙T
𝑙opt

. (1.47)

The muscle velocity, 𝑣 , is computed as

𝑣 =
Δ𝒙⊤

∥Δ𝒙 ∥ ( ¤𝒙2 − ¤𝒙1), ¤𝒙𝑖 = R𝑖Γ𝑖𝜙𝑖 , (1.48)

and the normalized muscle velocity is
𝑣 =

𝑣

𝑙opt𝑣max
, (1.49)
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Rigid Body Dynamics Notes 15

where 𝑣max is another parameter, the “maximum muscle contraction velocity.” This gives us all the terms we need to
compute the muscle force in Eq. (1.38).

Since the muscle force depends on both positions and velocities, we need to compute both its stiffness matrix, K, and
its damping matrix, D. For the stiffness matrix, note first the similarity between Eq. (1.35) and Eq. (1.39). The difference
between the muscle force and the zero rest-length force is that the muscle force has 𝑓

∥Δ𝒙 ∥ in front of it, where as the
zero rest-length force has just a constant 𝑘 in front of it. The stiffness matrix will thus have two terms:

K =
𝜕

𝜕E

(
𝑓

∥Δ𝒙 ∥

) (
Γ⊤
1
R⊤
1
Δ𝒙

−Γ⊤
2
R⊤
2
Δ𝒙

)
︸                            ︷︷                            ︸

K1

+ 𝑓

∥Δ𝒙 ∥
𝜕

𝜕E

(
Γ⊤
1
R⊤
1
Δ𝒙

−Γ⊤
2
R⊤
2
Δ𝒙

)
︸                        ︷︷                        ︸

K2

. (1.50)

The 2nd term has already been derived in Eq. (1.37):

K2 =
𝑓

∥Δ𝒙 ∥

©«
[1𝒙1] [R⊤1 (𝒑1 − 0𝒙2)] [1𝒙1] [1𝒙1]R⊤1 R2 [

2𝒙2] −[1𝒙1]R⊤1 R2
[R⊤

1
(𝒑1 − 0𝒙2)] 𝐼 R⊤

1
R2 [2𝒙2] −R⊤

1
R2

[2𝒙2]R⊤2 R1 [
1𝒙1] −[2𝒙2]R⊤2 R1 [2𝒙2] [R⊤2 (𝒑2 − 0𝒙1)] [2𝒙2]

R⊤
2
R1 [1𝒙1] −R⊤

2
R1 [R⊤

2
(𝒑2 − 0𝒙1)] 𝐼

ª®®®®®¬
. (1.51)

The 1st term is the outer product between two vectors:

K1 =

(
Γ⊤
1
R⊤
1
Δ𝒙

−Γ⊤
2
R⊤
2
Δ𝒙

) (
𝒅⊤R1Γ1 −𝒅⊤R2Γ2

)
, (1.52)

where

𝒅 =
1

𝑙2MT

©«
𝑓

𝑙MT
−
𝑓opt

(
𝑎𝑓 ′L 𝑓V + 𝑓 ′P

)
𝑙opt

ª®®¬Δ𝒙 . (1.53)

The damping matrix is the derivative of the force with respect to the velocity:

D =
𝜕

𝜕Φ

(
𝑓

∥Δ𝒙 ∥

) (
Γ⊤
1
R⊤
1
Δ𝒙

−Γ⊤
2
R⊤
2
Δ𝒙

)
(1.54)

This will again be an outer product of two vectors:

D =

(
Γ⊤
1
R⊤
1
Δ𝒙

−Γ⊤
2
R⊤
2
Δ𝒙

) (
𝒅⊤R1Γ1 −𝒅⊤R2Γ2,

)
(1.55)

where

𝒅 = −
𝑓opt𝑎𝑓L 𝑓

′
V

𝑙opt𝑣max𝑙2MT
Δ𝒙 . (1.56)

1.9.5 Multi-Point Muscle. Let the muscle path contain n points, each with its own rigid body. Then there are 𝑛 − 1
segments, from point 𝑘 to 𝑘 + 1. The scalar muscle force is computed using the total path of all the segments. Then this
scalar force is used to multiply the normalized force within each segment.

The musculotendon length is now a summation, and the normalized muscle length is computed by subtracting the
tendon length and dividing by the optimal muscle length as before:

𝑙MT =

𝑛−1∑
𝑘=1

∥Δ𝒙𝑘 ∥, 𝑙 =
𝑙MT − 𝑙T
𝑙opt

, (1.57)
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16 Sueda

where Δ𝒙𝑘 = 𝒙𝑘+1 − 𝒙𝑘 . The muscle velocity is also a summation:

𝑣 =

𝑛−1∑
𝑘=1

Δ𝒙⊤
𝑘

∥Δ𝒙𝑘 ∥
Δ ¤𝒙𝑘 , 𝑣 =

𝑣

𝑙opt𝑣max
, (1.58)

where Δ ¤𝒙𝑘 = ¤𝒙𝑘+1 − ¤𝒙𝑘 . The scalar muscle force is then computed with Eq. (1.38):

𝑓 = 𝑓opt
(
𝑎𝑓L (𝑙) 𝑓V (𝑣) + 𝑓P (𝑙)

)
. (1.59)

The generalized forces are then:

f = 𝑓
𝑛−1∑
𝑘=1

f𝑘 , f𝑘 =
1

∥Δ𝒙𝑘 ∥

(
Γ⊤
𝑘
R⊤
𝑘
Δ𝒙𝑘

−Γ⊤
𝑘+1R

⊤
𝑘+1 Δ𝒙𝑘

)
. (1.60)

The scalar muscle force, 𝑓 , is the same for all the segments, and the portion inside the sum is the normalized force
within each segment.

The stiffness matrix can be computed as

K =
𝜕𝑓

𝜕E

𝑛−1∑
𝑘=1

f𝑘 + 𝑓
𝑛−1∑
𝑘=1

K𝑘 (1.61)

As before, we can compute the stiffness matrix for the normalized force in two parts:

K𝑘 = K𝑘1 + K𝑘2

K𝑘1 =

(
Γ⊤
𝑘
R⊤
𝑘
Δ𝒙

−Γ⊤
𝑘+1R

⊤
𝑘+1 Δ𝒙

) (
𝒅⊤R𝑘Γ𝑘 −𝒅⊤R𝑘+1Γ𝑘+1

)
, 𝒅 =

Δ𝒙𝑘
∥Δ𝒙𝑘 ∥3

K𝑘2 =
1

∥Δ𝒙𝑘 ∥

©«
[𝑘𝒙𝑘 ] [R⊤𝑘 (𝒑𝑘 − 0𝒙𝑘+1)] [𝑘𝒙𝑘 ] [𝑘𝒙𝑘 ]R⊤𝑘 R𝑘+1 [

𝑘+1𝒙𝑘+1] −[𝑘𝒙𝑘 ]R⊤𝑘 R𝑘+1
[R⊤

𝑘
(𝒑𝑘 − 0𝒙𝑘+1)] 𝐼 R⊤

𝑘
R𝑘+1 [𝑘+1𝒙𝑘+1] −R⊤

𝑘
R𝑘+1

[𝑘+1𝒙𝑘+1]R⊤𝑘+1R𝑘 [
𝑘𝒙𝑘 ] −[𝑘+1𝒙𝑘+1]R⊤𝑘+1R𝑘 [𝑘+1𝒙𝑘+1] [R⊤𝑘+1 (𝒑𝑘+1 −

0𝒙𝑘 )] [𝑘+1𝒙𝑘+1]
R⊤
𝑘+1R𝑘 [

𝑘𝒙𝑘 ] −R⊤
𝑘+1R𝑘 [R⊤

𝑘+1 (𝒑𝑘+1 −
0𝒙𝑘 )] 𝐼

ª®®®®®¬
.

(1.62)

The first term of Eq. (1.61) is an outer product between two vectors of length 6𝑛, since the summation, when expanded,
will form a single long vector, with each summand contributing to two block locations. The left expression, 𝜕𝑓

𝜕E , is also
evaluated by summing over the segments:

𝜕𝑓

𝜕E
=

𝑛−1∑
𝑘=1

(
𝒅⊤R𝑘Γ𝑘 −𝒅⊤R𝑘+1Γ𝑘+1

)
, 𝒅 =

−𝑓opt (𝑎𝑓 ′L 𝑓V + 𝑓 ′P )
𝑙opt

Δ𝒙𝑘
∥Δ𝒙𝑘 ∥

. (1.63)

The damping matrix also is an outer product between two vectors of length 6𝑛, constructed by iterating over the
segments.

D =
𝜕𝑓

𝜕Φ

𝑛−1∑
𝑘=1

f𝑘

𝜕𝑓

𝜕Φ
=

𝑛−1∑
𝑘=1

(
𝒅⊤R𝑘Γ𝑘 −𝒅⊤R𝑘+1Γ𝑘+1

)
, 𝒅 =

−𝑓opt (𝑎𝑓L 𝑓 ′V)
𝑙opt𝑣max

Δ𝒙𝑘
∥Δ𝒙𝑘 ∥

.

(1.64)
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1.9.6 Spring Damper. Spring-damper is a force between two points that tries to maintain its rest length, 𝐿:

𝒇 =

(
𝑘
𝑙 − 𝐿
𝐿

− 𝑑
¤𝑙
𝐿

)
Δ𝒙

𝑙
, 𝑙 = ∥Δ𝒙 ∥, (1.65)

for stiffness parameter, 𝑘 , and damping parameter, 𝑑 . The time derivative of length, ¤𝑙 is given in Eq. (1.48) (same as 𝑣).
As before, we will separate this into scalar and vector components:

f = 𝑓𝑠 f𝑛, 𝑓𝑠 =

(
𝑘
𝑙 − 𝐿
𝐿

− 𝑑
¤𝑙
𝐿

)
, f𝑛 =

1

𝑙

(
−Γ⊤

1
R⊤
1
Δ𝒙

Γ⊤
2
R⊤
2
Δ𝒙

)
. (1.66)

The stiffness matrix is then

K =
𝜕𝑓𝑠

𝜕E
f𝑛 + 𝑓𝑠 (K𝑛1 + K𝑛2)

K𝑛1 =

(
Γ⊤
1
R⊤
1
Δ𝒙

−Γ⊤
2
R⊤
2
Δ𝒙

) (
𝒅⊤R1Γ1 −𝒅⊤R2Γ2

)
, 𝒅 =

Δ𝒙

𝑙3

K𝑛2 =
1

𝑙

©«
[1𝒙1] [R⊤1 (𝒑1 − 0𝒙2)] [1𝒙1] [1𝒙1]R⊤1 R2 [

2𝒙2] −[1𝒙1]R⊤1 R2
[R⊤

1
(𝒑1 − 0𝒙2)] 𝐼 R⊤

1
R2 [2𝒙2] −R⊤

1
R2

[2𝒙2]R⊤2 R1 [
1𝒙1] −[2𝒙2]R⊤2 R1 [2𝒙2] [R⊤2 (𝒑2 − 0𝒙1)] [2𝒙2]

R⊤
2
R1 [1𝒙1] −R⊤

2
R1 [R⊤

2
(𝒑2 − 0𝒙1)] 𝐼

ª®®®®®¬
𝜕𝑓𝑠

𝜕E
=

(
𝒅⊤R1Γ1 −𝒅⊤R2Γ2

)
, 𝒅 =

−𝑘
𝐿

Δ𝒙

𝑙
.

(1.67)

The damping matrix is

D =
𝜕𝑓𝑠

𝜕Φ
f𝑛,

𝜕𝑓𝑠

𝜕Φ
=

(
𝒅⊤R1Γ1 −𝒅⊤R2Γ2

)
, 𝒅 =

−𝑑
𝐿

Δ𝒙

𝑙
. (1.68)

1.10 Joint Constraints

Joint constraints between rigid bodies are implemented using the adjoint formulation [Murray et al. 1994], from which
we can easily derive various types of joints simply by dropping different rows in the 6 × 6 adjoint matrix. Given two
rigid bodies, 𝑖 and 𝑘 , and a joint frame defined with respect to the first body, 𝑖

𝑗
E, we constrain the rigid bodies’ spatial

velocities, 𝜙𝑖 and 𝜙𝑘 , with respect to the joint frame. Using Eq. (1.15), the relative velocity at joint 𝑗 is given by

𝛿𝜙 𝑗 =
𝑗
𝑖
Ad𝜙𝑖 −

𝑗

𝑘
Ad𝜙𝑘

=

(
𝑗
𝑖
Ad − 𝑗

𝑖
Ad 𝑖

0
Ad 0

𝑘
Ad

) (
𝜙𝑖

𝜙𝑘

)
.

(1.69)

(Note 𝑖
0
Ad = 0

𝑖
Ad−1.) For a rigid joint, we want the relative velocities to be zero, so we set 𝛿𝜙 = 0. From this, we can

derive different types of joints, by dropping various rows of the constraint equation: for example, the top three rows
(corresponding to the three rotational DoFs) for a ball joint, or the third row (corresponding to the rotation about the
z-axis) for a hinge joint.

Setting 𝛿𝜙 = 0, we can write Eq. (1.69) in matrix form as GΦ = 0, where G ∈ R6×12 and Φ ∈ R12×1. (This is for a fixed
joint. For a hinge joint, G ∈ R5×12.) As we add more bodies and joints, we add more rows to this “constraint” matrix.
For example, if we have 3 bodies and 2 hinge joints between them, then G will have 5 + 5 = 10 rows and 6 + 6 + 6 = 18
columns. The entries in G need to line up, so that the correct terms get multiplied with each other. For example, if the 2
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hinge joints are between bodies 1 and 2, and between 1 and 3, the constraint equation is(
G11 G12 0

G21 0 G23

) ©«
𝜙1

𝜙2

𝜙3

ª®®®¬ =

(
0

0

)
. (1.70)

Before we incorporate these constraints into dynamics, let’s first simplify the notation of Eq. (1.28), by letting
𝜙𝑖 = 𝜙

(𝑘+1)
𝑖

and f̃𝑖 = M𝑖𝜙
(𝑘)
𝑖

+ ℎ
(
ad(𝜙 (𝑘)

𝑖
)⊤M𝑖𝜙

(𝑘)
𝑖

+ fbody
(
E(𝑘)
𝑖

))
. Then we have M𝑖𝜙𝑖 = f̃𝑖 , which is a 6 × 6 linear

system. If we combine all bodies, we getMΦ = f̃, which is a 6𝑛 × 6𝑛 linear system. We can think of this linear system as
the solution to the following quadratic minimization problem:

minimize
Φ

1

2
Φ⊤MΦ − Φ⊤ f̃. (1.71)

To this quadratic objective, we add the equality constraint equation GΦ = 0, giving us

minimize
Φ

1

2
Φ⊤MΦ − Φ⊤ f̃

subject to GΦ = 0.

(1.72)

Since the maximal mass matrix,M, is always positive definite, the objective is convex, and using duality, we can convert
this quadratic minimization problem into a single linear system, called a Karush-Kuhn-Tucker (KKT) system [Boyd and
Vandenberghe 2004]. (

M G⊤

G 0

) (
Φ

_

)
=

(
f̃

0

)
. (1.73)

The top entry in the solution vector, Φ, is the new velocities of all the rigid bodies, and the bottom entry in the solution
vector, _, is the vector of Lagrange multipliers for the constraints. The joint reaction forces can be computed as −G⊤_/ℎ.
For intuition, the top and bottom rows can be rewritten separately:

MΦ + G⊤_ = f̃

GΦ = 0.
(1.74)

The top equation is the original discretized Newton-Euler equation but with constraint forces added, and the bottom
equation is the constraint equation from the joints.

Run the sample simulation code, testJoint.m:
>> testJoint

rigid1: 10.00 g

rigid2: 10.00 g

The first body has a joint wrt to the world, and the
second body has a joint wrt to the first body.
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1.11 Contact Constraints

First, let’s assume that a single body is colliding with the ground. A collision detector, which is outside the scope of this
document, returns the collision point and the collision normal. Let’s assume that these are both in world coordinates:
0𝒙 and 0𝒏. What we require from the colliding rigid body is that the velocity of the collision point be positive wrt the
collision normal. Using the material Jacobian, Eq. (1.12), the velocity of the collision point is

0 ¤𝒙 = 0
𝑖 R Γ(𝑖𝒙) 𝑖𝜙𝑖 , (1.75)

where 𝑖𝒙 = 𝑖
0
E 0𝒙 is the collision point in body local coordinates. We want this world velocity to be positive wrt to the

collision normal, so the final constraint is
0𝒏⊤ 0

𝑖 R Γ(𝑖𝒙) 𝑖𝜙𝑖 ≥ 0 or

N 𝑖𝜙𝑖 ≥ 0,
(1.76)

where N = 𝒏⊤ R Γ. In this simple case of a single collision point on a single body, N is a 1 × 6matrix. If we have multiple
contact points, we can add more rows to this constraint matrix, with each row having a slightly different entry because
the contact point, 𝑖𝒙 , is going to be different. If the collision occurs with other objects in the scene (i.e., not the ground),
the collision normal may also be different. If there are multiple rigid bodies colliding with the world, then N will be of
size𝑚 × 6𝑛, where𝑚 is the total number of collisions, and 𝑛 is the number of rigid bodies.

Now let’s see how we handle collisions between bodies 𝑖 and 𝑗 . What we do now is to constrain the relative velocity
between the colliding bodies. The collision detector (usually) doesn’t know whether things are moving, so it will just
return a list of collision points and normals as before.5 As before, we have collision point 0𝒙 and normal 0𝒏. The relative
velocity, 0𝒗rel, between the two points in contact, expressed in world coordinates is

0𝒗rel =
0
𝑖 R Γ(𝑖𝒙) 𝑖𝜙𝑖 − 0

𝑗R Γ( 𝑗𝒙) 𝑗𝜙 𝑗 , (1.77)

where 𝑖𝒙 = 𝑖
0
E 0𝒙 and 𝑗𝒙 =

𝑗
0
E 0𝒙 . We want this relative velocity to be positive wrt the collision normal: 0𝒏⊤ 0𝒗rel ≥ 0.

In matrix form, we have the following:(
0𝒏⊤ 0

𝑖
R Γ(𝑖𝒙) − 0𝒏⊤ 0

𝑗
R Γ( 𝑗𝒙)

) (
𝑖𝜙𝑖
𝑗𝜙 𝑗

)
≥ 0. (1.78)

Each collision between bodies takes 2 block columns (12 columns total) of the C matrix. By combining all collisions into
the contact constraint matrix, we can write CΦ ≥ 0. For an example filling pattern, see Eq. (1.70).

By adding the constraint to Eq. (1.71), we obtain the following quadratic program:

minimize
Φ

1

2
Φ⊤MΦ − Φ⊤ f̃

subject to CΦ ≥ 0.

(1.79)

If there are joint constraints as well, we must solve

minimize
Φ

1

2
Φ⊤MΦ − Φ⊤ f̃

subject to CΦ ≥ 0

GΦ = 0.

(1.80)

5Continuous collision detector also takes into account velocities.
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1.12 Stabilization

Since the constraints are applied at the acceleration or the velocity level, there is an unavoidable constraint drift. Even
though the joints are initially intact, over time, they will come apart because no position information is used during
the integration. There are two basic methods for combating this drift problem: Baumgarte stabilization [Baumgarte
1972] and post stabilization [Cline and Pai 2003]. We’ll look at Baumgarte stabilization because it is general, simple, and
computationally efficient. (Post-stabilization works better in some cases though.)

To start, we have a positional constraint, 𝑔(q) = 0, where q is the vector of positional (or configuration) DOFs. With
maximal coordinates, there are many parameter choices for rigid body configuration, but we choose to use E, the 4x4
transformation matrix, so the positional constraint can also be written as 𝑔(E) = 0. If we differentiate this wrt time, we
get the velocity-level constraint equation that we have been using so far:

𝑑𝑔

𝑑𝑡
=
𝜕𝑔

𝜕q
¤q

= GΦ,
(1.81)

which we set to 0.
Baumgarte stabilization works by adding back the positional information into the velocity- or acceleration-level

constraint. Baumgarte’s original formulation is

G¤q = −𝛾𝑔

G¥q = − ¤G¤q − 2𝛼G¤q − 𝛽2𝑔,
(1.82)

respectively for velocity- and acceleration-level stabilization. In terms of implementation, this means that the RHS
constraint vector in the KKT system or the quadratic program get replaced by the RHS values in the equations above.
The values for 𝛼 , 𝛽 , and 𝛾 must be chosen experimentally. For example, Baumgarte uses 𝛼 = 𝛽 = 𝛾 = 10 in some of his
experiments. Sometimes, to make the units work out, 𝛼 = 𝛽 = 𝛾 = 1/ℎ is used.

1.13 Friction

Here, we cover the single-QP friction model, introduced by Anitescu and Hart [2004]. This QP has an equivalent LCP
(linear complementarity problem) formulation, which is often solved using an iterative Gauss-Seidel approach. For
more accurate friction, we need to solve a more difficult mathematical problem. See Staggered Projections [Kaufman
et al. 2008] for an example.

We start with the contact only (no friction) QP formulation from §1.11. In Equation Eq. (1.79), the “primal” variables
are the rigid body velocities, and the “dual” variables are the Lagrange multipliers for the contact constraints [Boyd and
Vandenberghe 2004]. We can form the equivalent, dual version of this QP as follows:

minimize
𝛼

1

2
𝛼⊤NM−1N⊤𝛼 + 𝛼⊤NM−1 f̃

subject to 𝛼 ≥ 0.

(1.83)

Once we compute 𝛼 , we can solve for Φ with:
MΦ + N⊤𝛼 = f̃. (1.84)

The dual variables, 𝛼 , are the contact impulse magnitudes. Since contact constraints can only push, 𝛼 must be positive.
The product N⊤𝛼 represents the generalized force (wrench) that the contact constraints apply to the rigid bodies.
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To enable friction, we need to introduce the tangential impulse, 𝛽 . Just
like how 𝛼 can only apply contact impulses in the normal direction, 𝛽 can
only apply contact impulses in the tangential direction. See the inset figure
for an example. Here, we are using a four-sided pyramid the approximate
the “friction cone.” In this case, for each contact constraint, there are four
tangential constraints. This means that the “tangent” matrix, T, is going to have four times as many rows as the normal
matrix, N. Just like the normal impulses, the tangential impulses must be positive. On top of this, we need an additional
constraint to ensure that the tangential impulse magnitude is less than the normal impulse magnitude multiplied by the
coefficient of friction: 𝑓∥ ≤ `𝑓⊥. With the four-sided pyramid, this can be expressed as:

(
` −1 −1 −1 −1

) ©«

𝛼

𝛽1

𝛽2

𝛽3

𝛽4

ª®®®®®®®®¬
≥ 0. (1.85)

This linear relationship between 𝛼 and 𝛽 can be expressed with a matrix 𝐸. For example, if there are two contact points,
𝐸 becomes:

(
` 0 −1 −1 −1 −1 0 0 0 0

0 ` 0 0 0 0 −1 −1 −1 −1

)
©«

𝛼1

𝛼2

𝛽11

𝛽12

𝛽13

𝛽14

𝛽21

𝛽22

𝛽23

𝛽24

ª®®®®®®®®®®®®®®®®®®®®¬

≥ 0. (1.86)

Let’s combine the normal and tangential dual variables into one:

_ =

(
𝛼

𝛽

)
, C =

(
N

T

)
. (1.87)

Then, the final single-QP friction problem is

minimize
_

1

2
_⊤CM−1C⊤_ + _⊤CM−1 f̃

subject to _ ≥ 0,

𝐸_ ≥ 0.

(1.88)

2 REDUCED COORDINATES

Forward dynamics with reduced coordinates was originally developed for robotics applications [Featherstone 1983;
Park et al. 1995]. Unlike the maximal coordinate formulation, which requires 6𝑛 degrees of freedom (DOFs) and 5𝑛
constraints (for revolute/hinge joints), the reduced coordinate formulation requires only 𝑛 DOFs and no constraints.

2019-10-28 14:51. Page 21 of 1–51.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Sueda

Initially, linear time algorithm was known only for reduced coordinates, but Baraff [1996] proposed a linear time
algorithm that uses maximal coordinates. Baraff argues that one of the advantages of maximal coordinates is that
they’re easier to understand and implement.

“While 𝑂 (𝑛) inverse reduced-coordinate approaches are easily understood, forward reduced-coordinate
formulations with linear time complexity have an extremely steep learning curve, and make use of a
formidable array of notational tools. The author admits (as do many practitioners the author has queried)
to lacking a solid, intuitive understanding of these methods.”

The reason inverse dynamics is easier than forward dynamics can be seen by looking at f = M¥q. In inverse dynamics,
we are given ¥q and solve for f, whereas in forward dynamics, we are given f and solve for ¥q. Therefore, with inverse
dynamics, we need to know how to multiply by the mass matrix, M, whereas with forward dynamics, we need to know
how to multiply by the inverse mass matrix,M−1, or solve with the mass matrix.

Baraff goes on to argue for the use of maximal coordinates, since the resulting KKT matrix (Eq. (1.73)) can be factored
in linear time as long as there are no loops. (Loops can be supported for a small cost.) Baraff does mention an important
advantage of using reduced coordinates—lack of constraint drift. However, combining reduced coordinates with other
types of simulation (e.g., FEM) is again challenging. What we present here is not linear time, but is easy to understand
and implement.

The main thing we need is a way to map between reduced coordinates and maximal coordinates. For now, let’s
assume that we only have revolute (hinge) joints, so our reduced coordinates are composed of a series of joint angles.
We’ll also assume that there are no loops in the mechanism. Let q𝑟 , q𝑟 , and ¥q𝑟 be the reduced position, velocity, and
acceleration. As before, for maximal coordinates, we’ll also use E, 𝜙 , and ¤𝜙 for individual rigid bodies, but we’ll use
q𝑚 , ¤q𝑚 , ¥q𝑚 , for the stacked vectors of all rigid bodies. Our goal here is to find a Jacobian J𝑚𝑟 that maps generalized
coordinates to maximal coordinates:

¤q𝑚 = J𝑚𝑟 ¤q𝑟 . (2.1)

Once we derive this Jacobian, we will be ready to start working out the dynamics in reduced coordinates. We start
with the Newton-Euler equations of motion of rigid bodies in maximal coordinates Eq. (1.21). Instead of a single body,
assume we have a system of bodies in the matrix formM𝑚 ¥q𝑚 = f𝑚 , where f𝑚 contains all forces including Coriolis
forces. This system has 6𝑛 degrees of freedom, since it is in maximal coordinates. Using the Jacobian in Eq. (2.14), we
can convert this into reduced coordinates. First, we need the mapping between reduced and maximal accelerations:

¥q𝑚 = ¤J𝑚𝑟 ¤q𝑟 + J𝑚𝑟 ¥q𝑟 . (2.2)

Therefore, we need not only the Jacobian, J, but also its time derivative, ¤J.
The Jacobian is easier to understand in terms of velocities, but we’ll start with positions. We’ll first assume that the

joint hierarchy forms an acyclic graph, i.e., a tree. If the system has loops, we first need to break them so that we get a
spanning tree, and we will put these loops back later with constraints in §2.8. In a tree, each node only has one parent,
with the root node having a null parent. So, we can assume that there is a one-to-one mapping between a body and a
joint, and therefore we can pretty much use “body” and “joint” interchangeably. Joints and bodies always come in pairs,
and for each pair, the body is always understood to be the child body connected to the joint.

For now, we’ll take a joint-centric view. For any joint 𝑗 , its transformation matrix, or configuration in world, 0
𝑗
E, can

be computed by chaining the transforms matrices from the root to the joint. For a serial chain, we get

0
𝑗 E = 0

1E
1
2E · · ·

𝑗−1
𝑗

E. (2.3)
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Each joint transform is a function of q. For example, for a revolute joint about the Z-axis, we have

𝑗−1
𝑗

E =
𝑗−1
𝑗

E0 Q 𝑗 (q𝑗 ), Q 𝑗 (q𝑗 ) =

©«
cos(q𝑗 ) − sin(q𝑗 ) 0 0

sin(q𝑗 ) cos(q𝑗 ) 0 0

0 0 1 0

0 0 0 1

ª®®®®®¬
, (2.4)

where 𝑗−1
𝑗

E0 is a translation matrix that represents where 𝑗 is wrt 𝑗 − 1, which does not change at run time. The rotation
matrix, Q 𝑗 (q𝑗 ), then applies the actual transformation as a function of q𝑗 . When we derive the Jacobian, rather than
using a rotation matrix directly as above, we will be using the matrix exponential, since we’ll be working with spatial
velocities. The rotation matrix above can be written equivalently as

Q 𝑗 (q𝑗 ) = exp
( [
𝑆q𝑗

] )
, 𝑆 =

(
0 0 1 0 0 0

)⊤
. (2.5)

In other words, the product 𝑆q𝑗 gets constructed into a skew symmetric matrix using Eq. (1.6), which is then exponenti-
ated to construct a transformation matrix.

To get the transform of the body attached to the joint, we right multiply by an additional transform, 𝑗
𝐵 𝑗
E, that

represents where the body is wrt the joint, which again does not change at run time.

0
𝐵E = 0

1E
1
2E · · ·

𝑗−1
𝑗

E 𝑗

𝐵 𝑗
E, (2.6)

where 𝐵 𝑗 is the body attached to the joint 𝑗 .

2.1 Jacobian

Let’s now derive the Jacobian in terms of maximal and reduced velocities: Φ = J¤q. Unlike the previous section, we’ll be
taking a body-centric view. Say we have a body 𝑖 and its parent 𝑝 , and there is a joint 𝐽𝑖 between them. As we saw in
§1.10, we can compute the relative twist between 𝑝 and 𝑖 at 𝐽𝑖 . The twist of 𝑝 and 𝑖 at 𝐽𝑖 are

𝐽𝑖𝜙𝑝 =
𝐽𝑖
𝑝 Ad

𝑝𝜙𝑝 ,
𝐽𝑖𝜙𝑖 =

𝐽𝑖
𝑖
Ad 𝑖𝜙𝑖 , (2.7)

and their relative twist is
𝐽𝑖𝜙 𝐽𝑖 =

𝐽𝑖𝜙𝑖 − 𝐽𝑖𝜙𝑝

=
𝐽𝑖
𝑖
Ad 𝑖𝜙𝑖 −

𝐽𝑖
𝑝 Ad

𝑝𝜙𝑝

=
𝐽𝑖
𝑖
Ad 𝑖𝜙𝑖 −

𝐽𝑖
𝑖
Ad 𝑖

0Ad
0
𝑝Ad

𝑝𝜙𝑝 ,

(2.8)

where 0 indicates the world frame. Since 𝑖 owns the joint, 𝐽𝑖
𝑖
Ad is constant. (It’s constructed from 𝐽𝑖

𝑖
E, which represents

where the 𝑖’s body center is wrt to the joint, which is set at initialization.) Remember that in maximal coordinates, we
store positions wrt the world and velocities wrt the body itself. In other words, for each body, we store 0

𝑖
E and 𝑖𝜙𝑖 . So in

the above expression, the adjoint matrices of the form 0
𝑖
Ad and 𝑖

0
Ad can be computed easily from 0

𝑖
E. We can rearrange

this to solve for 𝑖’s spatial velocity.
𝐽𝑖
𝑖
Ad 𝑖𝜙𝑖 =

𝐽𝑖
𝑖
Ad 𝑖

0Ad
0
𝑝Ad

𝑝𝜙𝑝 + 𝐽𝑖𝜙 𝐽𝑖

𝑖𝜙𝑖 = 𝑖
0Ad

0
𝑝Ad

𝑝𝜙𝑝 + 𝑖
𝐽𝑖
Ad 𝐽𝑖𝜙 𝑗 .

(2.9)

What this expression implies is that if we know the parent’s velocity, 𝑝𝜙𝑝 , and the joint’s velocity, 𝑗𝜙 𝑗 , we can compute
the child’s velocity, 𝑖𝜙𝑖 . In reduced coordinates, we parameterize 𝑗𝜙 𝑗 not with the full 6 degrees of freedom but with
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some subset ⊂ R6. For example, assuming we’re using revolute joints about the Z axis, we can write

𝐽𝑖𝜙 𝐽𝑖 = 𝑆 ¤q𝑖 , 𝑆 =

(
0 0 1 0 0 0

)⊤
. (2.10)

We use 𝑆 here to follow the notation of Park et al. [1995] and Kim [2012]. 𝑆 takes on this simple form for revolute joints,
but it gets quite complicated for spherical joints, as we’ll see later in §2.4. Combining Eq. (2.9) and Eq. (2.10), we get

𝑖𝜙𝑖 = 𝑖
0Ad

0
𝑝Ad︸    ︷︷    ︸

𝑖
𝑝Ad

𝑝𝜙𝑝 + 𝑖
𝐽𝑖
Ad 𝑆︸︷︷︸

𝑖
𝐽𝑖
Ad𝑆

¤q𝑖 (2.11)

This relationship can be recursively applied to get the system Jacobian. Let’s simplify the notation a bit by defining
the two factors above as 𝑖𝑝Ad and 𝑖

𝐽𝑖
Ad𝑆 . Let’s also use 0, 1, 2, ..., instead of 𝑝 and 𝑖 . So we have

1𝜙1 = 1
0Ad

0𝜙0 + 1
𝐽1
Ad𝑆 ¤q1, (2.12)

but we can assume that the world frame is stationary, so 0𝜙0 = 0. Continuing recursively,
2𝜙2 = 2

1Ad
1𝜙1 + 2

𝐽2
Ad𝑆 ¤q2

= 2
1Ad

(
1
𝐽1
Ad𝑆 ¤q1

)
+ 2

𝐽2
Ad𝑆 ¤q2

= 2
1Ad

1
𝐽1
Ad𝑆 ¤q1 + 2

𝐽2
Ad𝑆 ¤q2

3𝜙3 = 3
2Ad

2𝜙2 + 3
𝐽3
Ad𝑆 ¤q3

= 3
2Ad

(
2
1Ad

1
𝐽1
Ad𝑆 ¤q1 + 2

𝐽2
Ad𝑆 ¤q2

)
+ 3

𝐽3
Ad𝑆 ¤q3

= 3
2Ad

2
1Ad

1
𝐽1
Ad𝑆 ¤q1 + 3

2Ad
2
𝐽2
Ad𝑆 ¤q2 + 3

𝐽3
Ad𝑆 ¤q3

(2.13)

The pattern here is that initially, 1𝜙1 is just a function of ¤q1, but as we traverse the tree, 𝑖𝜙𝑖 becomes a function of all
the ancestors of 𝑖 . For a serial chain, this implies a lower triangular matrix.

©«
1𝜙1
2𝜙2
3𝜙3

ª®®®¬︸︷︷︸
¤q𝑚

=

©«
1
𝐽1
Ad𝑆 0 0

2
1
Ad 1

𝐽1
Ad𝑆 2

𝐽2
Ad𝑆 0

3
2
Ad 2

1
Ad 1

𝐽1
Ad𝑆 3

2
Ad 2

𝐽2
Ad𝑆 3

𝐽3
Ad𝑆

ª®®®¬︸                                              ︷︷                                              ︸
J𝑚𝑟

©«
¤q1
¤q2
¤q3

ª®®®¬︸︷︷︸
¤q𝑟

. (2.14)

Note the recursive structure here. To fill a matrix element to the left of the diagonal, we take the element above and
premultiply it by 𝑖

𝑖−1Ad. As we iterate over all the columns to the left of the diagonal, what we are doing is that we are
backtracing the ancestors all the way to the root. Note that for a general tree structure, we cannot assume that the row
directly above belongs to the parent. Instead, the parent is on some row above the current row. The pseudocode of the
Jacobian filling function is given in Alg. 1. This function must be called on the joints in tree traversal order, starting
from the root. This function takes advantage of the recursive structure of the tree hierarchy—as we traverse through
the ancestors, we use the products already computed by the ancestors. Since this matrix has 𝑂 (𝑛2) elements, it takes
𝑂 (𝑛2) time to fill, even with this recursive structure. If we only need the product of this matrix with a vector (§2.10),
we only need 𝑂 (𝑛) time, a strategy taken by the recursive forward dynamics algorithm [Featherstone 1983; Kim 2012;
Park et al. 1995].
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Algorithm 1 Filling the Jacobian matrix

1: J(𝑖, 𝑖) = 𝑖
𝐽𝑖
Ad 𝑆 ⊲ Diagonal element

2: ancestor = parent
3: while ancestor != null do
4: J(𝑖, 𝑎) = 𝑖

𝑝Ad J(𝑝, 𝑎) ⊲ Off-diagonal element
5: ancestor = ancestor’s parent
6: end while

2.2 Jacobian Time Derivative

As we saw in Eq. (2.2), we require the time derivative of J, which in turn requires the time derivative of the adjoint, ¤Ad.
For the diagonal terms, the derivative is

¤J(𝑖, 𝑖) = 𝑖
𝐽𝑖
Ad ¤𝑆, (2.15)

which is 0 for revolute joints, since 𝑆 is constant. (It isn’t 0 for some other types of joints.) For off-diagonal terms, recall
that we have the recurrence relation J(𝑖, 𝑎) = 𝑖

𝑝Ad J(𝑝, 𝑎), where 𝑝 is the parent of 𝑖 , and 𝑎 is an ancestor of 𝑖 . From this,
we see that the derivative is

¤J(𝑖, 𝑎) = 𝑖
𝑝
¤Ad J(𝑝, 𝑎) + 𝑖

𝑝Ad ¤J(𝑝, 𝑎) . (2.16)

To compute 𝑖
𝑝
¤Ad, we use Eq. (1.18) and the identity for taking the derivative of the matrix inverse: ¤𝐴−1 = −𝐴−1 ¤𝐴𝐴−1.

𝑖
𝑝
¤Ad =

𝑑

𝑑𝑡

(
𝑖
0Ad

0
𝑝Ad

)
= 𝑖

0
¤Ad 0

𝑝Ad + 𝑖
0Ad

0
𝑝
¤Ad

= 0
𝑖
¤Ad−1 0

𝑝Ad + 𝑖
0Ad

0
𝑝
¤Ad

= −𝑖0Ad
0
𝑖
¤Ad 𝑖

0Ad
0
𝑝Ad + 𝑖

0Ad
0
𝑝
¤Ad.

(2.17)

The pseudocode for constructing J and ¤J is given in Alg. 2. The function is called in a forward traversal order, starting
from the root. In this ordering, the parent is guaranteed to be processed before its children.

Algorithm 2 Filling the Jacobian matrix and its time derivative

1: while forward traversal do
2: J(𝑖, 𝑖) = 𝑖

𝐽𝑖
Ad 𝑆 ⊲ Diagonal element

3: ¤J(𝑖, 𝑖) = 𝑖
𝐽𝑖
Ad ¤𝑆 ⊲ Diagonal element

4: ancestor = parent
5: while ancestor != null do
6: J(𝑖, 𝑎) = 𝑖

𝑝Ad J(𝑝, 𝑎) ⊲ Off-diagonal element
7: ¤J(𝑖, 𝑎) = 𝑖

𝑝
¤Ad J(𝑝, 𝑎) + 𝑖

𝑝Ad ¤J(𝑝, 𝑎) ⊲ Off-diagonal element
8: ancestor = ancestor’s parent
9: end while
10: end while
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2.3 RedMax Dynamics

Now that we have both J𝑚𝑟 and ¤J𝑚𝑟 , we can finally form the reduced equations of motion. Combining Eq. (1.21) and
Eq. (2.2), we have

M𝑚

(
J𝑚𝑟 ¥q𝑟 + ¤J𝑚𝑟 ¤q𝑟

)
= f𝑚

M𝑚 J𝑚𝑟 ¥q𝑟 = f𝑚 −M𝑚
¤J𝑚𝑟 ¤q𝑟(

J⊤𝑚𝑟M𝑚 J𝑚𝑟

)
¥q𝑟 = J⊤𝑚𝑟

(
f𝑚 −M𝑚

¤J𝑚𝑟 ¤q𝑟
)

M𝑟 ¥q𝑟 = f𝑟 ,

(2.18)

where the reduced mass matrix, M𝑟 = J⊤𝑚𝑟 M𝑚 J𝑚𝑟 , and the reduced force vector, f𝑟 = J⊤𝑚𝑟

(
f𝑚 −M𝑚

¤J𝑚𝑟 ¤q𝑟
)
, are much

smaller than their maximal counterparts (1/6 the size for revolute joints). Furthermore, we don’t require constraints,
since the Jacobians automatically take care of constraints. The last term, −J⊤𝑚𝑟 M𝑚

¤J𝑚𝑟 ¤q𝑟 , is the extra quadratic velocity
vector that results due to the change of coordinates [Shabana 2013].

Let’s first try the simple Euler integration scheme from §1.8. The acceleration in Eq. (2.18) is discretized as

¥q𝑟 =
¤q(𝑘+1)𝑟 − ¤q(𝑘)𝑟

ℎ
, (2.19)

which results in
M𝑟 ¤q(𝑘+1)𝑟 = M𝑟 ¤q(𝑘)𝑟 + ℎf𝑟 . (2.20)

This is a small, dense linear system that gives the new reduced velocities, ¤q(𝑘+1)𝑟 . If desired, the maximal velocities can
be computed using the Jacobian. The reduced positions are integrated as q𝑟 (𝑘+1) = q𝑟

(𝑘) + ℎ ¤q(𝑘+1)𝑟 .
Often it is advantageous to use a more sophisticated integrator, such as MATLAB’s ode45 integrator, which allows

adaptive time steps. To use these general integrators, we must convert a 2nd order ODE into a system of 1st order
ODEs, by stacking the positions and velocities together.

𝑑

𝑑𝑡

(
q𝑟
¤q𝑟

)
=

(
¤q𝑟

M−1
𝑟 f𝑟

)
. (2.21)

An adaptive integrator is much more stable for rigid body dynamics because it takes small time steps as needed. This is
important especially if there is no damping, since even a simple two-link system can result in chaotic behavior.6

With ode45, integrating Eq. (2.21) gives numerically the same solution as the recursive forward dynamics method
outlined by Kim [2012]. Because we need to invert the reduced mass matrix, our method is 𝑂 (𝑛3), whereas recursive
forward dynamics is 𝑂 (𝑛). (Somehow, the linear method automagically computes the product of the reduced mass
matrix with the right-hand-side!) Our method, however, is much simpler to implement, easier to understand, and easier
to combine with deformable object simulations (e.g., FEM).

2.4 Other Joint Types

These are based on the source code by Kim [2012].7

6See a video of a “double pendulum” here: https://youtu.be/U39RMUzCjiU.
7GEAR: Geometric Engine for Articulated Rigid-body simulation https://github.com/junggon/gear
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2.4.1 Fixed Joint. A fixed joint is used for rigidly attaching two bodies together. Recall that the joint transform is
defined wrt the parent joint:

𝑗−1
𝑗

E =
𝑗−1
𝑗

E0 Q 𝑗 (q𝑗 ), (2.22)

where 𝑗−1
𝑗

E0 is the initial transform (often a translation), and Q 𝑗 (q𝑗 ) is the transform that actually applies the degrees
of freedom of that joint. For a fixed joint, q𝑗 = ∅, and Q 𝑗 (q𝑗 ) is simply the 4 × 4 identity matrix. The joint Jacobian, 𝑆 ,
is an empty 6 × 0 matrix.

2.4.2 Prismatic Joint. A prismatic joint allows one degree of translational freedom. Let 𝒂 represent the axis along which
the joint is able to translate. Then

Q 𝑗 (q𝑗 ) =
(
𝐼 𝒂q𝑗
0 1

)
, (2.23)

which is a 4 × 4 translation matrix. The corresponding joint Jacobian is

𝑆 =

(
0

𝒂

)
∈ R6×1 . (2.24)

2.4.3 Planar Joint. A planar joint allows translation in two directions. We assume that the joint is oriented so that the
allowed motion is in the X-Y plane. Then

Q 𝑗 (q𝑗 ) =
©«
𝐼 0 q𝑗
0 1 0

0 0 1

ª®®®¬ , (2.25)

which is again a 4 × 4 translation matrix. The corresponding joint Jacobian is

𝑆 =

©«

0 0

0 0

0 0

1 0

0 1

0 0

ª®®®®®®®®®®¬
∈ R6×2 . (2.26)

2.4.4 Translational Joint. A translational joint allows full translation (but no rotation).

Q 𝑗 (q𝑗 ) =
(
𝐼 q𝑗
0 1

)
, (2.27)

and the corresponding joint Jacobian is

𝑆 =

(
0

𝐼

)
∈ R6×3 . (2.28)

2.4.5 Spherical Joint. Representing 3D rotation with reduced coordinates is nontrivial. With any 3-parameter represen-
tation, there will be a singularity somewhere. With more than 3 parameters, we require constraints, which we will
get to in §2.8. One option for a 3-parameter rotation representation is Euler angles. (Another option is exponential
coordinates, which we describe later in §2.4.8. We start here with Euler angles because they’re also used for universal
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joints, described next in §2.4.6.) Once we choose a sequence of axes to rotate by (e.g., XZX), we can multiply out the 3
rotation matrices and obtain a single rotation matrix parameterized by the 3 angles.8

Recall from Eq. (2.10) that for a revolute joint, 𝑆 ∈ R6×1, because q ∈ R. For a spherical joint parameterized by Euler
angles, 𝑆 ∈ R6×3, and q ∈ R3. Intuitively, each column of 𝑆 is the derivative of E wrt q, expressed in local coordinates.
In other words, each column 𝑖 of 𝑆 is defined as:

[𝑆𝑖 ] ≡ E−1
𝑑E
𝑑q𝑖

, (2.29)

where the bracket operator is from Eq. (1.6). (Note the similarity to Eq. (1.8).) By “unbracketing” this LHS matrix, we
obtain the 𝑖𝑡ℎ column of 𝑆 . We can simplify this a little bit because only rotations are involved for a spherical joint.
Since E is a rotation matrix for a spherical joint, we can instead write

[𝑆𝑖 ] ≡ R⊤
𝑑R
𝑑q
, (2.30)

where the bracket operator corresponds only to the rotational part, as in Eq. (1.7).
Let’s use XZX Euler angles as a concrete example. The corresponding rotation matrix is:

R =

©«
𝑐2 −𝑠2𝑐3 𝑠2𝑠3

𝑐1𝑠2 𝑐1𝑐2𝑐3 − 𝑠1𝑠3 −𝑠1𝑐3 − 𝑐1𝑐2𝑠3
𝑠1𝑠2 𝑐1𝑠3 + 𝑠1𝑐2𝑐3 𝑐1𝑐3 − 𝑠1𝑐2𝑠3

ª®®®¬ , (2.31)

where 𝑐1 = cos(𝑞1), 𝑐2 = cos(𝑞2), etc. Q is then

Q =

(
R 0

0 1

)
. (2.32)

Since q = (𝑞1 𝑞2 𝑞3)⊤ ∈ R3, we take the derivative separately three times to get the three columns of 𝑆 . To get the 1st
column of 𝑆 , we take the derivative of R wrt 𝑞1 and premultiply by R⊤. After lots of cancellations, the resulting product
is a skew symmetric matrix:

R⊤
𝑑R
𝑑𝑞1

=

©«
0 −𝑠2𝑠3 −𝑐3𝑠2
𝑠2𝑠3 0 −𝑐2
𝑐3𝑠2 𝑐2 0

ª®®®¬ . (2.33)

If we “unbracket” this 3 × 3 skew symmetric matrix, we obtain a 3 × 1 vector. This forms the top three rows of the 1st
column of 𝑆 . The bottom three rows are zero, because translations are not parameterized by a spherical joint. Repeating
for the 2nd and 3rd rows, we obtain the final form of 𝑆 for a spherical joint parameterized by XZX Euler angles:

𝑆 =

©«

𝑐2 0 1

−𝑐3𝑠2 𝑠3 0

𝑠2𝑠3 𝑐3 0

0 0 0

0 0 0

0 0 0

ª®®®®®®®®®®¬
. (2.34)

8Formulas on Wikipedia: https://en.wikipedia.org/wiki/Euler_angles.
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For this joint Jacobian, the time derivative, ¤𝑆 , is nonzero, and is needed for the computation of ¤J:

¤𝑆 =

©«

−𝑠2 ¤𝑞2 0 0

𝑠3𝑠2 ¤𝑞3 − 𝑐3𝑐2 ¤𝑞2 𝑐3 ¤𝑞3 0

𝑐2𝑠3 ¤𝑞2 + 𝑠2𝑐3 ¤𝑞3 −𝑠3 ¤𝑞3 0

0 0 0

0 0 0

0 0 0

ª®®®®®®®®®®¬
. (2.35)

2.4.6 Universal Joint. A universal joint allows bending in X and Y but no twisting along Z. We start with the rotation
matrix corresponding to the XYZ Euler angles:

R =

©«
𝑐2𝑐3 −𝑐2𝑠3 𝑠2

𝑐1𝑠3 + 𝑠1𝑠2𝑐3 𝑐1𝑐3 − 𝑠1𝑠2𝑠3 −𝑠1𝑐2
𝑠1𝑠3 − 𝑐1𝑠2𝑐3 𝑠1𝑐3 + 𝑐1𝑠2𝑠3 𝑐1𝑐2

ª®®®¬ , (2.36)

where 𝑐1 = cos(𝑞1), 𝑐2 = cos(𝑞2), etc. We then fix the third angle at 0, so that 𝑐3 = 1 and 𝑠3 = 0. This gives us

R =

©«
𝑐2 0 𝑠2

𝑠1𝑠2 𝑐1 −𝑠1𝑐2
−𝑐1𝑠2 𝑠1 𝑐1𝑐2

ª®®®¬ . (2.37)

Q is then

Q =

(
R 0

0 1

)
. (2.38)

The joint Jacobian, 𝑆 , is going to be a 6 × 2 matrix. As with the spherical joint, to get the 1st column of 𝑆 , we take the
derivative of R wrt q1 and premultiply by R⊤. After some cancellations, we get a skew symmetric matrix, from which
the angular elements are extracted into the first column of 𝑆 . We repeat this for the second column, and the resulting
matrix is

𝑆 =

©«

𝑐2 0

0 1

𝑠2 0

0 0

0 0

0 0

ª®®®®®®®®®®¬
. (2.39)

The time derivative of the joint Jacobian is

¤𝑆 =

©«

−𝑠2 ¤𝑞2 0

0 0

𝑐2 ¤𝑞2 0

0 0

0 0

0 0

ª®®®®®®®®®®¬
. (2.40)

2.4.7 Revolute joint. Because revolute joints are one of the simplest and most useful joints, we used it as an introductory
example in §2.1. Here, we replicate the derivations for completeness. We will assume that the joint allows bending
2019-10-28 14:51. Page 29 of 1–51.
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along the Z axis.

Q (q) = exp ( [𝑆q]) =

©«
cos(q) − sin(q) 0 0

sin(q) cos(q) 0 0

0 0 1 0

0 0 0 1

ª®®®®®¬
, 𝑆 =

©«

0

0

1

0

0

0

ª®®®®®®®®®®¬
. (2.41)

2.4.8 Spherical Joint with Exponential Coordinates. No matter which 3-parameter representation we choose for a
spherical joint, there is going to be a singularity somewhere. We could alternatively use a quaternion, but then we would
need to add a constraint to keep the quaternion be of unit length. With Euler angles, to stay away from singularities,
we need to switch the coordinate chart on the fly (e.g., between ZYX and ZYZ). With exponential coordinates [Gallego
and Yezzi 2015; Grassia 1998], we also need to reparameterize, but we do not need to keep track of the coordinate chart.

Let q ∈ so(3) (can also be thought of as R3) be the DOF of the spherical joint. Recall that every rotation matrix can
be expressed as a matrix exponential of a skew symmetric matrix, and Q is then

R = exp( [q]), Q =

(
R 0

0 1

)
. (2.42)

The joint Jacobian, 𝑆 , is computed using the derivative formula described by Gallego and Yezzi [2015]. The derivative
of R wrt q is a 3 × 3 × 3 tensor, where each 3 × 3 slice is given by

𝜕R
𝜕𝑞𝑖

=
𝑞𝑖 [q] + [[q] (𝐼 − R)𝒆𝑖 ]

q⊤q
R, (2.43)

where 𝒆𝑖 is the 𝑖𝑡ℎ standard basis in R3, and 𝐼 is the identity matrix. If ∥q∥ < Y, then we must take the limit as q → 0,
which gives us R = 𝐼 , and 𝜕R/𝜕𝑞𝑖 = [𝒆𝑖 ]. Each column of the joint Jacobian is then

[𝑆𝑖 ] = R⊤
𝜕R
𝜕𝑞𝑖

. (2.44)

The bracket around 𝑆𝑖 implies that we need to unbracket the RHS to get each column of 𝑆 . By contracting the 3 × 3 × 3
tensor 𝜕R/𝜕q by ¤q, we can compute the time derivative of the rotation matrix, ¤R, which is needed for ¤𝑆 :

¤R =
∑
𝑖

𝜕R
𝜕𝑞𝑖

¤𝑞𝑖 . (2.45)

To aid in the derivation of ¤𝑆 , we first partition the derivative as

𝜕R
𝜕𝑞𝑖

= 𝐴𝑖R, 𝐴𝑖 = (𝐵𝑖 +𝐶𝑖 )𝑑, 𝐵𝑖 = 𝑞𝑖 [q], 𝐶𝑖 = [[q] (𝐼 − R)𝒆𝑖 ], 𝑑 =
1

q⊤q
. (2.46)

Then each column of ¤𝑆 can be expressed as[ ¤𝑆𝑖 ] = ¤R⊤𝐴𝑖R + R⊤ ¤𝐴𝑖R + R⊤𝐴𝑖 ¤R
¤𝐴𝑖 =

( ¤𝐵𝑖 + ¤𝐶𝑖
)
𝑑 + (𝐵𝑖 +𝐶𝑖 ) ¤𝑑

¤𝐵𝑖 = ¤q𝑖 [q] + q𝑖 [ ¤q]
¤𝐶𝑖 =

[
[ ¤q] (𝐼 − R)𝒆𝑖 − [q] ¤R𝒆𝑖

]
¤𝑑 =

−2q⊤ ¤q
(q⊤q)2

.

(2.47)
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Quoting Grassia [1998], “The exponential map has singularities on the spheres of radius 2𝑛𝜋 (for 𝑛 = 1, 2, 3, . . .). This
makes sense, since a rotation of 2𝜋 about any axis is equivalent to no rotation at all—the entire shell of points 2𝜋 distant
from the origin (and 4, etc.) collapses to the identity in SO(3).” They then show that a good way to avoid singularities
is to check if ∥q∥ is close to 2𝜋 and if so, reparameterize as q = (1 − 2𝜋/∥q∥)q. Whenever q is reparameterized, we
must also update ¤q, 𝑆 , and ¤𝑆 . To do so, we first recompute 𝑆 with Eq. (2.44) using the reparameterized q. Then, we can
compute the new velocities as ¤q = 𝑆−1𝑆prev ¤qprev. Finally, we can compute ¤𝑆 using Eq. (2.47) with the new values of q
and ¤q.

2.4.9 Composite Joint. In a composite joint, two joints are composed together: Q = Q1Q2. This can be interpreted as a
chaining of two joints, with a massless body in between, with 1 as a parent of 2. The corresponding joint Jacobian is

𝑆 =

(
2
1
Ad 𝑆1 𝑆2

)
∈ R6×(𝑛1+𝑛2) , (2.48)

where 𝑛1 and 𝑛2 are the number of DOFs of joints 1 and 2, respectively, and 2
1
Ad is the 6 × 6 adjoint matrix that

transforms from joint 1’s coordinate space to joint 2’s coordinate space. The time derivative of the right term, 𝑆2, is
simply ¤𝑆2, which is computed by joint 2. The time derivative of the left term is

𝑑

𝑑𝑡

(
2
1Ad 𝑆1

)
= 2

1
¤Ad 𝑆1 + 2

1Ad ¤𝑆1 . (2.49)

To compute 2
1
¤Ad, note that joint 2 stores its transform wrt joint 1 (child wrt parent), which is 1

2
Ad. The transform of the

parent wrt to the child involves the inverse, and so we have

2
1
¤Ad = −2

1Ad
1
2
¤Ad 2

1Ad Using the identity for the derivative of the inverse

= −2
1Ad

1
2Ad ad

(
2𝜙2

)
2
1Ad Using Eq. (1.19) (2.50)

= −ad
(
𝑆2 ¤q2

) 2
1Ad.

The twist of joint 2, 2𝜙2, is the spatial velocity of 2 wrt 1, which is the product 𝑆2 ¤q2. For example, if joint 2 is a
translational joint, then

𝑆2 ¤q2 =

(
0

¤𝒒2

)
∈ R6, (2.51)

which is a translation-only twist. Combining Eq. (2.48), Eq. (2.49), and Eq. (2.50), the time derivative of 𝑆 is, therefore,

¤𝑆 =

(
−ad

(
𝑆2 ¤q2

)
2
1
Ad 𝑆1 + 2

1
Ad ¤𝑆1 ¤𝑆2

)
. (2.52)

Composite joints can be chained together. For example, a composite joint of three joints can be expressed as Q =

Q1 (Q2Q3).

2.4.10 2D Free Joint. A 2D free joint is a joint that is completely unconstrained in 2D. This is useful if we want a
structure that is not affixed to the ground, in which case the root joint will be implemented as a free joint. To implement
a 2D free joint, we concatenate a X-Y planar joint and a Z revolute joint together into a composite joint:

Q = Q1Q2, (2.53)
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where Q1 = Qplanar and Q2 = Qrevolute. Their corresponding joint Jacobians are:

𝑆1 =

©«

0 0

0 0

0 0

1 0

0 1

0 0

ª®®®®®®®®®®¬
, 𝑆2 =

©«

0

0

1

0

0

0

ª®®®®®®®®®®¬
, (2.54)

and ¤𝑆 = 0 for both. After some simplification, the Jacobian for the 2D free joint is then

𝑆 =

(
2
1
Ad 𝑆1 𝑆2

)
=

©«

0 0 0

0 0 0

0 0 1

Q𝑥𝑥
2

Q𝑦𝑥

2
0

Q𝑥𝑦

2
Q𝑦𝑦

2
0

Q𝑥𝑧
2

Q𝑦𝑧

2
0

ª®®®®®®®®®®¬
. (2.55)

The bottom three rows of the first column contain the 1st row of the Q2 matrix, and the bottom three rows of the
second column contain the 2nd row of the Q2 matrix. The time derivative of 𝑆 can be simplified as follows:

¤𝑆 =

(
−ad

(
𝑆2 ¤q2

)
2
1
Ad 𝑆1 + 2

1
Ad��7

0

¤𝑆1 ��7
0

¤𝑆2

)
=

©«

0 0 0

0 0 0

0 0 0

¤q2Q
𝑥𝑦

2
¤q2Q

𝑦𝑦

2
0

−¤q2Q𝑥𝑥
2

−¤q2Q
𝑥𝑦

2
0

0 0 0

ª®®®®®®®®®®¬
, (2.56)

where ¤q2 is the velocity of the revolute joint.

2.4.11 3D Free Joint. A 3D free joint is a joint that is completely unconstrained in 3D. This is useful if we want a
structure that is not affixed to the ground, in which case the root joint will be implemented as a free joint.

To implement a 3D free joint, we concatenate a translational joint and a spherical joint together into a composite
joint:

Q = Q1Q2, (2.57)

where Q1 = Qtranslational and Q2 = Qspherical. Their corresponding joint Jacobians are:

𝑆1 =

(
0

𝐼

)
, ¤𝑆1 =

(
0

0

)
, 𝑆2 =

(
𝑆2

0

)
, ¤𝑆2 =

(
¤̂𝑆2
0

)
, (2.58)

where 𝑆2 implies taking the top 3 rows of 𝑆2. (The bottom 3 rows are zeros, since the 2nd joint is a spherical joint.)
After some simplification, the Jacobian is:

𝑆 =

(
2
1
Ad 𝑆1 𝑆2

)
=

(
0 𝑆2

R⊤
2

0

)
, (2.59)
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where R2 is the rotational part of Q2. The time derivative is:

¤𝑆 =

(
−ad

(
𝑆2 ¤q2

)
2
1
Ad 𝑆1 + 2

1
Ad��7

0

¤𝑆1 ¤𝑆2

)
=

(
0 ¤̂𝑆2

−[𝑆2 ¤q2]R⊤2 0

)
. (2.60)

We can also concatenate the two joints in reverse order. This works just as well with ode45, but with Euler, it may
cause more drift.

Q = Q1Q2, (2.61)

where Q1 = Qspherical and Q2 = Qtranslational. The corresponding joint Jacobian is

𝑆 =

(
𝑆1 0

−[𝒒2]𝑆1 𝐼

)
∈ R6×6, (2.62)

where 𝑆1 is the top three rows of 𝑆1, and 𝒒2 ∈ R3 is the translational DOF of joint 2. The time derivative of the Jacobian
is

¤𝑆 =

(
¤̂𝑆1 0

−[ ¤𝒒2]𝑆1 − [𝒒2] ¤̂𝑆1 0

)
, (2.63)

where ¤̂𝑆1 is the top three rows of ¤𝑆1, and ¤𝒒2 is the (translational) velocity of joint 2.

2.4.12 Spline Curve Joint. With RedMax, it is easy to include more advanced joints, such as the Spline Joint by Lee and
Terzopoulos [2008]. We’ll start by reviewing some basic spline concepts. For concreteness, we’ll be using uniform cubic
B-spline curves.

Let 𝐶 ∈ R3×4 be the matrix of 4 consecutive control points:

𝐶 =

(
𝒄1 𝒄2 𝒄3 𝒄4

)
, (2.64)

and let 𝐵 ∈ R4×4 be the cubic B-spline basis matrix:

𝐵 =
1

6

©«
1 −3 3 −1
4 0 −6 3

1 3 3 −3
0 0 0 1

ª®®®®®¬
. (2.65)

Then the spline position at 𝑞 ∈ [0, 1] can be written as

𝒙 (𝑞) = 𝐶𝐵®𝑞, ®𝑞 =

©«
1

𝑞

𝑞2

𝑞3

ª®®®®®¬
. (2.66)

Other types of splines can be swapped in by replacing the basis matrix, 𝐵. If there are more than 4 control points, then
the matrix 𝐶 needs to be updated so that the appropriate 4 control points make up the 4 columns of the matrix, and the
spline parameter, 𝑞, must always be mapped to be between 0 and 1.

We can expand Eq. (2.66) in terms of the control points, 𝒄𝑖 :

𝒙 (𝑞) = 𝒄1𝐵1 (𝑞) + 𝒄2𝐵2 (𝑞) + 𝒄3𝐵3 (𝑞) + 𝒄4𝐵4 (𝑞), (2.67)

where the basis function, 𝐵𝑖 (𝑞), is the product of the 𝑖𝑡ℎ row of 𝐵 and ®𝑞.
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The spline joint uses the cumulative form of basis functions, introduced by Kim et al. [1995]:

𝒙 (𝑞) = 𝒄1�̃�1 (𝑞) + Δ𝒄2�̃�2 (𝑞) + Δ𝒄3�̃�3 (𝑞) + Δ𝒄4�̃�4 (𝑞), (2.68)

where the control point differences are computed as Δ𝒄𝑖 = 𝒄𝑖 − 𝒄𝑖−1. By equating Eq. (2.67) and Eq. (2.68), the cumulative
basis functions, �̃�𝑖 (𝑞), are:

�̃�4 (𝑞) = 𝐵4 (𝑞)

�̃�3 (𝑞) = 𝐵3 (𝑞) + 𝐵4 (𝑞)

�̃�2 (𝑞) = 𝐵2 (𝑞) + 𝐵3 (𝑞) + 𝐵4 (𝑞)

�̃�1 (𝑞) = 𝐵1 (𝑞) + 𝐵2 (𝑞) + 𝐵3 (𝑞) + 𝐵4 (𝑞) = 1.

(2.69)

The derivatives, �̃�′
𝑖
(𝑞) and �̃�′′

𝑖
(𝑞), are computed by differentiating ®𝑞:

𝐵′(𝑞) = 1

6

©«
−3 3 −1
0 −6 3

3 3 −3
0 0 1

ª®®®®®¬
©«
1

2𝑞

3𝑞2

ª®®®¬ , 𝐵′′(𝑞) = 1

6

©«
3 −1
−6 3

3 −3
0 1

ª®®®®®¬
(
2

6𝑞

)
, (2.70)

where we have removed the zero entries from ®𝑞′ and ®𝑞′′, and the corresponding columns from 𝐵.
With the spline joint, instead of control points 𝒄𝑖 ∈ R3, we have control frames C𝑖 ∈ SE(3). We use the cumulative

form, Eq. (2.68), but instead of subtracting to get the control point differences, we use the matrix logarithm to get the
control frame differences. Following Eq. (2.68), the joint matrix can be expressed using products of exponentials instead
of additions:

Q (q) = C1 exp
(
ΔC2�̃�2 (q)

)
exp

(
ΔC3�̃�3 (q)

)
exp

(
ΔC4�̃�4 (q)

)
, (2.71)

where the control frame differences are computed using logarithms: ΔC𝑖 = log(C−1
𝑖−1C𝑖 ).

The recursive method for computing the corresponding joint Jacobian, 𝑆 = [Q−1 (𝜕Q/𝜕q)], and Hessian, 𝜕𝑆/𝜕q, are
given in the appendix of the spline joints paper [Lee and Terzopoulos 2008], which we reproduce in Alg. 3 for reference.
Once we compute 𝜕𝑆/𝜕q, ¤𝑆 can be computed using the chain rule: ¤𝑆 = (𝜕𝑆/𝜕q) ¤q.

Algorithm 3 Cubic Spline Joint transform, Jacobian, and Hessian

1: Q = C1 exp(ΔC2�̃�2 (q))
2: 𝑆 = ΔC2�̃�

′
2
(q)

3: 𝜕𝑆/𝜕q = ΔC2�̃�
′′
2
(q)

4: for 𝑖 = 3, 4 do
5: Q𝑖 = exp(ΔC𝑖 �̃�𝑖 (q))
6: Q = QQ𝑖

7: Ad𝑖 = Ad(Q−1
𝑖

)
8: ad𝑖 = ad(𝑆)
9: 𝑆 = ΔC𝑖 �̃�

′
𝑖
(q) + Ad𝑖𝑆

10: 𝜕𝑆/𝜕q = ΔC𝑖 �̃�
′′
𝑖
(q) + Ad𝑖 (𝜕𝑆/𝜕q + ad𝑖ΔC𝑖 �̃�𝑖 (q))

11: end for

2.4.13 Spline Surface Joint. For the spline surface joint (called the multi-DOF spline joint by Lee and Terzopoulos
[2008]), we will again use uniform cubic B-splines, and we will limit ourselves to 𝑛 = 2, which means we have a tensor
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product surface:
𝑓 (𝐶,𝑞1, 𝑞2) = ®𝑞⊤1 𝐵

⊤𝐶𝐵®𝑞2, ®𝑞𝑖 =
(
1 𝑞𝑖 𝑞2

𝑖
𝑞3
𝑖

)⊤
, (2.72)

where 𝐵 is the spline basis matrix from Eq. (2.65), and 𝐶 is the 4 × 4 matrix of control values. The derivatives of the
tensor product surface are:

𝜕𝑓

𝜕𝑞1
= ®𝑞′⊤1 𝐵⊤𝐶𝐵®𝑞2,

𝜕𝑓

𝜕𝑞2
= ®𝑞⊤1 𝐵

⊤𝐶𝐵®𝑞′2, ®𝑞′𝑖 =
(
0 1 2𝑞𝑖 3𝑞2

𝑖

)⊤
𝜕2 𝑓

𝜕𝑞2
1

= ®𝑞′′⊤1 𝐵⊤𝐶𝐵®𝑞2,
𝜕2 𝑓

𝜕𝑞2
2

= ®𝑞⊤1 𝐵
⊤𝐶𝐵®𝑞′′2 ,

𝜕2 𝑓

𝜕𝑞1𝑞2
=

𝜕2 𝑓

𝜕𝑞2𝑞1
= ®𝑞′⊤1 𝐵⊤𝐶𝐵®𝑞′2, ®𝑞′′𝑖 =

(
0 0 2 6𝑞𝑖

)⊤
,

(2.73)

In the multi-DOF spline joint, Lee and Terzopoulos [2008] suggest using splines to process the 3 rotational and 3
translational degrees of freedom individually. They also suggest putting the translational basis in front of the rotational
basis, so that the resulting transformation matrix behaves more intuitively. (I.e., E = TR is more intuitive than E = RT,
because the translation values in T go directly into the last column of the E matrix rather than being rotated by R. The 6
basis vectors are then:

𝑒1 =

©«

0

0

0

1

0

0

ª®®®®®®®®®®¬
, 𝑒2 =

©«

0

0

0

0

1

0

ª®®®®®®®®®®¬
, 𝑒3 =

©«

0

0

0

0

0

1

ª®®®®®®®®®®¬
, 𝑒4 =

©«

1

0

0

0

0

0

ª®®®®®®®®®®¬
, 𝑒5 =

©«

0

1

0

0

0

0

ª®®®®®®®®®®¬
, 𝑒6 =

©«

0

0

1

0

0

0

ª®®®®®®®®®®¬
. (2.74)

The resulting transformation is a spline-weighted product of the matrix exponentials of these basis vectors:

Q (q) =
6∏

𝑘=1

exp (𝑒𝑘 𝑓 (𝐶𝑘 , q)) , (2.75)

where 𝐶𝑘 ∈ R4×4 is matrix of control values for the 𝑘𝑡ℎ basis. For example, 𝐶1 through 𝐶3 are the 𝑥 , 𝑦, and 𝑧 positions
of the 16 control frames. By multiplying the rotations together, the spline frame acts as XYZ Euler angles, and so Lee
and Terzopoulos [2008] warn against gimbal locks. This should not be a problem as long as the rotations are small
(< 𝜋/4).

The joint Jacobian, 𝑆 ∈ R6×2, and Hessian, 𝜕𝑆/𝜕q ∈ R6×2×2, can be computed recursively, as shown in Alg. 4. Once
we compute 𝜕𝑆/𝜕q, ¤𝑆 can be computed using the chain rule: ¤𝑆 = (𝜕𝑆/𝜕q) ¤q, which is a tensor product. In MATLAB
notation, this can be written as Sdot = dSdq(:,:,1)*qdot(1) + dSdq(:,:,2)*qdot(2).

2.5 Joint Stiffness and Damping

Adding joint stiffness and damping is much easier in reduced coordinates than in maximal coordinates. We’ll use linear
stiffness here, but non-linear stiffness can be implemented trivially. The joint torque due to the stiffness of the joint is

𝜏k = −𝐾q𝑟 , (2.76)

where 𝐾 is the scalar stiffness parameter. We assumed here that the rest state of the joint is at q𝑟 = 0, but again, it is
trivial to have other values. This joint torque goes into the appropriate rows of the reduced force, f𝑟 , which can simply
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Algorithm 4 Cubic Spline Surface Joint transform, Jacobian, and Hessian

1: Q = exp(𝑒1 𝑓 (𝐶1, q))
2: for 𝑖 = 1, 2 do
3: 𝑆𝑖 = 𝑒1𝜕𝑓𝑖 (C1, q) ⊲ 𝑆𝑖 ∈ R6 is the 𝑖𝑡ℎ column of 𝑆 ; 𝜕𝑓𝑖 =

𝜕𝑓
𝜕𝑞𝑖

4: for 𝑗 = 1, 2 do
5: 𝜕𝑆𝑖 𝑗 = 𝑒1𝜕

2𝑓𝑖 𝑗 (𝐶1, q) ⊲ 𝜕𝑆𝑖 𝑗 ∈ R6 is the (𝑖, 𝑗)𝑡ℎ column of 𝜕𝑆/𝜕q; 𝜕2𝑓𝑖 𝑗 = 𝜕2 𝑓
𝜕𝑞𝑖𝑞 𝑗

6: end for
7: end for
8: for 𝑘 = 2, · · · , 6 do
9: Q𝑘 = exp(𝑒𝑘 𝑓 (𝐶𝑘 , q))
10: Q = QQ𝑘

11: Ad𝑘 = Ad(Q−1
𝑘

)
12: for 𝑖 = 1, 2 do
13: ad𝑖 = ad(𝑆𝑖 )
14: 𝑆𝑖 = 𝑒𝑘 𝜕𝑓𝑖 (𝐶𝑘 , q) + Ad𝑘𝑆𝑖
15: for 𝑗 = 1, 2 do
16: 𝜕𝑆𝑖 𝑗 = 𝑒𝑘 𝜕

2𝑓𝑖 𝑗 (𝐶𝑘 , q) + Ad𝑘 (𝜕𝑆𝑖 𝑗 + ad𝑖𝑒𝑘 𝜕𝑓𝑗 (𝐶𝑘 , q))
17: end for
18: end for
19: end for

be added to the reduced equations of motion (Eq. (2.18)):(
J⊤𝑚𝑟M𝑚 J𝑚𝑟

)
¥q𝑟 = f𝑟 + J⊤𝑚𝑟

(
f𝑚 −M𝑚

¤J𝑚𝑟 ¤q𝑟
)
. (2.77)

Similarly, for joint damping, the torque is
𝜏d = −𝐷 ¤q𝑟 , (2.78)

where 𝐷 is the scalar damping parameter.
With linearly implicit Euler integration, we evaluate the force at the next time step by expanding around the current

time step [Baraff and Witkin 1998]. For the joint stiffness force, we get:

𝜏k
(𝑘+1) = 𝜏k (𝑘) +

𝜕𝜏k
𝜕q𝑟

(
q(𝑘+1)𝑟 − q(𝑘)𝑟

)
= 𝜏k

(𝑘) − 𝐾ℎ ¤q(𝑘+1)𝑟 ,

(2.79)

since ¤q(𝑘+1)𝑟 =

(
q(𝑘+1)𝑟 − q(𝑘)𝑟

)
/ℎ with implicit Euler. So with linearly implicit Euler, the joint stiffness force gets an

extra “implicit” term that goes on the left hand side. Similarly, for the joint damping force, we get:

𝜏d
(𝑘+1) = 𝜏d (𝑘) +

𝜕𝜏d
𝜕 ¤q𝑟

(
¤q(𝑘+1)𝑟 − ¤q(𝑘)𝑟

)
= 𝜏d

(𝑘) − 𝐷
(
¤q(𝑘+1)𝑟 − ¤q(𝑘)𝑟

)
= 𝜏d

(𝑘) − 𝐷 ¤q(𝑘+1)𝑟 − 𝜏d (𝑘)

= −𝐷 ¤q(𝑘+1)𝑟 .

(2.80)

So with linearly implicit Euler, the joint damping force gets an “implicit” term that goes on the left hand side, and
completely disappears from the right hand side. By moving all the factors of ¤q(𝑘+1)𝑟 from both forces to the right hand
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side, we get(
J⊤𝑚𝑟M𝑚 J𝑚𝑟 + ℎD𝑟 + ℎ2K𝑟

)
¤q(𝑘+1)𝑟 =

(
J⊤𝑚𝑟M𝑚 J𝑚𝑟

)
¤q(𝑘)𝑟 + ℎ

(
f (𝑘)𝑟 + J⊤𝑚𝑟

(
f (𝑘)𝑚 −M𝑚

¤J𝑚𝑟 ¤q
(𝑘)
𝑟

))
. (2.81)

For linear stiffness and linear damping (Eq. (2.76) & Eq. (2.78)),

K𝑟 = − 𝜕𝜏k
𝜕q𝑟

=

©«
𝐾1 0 0

0
. . . 0

0 0 𝐾𝑛

ª®®®¬ , D𝑟 = − 𝜕𝜏d
𝜕 ¤q𝑟

=

©«
𝐷1 0 0

0
. . . 0

0 0 𝐷𝑛

ª®®®¬ . (2.82)

(Note: sometimes people move the negative signs around to get
(
M + ℎD − ℎ2K

)
on the left hand side [Baraff andWitkin

1998].) In general, we can combine the linearly implicit terms for both reduced and maximal coordinates:(
J⊤𝑚𝑟

(
M𝑚 + ℎD𝑚 − ℎ2K𝑚

)
J𝑚𝑟 + ℎD𝑟 − ℎ2K𝑟

)
¤q(𝑘+1)𝑟 =

(
J⊤𝑚𝑟M𝑚 J𝑚𝑟

)
¤q(𝑘)𝑟 + ℎ

(
f (𝑘)𝑟 + J⊤𝑚𝑟

(
f (𝑘)𝑚 −M𝑚

¤J𝑚𝑟 ¤q
(𝑘)
𝑟

))
.

(2.83)

2.6 Hyper Reduced Coordinates

We can further reduce the degrees of freedom by chaining more Jacobians. For example, let’s say we have a chain of
rigid bodies connected by revolute joints, and we want the joint angle to be all the same. This can be accomplished
by adding constraints as shown in §2.8, but if we use a chained Jacobian, we end up with a single DOF system. The
reduced equation of motion from before, written out in full, is

J⊤𝑚𝑟 M𝑚 J𝑚𝑟 ¥q𝑟 = J⊤𝑚𝑟

(
f𝑚 −M𝑚

¤J𝑚𝑟 ¤q𝑟
)
, (2.84)

where q𝑟 contains all of the joint angles. We now want to apply another Jacobian, so that these joint angles become the
same. This can be expressed using the following relationship:

©«
¤\1
.
.
.

¤\𝑛

ª®®®¬ =

©«
1

.

.

.

1

ª®®®¬
¤\

¤q𝑟 = J𝑟r ¤qr,

(2.85)

where ¤qr represents the new (hyper) reduced coordinates. If we define

J𝑚r = J𝑚𝑟 J𝑟r, ¤J𝑚r = ¤J𝑚𝑟 J𝑟r + J𝑚𝑟
¤J𝑟r, (2.86)

then the hyper reduced equation of motion is

J⊤𝑚rM𝑚 J𝑚r ¥qr = J⊤𝑚r
(
f𝑚 −M𝑚

¤J𝑚r ¤qr
)
. (2.87)

In the following sections, we use lower cased subscripts (e.g., J𝑚𝑟 instead of J𝑚r) to slightly lighten the notation, but
with the understanding that the reduced coordinates can also be hyper reduced.

2.7 Adding Deformable Bodies

One of the strengths of the RedMax algorithm is the ease in which deformable objects (e.g., FEM) can be added. Without
loss of generality, we show how this can be done with a mass-spring system. Let a spring be defined by a sequence of
nodes connected in series, and let 𝒙 be the nodal positions. For each node, the kinetic energy and the gravitational
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potential energy can be expressed as

𝑇 =
1

2
𝑚 ¤𝒙⊤ ¤𝒙, 𝑉 = −𝑚𝒈⊤𝒙, (2.88)

where𝑚 is the mass of the node. This results in mass matrix𝑀 =𝑚𝐼 and gravity force f =𝑚𝒈. Between consecutive
nodes 𝒙0 and 𝒙1, the elastic potential energy can be expressed as

𝑉 =
𝐾

2
Y2

Y =
𝑙 − 𝐿
𝐿

𝑙 = ∥Δ𝒙 ∥

Δ𝒙 = 𝒙1 − 𝒙0,

(2.89)

where 𝐾 is the stiffness. The corresponding force is the negative gradient of the energy:

𝒇0 =
𝐾Y

𝐿

Δ𝒙

𝑙
, (2.90)

and 𝒇1 = −𝒇0. These quantities for all of the springs can be collected into a mass matrixM𝑠 and a force vector f𝑠 .
We can combine this with RedMax by modifying the Jacobian, whose job is to map reduced coordinates into maximal

coordinates. Let 𝒙 𝑓 and 𝒙𝑎 denote the “free” and “attached” vertices of the spring. To attach vertices to the rigid bodies,
we work in maximal coordinates. The world velocity of the attached vertex can be expressed as:

¤𝒙𝑎 = RΓ
(
𝑖𝒙𝑎

)
︸    ︷︷    ︸

𝐽𝑎𝑚

𝜙𝑖 , (2.91)

where R is the rotation matrix of the body, 𝑖𝒙𝑎 is the position of the attached vertex in body coordinates, and Γ ∈ R3×6

is the material Jacobian from Eq. (1.12). The time derivative of this Jacobian, 𝐽𝑎𝑚 , is:

¤𝐽𝑎𝑚 = R [𝝎𝑖 ] Γ. (2.92)

By collecting all attachment Jacobians into a single global matrix, we obtain J𝑎𝑚 , which transforms maximal velocities
of rigid bodies to velocities of attached vertices. Let q𝑓 and q𝑎 denote the concatenation of free and attached vertices.
Then we have:

©«
¤q𝑚
¤q𝑎
¤q𝑓

ª®®®¬ =

©«
J𝑚𝑟 0

J𝑎𝑚 J𝑚𝑟 0

0 𝐼

ª®®®¬
(
¤q𝑟
¤q𝑓

)

©«
¥q𝑚
¥q𝑎
¥q𝑓

ª®®®¬ =

©«
¤J𝑚𝑟 0

¤J𝑎𝑚 J𝑚𝑟 + J𝑎𝑚 ¤J𝑚𝑟 0

0 0

ª®®®¬
(
¤q𝑟
¤q𝑓

)
+

©«
J𝑚𝑟 0

J𝑎𝑚 J𝑚𝑟 0

0 𝐼

ª®®®¬
(
¥q𝑟
¥q𝑓

)
.

(2.93)

The equations above allow us to express the maximal degrees of freedom as a linear function of the reduced degrees of
freedom. By using an identity block to pass through the free vertices of the deformable bodies, we can use them as the
reduced DOFs but at the same time create maximal quantities (mass matrix, force vector, etc.) for them, without the
hassle of reduced coordinates. Let qm be the concatenation of the maximal degrees of freedom: q𝑚 , q𝑎 , and q𝑓 , and
let qr be the concatenation of the reduced degrees of freedom: q𝑟 and q𝑓 . Then defining Jmr and ¤Jmr appropriately,
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Eq. (2.93) can be expressed compactly as

¤qm = Jmr ¤qr
¥qm = ¤Jmr ¤qr + Jmr ¥qr .

(2.94)

We define the maximal mass matrix and the maximal force vector as

Mm =

©«
M𝑚 0 0

0 M𝑎 0

0 0 M𝑓

ª®®®¬ , fm =

©«
f𝑚
f𝑎
f 𝑓

ª®®®¬ , (2.95)

and the resulting reduced equation of motion is

J⊤mrMm Jmr ¥qr = J⊤mr
(
fm −Mm ¤Jmr ¤qr

)
, (2.96)

whereMr = J⊤mrMm Jmr and fr = J⊤mr
(
fm −Mm ¤Jmr ¤qr

)
are the reduced mass matrix and force vector, respectively. In

the following sections, we use lower cased subscripts (e.g., J𝑚𝑟 instead of Jmr) to slightly lighten the notation, but it is
important to note that “reduced coordinates” can mean rigid bodies with or without an attached deformable bodies.

2.8 Adding Constraints

The Jacobian-based dynamics (Eq. (2.18)) and recursive forward dynamics [Featherstone 1983; Kim 2012; Park et al.
1995] need constraints to support closed loops. These “loop-closing” constraints are implemented in a similar fashion as
the joints in maximal coordinate dynamics (§1.10). We’re looking for G such that GΦ = 0.

For example, let’s consider forming a four-bar linkage by adding a loop-closing constraint to a system composed of
four bodies in a series. The last body will be attached to the first body using a constraint. The world velocities of these
two bodies, 𝐵 and 𝐴, are

0 ¤𝒙𝐴 = 0
𝐴R Γ(𝐴𝒙𝐴) 𝐴𝜙𝐴, 0 ¤𝒙𝐵 = 0

𝐵R Γ(𝐵𝒙𝐵) 𝐵𝜙𝐵, (2.97)

where 𝐴𝒙𝐴 and 𝐵𝒙𝐵 are the positions of the constrained point expressed in 𝐴 and 𝐵, respectively. We want these two
velocities to be equal. We must be careful though, because if we simply form a constraint by equating these two, we
get a singular system. To see why, consider the number of degrees of freedom and constraints in the system. Before
adding the loop-closing constraint, the four-bar linkage has 3 degrees of freedom. If we add a 3-dimensional constraint,
how many actual degrees of freedom are we left with? What would happen if we apply this 3D constraint is that
we get a singular matrix with a 1D nullspace that corresponds to the actual, single degree of freedom of a four-bar
linkage. Resolving this numerically is rather expensive, but fortunately there is a trivial way to get rid of this nullspace
beforehand. If we look at the axis of rotation of the joint attached to 𝐴, we can obtain the two directions orthonormal to
𝐴’s hinge axis. (𝐵 would work just as well.) Let 0𝒂 be the axis of rotation in world space. We can create two directions
orthonormal to 0𝒂 as follows (dropping the superscript for brevity).

𝒗1 = (1 0 0)⊤ // put 1 in the location with the smallest element in abs(𝒂)

𝒗2 =
𝒂 × 𝒗1
∥𝒂 × 𝒗1∥

𝒗1 =
𝒗2 × 𝒂

∥𝒗2 × 𝒂∥ .

(2.98)
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Then 0𝒗1 and 0𝒗2 are both vectors in world space orthogonal to 0𝒂 and to each other. The constraint we want is that
the relative velocity must be equal along these two directions.(

0𝒗⊤
1

0𝒗⊤
2

) (
0
𝐴
R Γ(𝐴𝒙𝐴) − 0

𝐵
R Γ(𝐵𝒙𝐵)

)
︸                                          ︷︷                                          ︸

G𝑚

(
𝐴𝜙𝐴
𝐵𝜙𝐵

)
︸ ︷︷ ︸

¤q𝑚

=

(
0

0

)
. (2.99)

If we are working at the acceleration level, we need to take the time derivative, like we did for the Jacobian in Eq. (2.2).
The constraint on the acceleration is

G𝑚 ¤q𝑚 = 0 → ¤G𝑚 ¤q𝑚 + G𝑚 ¥q𝑚 = 0. (2.100)

For the G𝑚 in Eq. (2.99), the only factors that depend on time are the two rotation matrices. Taking their time derivative
as in Eq. (1.9),

¤G𝑚 =

(
0𝒗⊤

1
0𝒗⊤

2

) (
0
𝐴
R [𝐴𝝎𝐴] Γ(𝐴𝒙𝐴) − 0

𝐵
R [𝐵𝝎𝐵] Γ(𝐵𝒙𝐵)

)
. (2.101)

G𝑚 and ¤G𝑚 are both 2 × 12, and they get placed into global constraint matrices as discussed in §1.10. To apply these
constraints, we form a KKT system as in Eq. (1.73). Because the constraint is being applied on the maximal coordinates,
¤q𝑚 , we must right-multiply the constraints by J𝑚𝑟 first to convert them to reduced coordinates. The constrained
dynamics equation is then (

M𝑟 J⊤𝑚𝑟 G
⊤
𝑚

G𝑚 J𝑚𝑟 0

) (
¥q𝑟
_

)
=

(
f𝑟

−
( ¤G𝑚 J𝑚𝑟 + G𝑚

¤J𝑚𝑟

)
¤q𝑟

)
. (2.102)

If, instead, we are working at the velocity level, the constraint is G𝑚J𝑚𝑟 ¤q𝑟 = 0, and so we get(
M𝑟 J⊤𝑚𝑟 G

⊤
𝑚

G𝑚 J𝑚𝑟 0

) (
¤q(𝑘+1)𝑟

_

)
=

(
M𝑟 ¤q(𝑘)𝑟 + ℎf𝑟 (𝑘)

0

)
. (2.103)

If, instead, the constraint applies directly to the reduced coordinates rather than maximal coordinates, then the KKT
system does not need the J𝑚𝑟 factors in the constraints. At the acceleration level,(

M𝑟 G⊤
𝑟

G𝑟 0

) (
¥q𝑟
_

)
=

(
f𝑟

− ¤G𝑟 ¤q𝑟

)
, (2.104)

and at the velocity level, (
M𝑟 G⊤

𝑟

G𝑟 0

) (
¤q(𝑘+1)𝑟

_

)
=

(
M𝑟 ¤q(𝑘)𝑟 + ℎf𝑟 (𝑘)

0

)
. (2.105)

Sometimes we may want both types of constraints: those acting on maximal coordinates, and those acting on reduced
coordinates. Then substituting

Ḡ𝑟 =

(
G𝑟

G𝑚 J𝑚𝑟

)
, ¤̄G𝑟 =

(
¤G𝑟

¤G𝑚 J𝑚𝑟 + G𝑚
¤J𝑚𝑟

)
(2.106)

into Eq. (2.104) will automatically apply both types of constraints. When expanded out, the expression turns into:

©«
M𝑟 G⊤

𝑟 J⊤𝑚𝑟 G
⊤
𝑚

G𝑟 0 0

G𝑚 J𝑚𝑟 0 0

ª®®®¬
©«
¥q𝑟
_𝑟

_𝑚

ª®®®¬ =

©«
f𝑟

− ¤G𝑟 ¤q𝑟
−

( ¤G𝑚 J𝑚𝑟 + G𝑚
¤J𝑚𝑟

)
¤q𝑟

ª®®®¬ . (2.107)
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Quadratic programs for inequality constraints can be constructed similarly. In the most general case, we have
inequality and equality constraints on both maximal and reduced coordinates, represented by constraint matrices C𝑚 ,
C𝑟 , G𝑚 , and G𝑟 , respectively. In addition to Eq. (2.106) and let

C̄𝑟 =

(
C𝑟

C𝑚 J𝑚𝑟

)
, ¤̄C𝑟 =

(
¤C𝑟

¤C𝑚 J𝑚𝑟 + C𝑚 ¤J𝑚𝑟

)
. (2.108)

Then the resulting quadratic program is

minimize
¥q𝑟

1

2
¥q⊤𝑟 M𝑟 ¥q𝑟 − ¥q⊤𝑟 f𝑟

subject to C̄𝑟 ¥q𝑟 ≥ − ¤̄C𝑟 ¤q𝑟
Ḡ𝑟 ¥q𝑟 = − ¤̄G𝑟 ¤q𝑟 .

(2.109)

2.9 Hybrid Dynamics

In forward dynamics, we compute the accelerations given the forces, and in inverse dynamics, we compute the forces
given the accelerations. In the RedMax formulation, it is easy to mix these two into “hybrid” dynamics. Let 𝑝 indicate the
subset of joints whose motion are prescribed. Then we can apply an equality constraint on the prescribed accelerations:
𝑝G𝑟 ¥q𝑟 = 𝑝 ¥q𝑟 , where 𝑝G𝑟 contains the identity matrix in the appropriate columns so that the prescribed joints will be
affected (note 𝑝 ¤G𝑟 = 0). The KKT system is then(

M𝑟 Ḡ⊤
𝑟

Ḡ𝑟 0

) (
¥q𝑟
_

)
=

(
f𝑟

𝑝 ¥q𝑟 − ¤̄G𝑟 ¤q𝑟

)
, (2.110)

where we have included the − ¤̄G𝑟 ¤q𝑟 term since other constraints may have non-zero ¤̄G𝑟 . The required joint torques can
be computed with the resulting Lagrange multiplier: 𝑝𝜏 = 𝑝G⊤

𝑟
𝑝_, where 𝑝G𝑟 and 𝑝_ are the appropriate rows and

columns of G𝑟 and _, respectively. At the velocity level,(
M𝑟 Ḡ⊤

𝑟

Ḡ𝑟 0

) (
¤q(𝑘+1)𝑟

_

)
=

(
M𝑟 ¤q(𝑘)𝑟 + ℎf𝑟 (𝑘)

ℎ 𝑝 ¥q𝑟 + 𝑝G𝑟 ¤q(𝑘)𝑟

)
. (2.111)

The 2nd row of the KKT system, Ḡ𝑟 ¤q𝑟 = ℎ 𝑝 ¥q𝑟 + 𝑝G𝑟 ¤q(𝑘)𝑟 , contains an extra term on the right hand side because the
joint acceleration, rather than velocity, is being prescribed. It is also possible to prescribe the velocity by replacing the
2nd row with 𝑝G𝑟 ¤q𝑟 = 𝑝 ¤q𝑟 .

2.10 Jacobian Products

Forming the Jacobian is 𝑂 (𝑛2), but computing the products y = Jx, z = ¤Jx, and x = J⊤y can all be done in 𝑂 (𝑛). This is
useful for obtaining linear time recursive hybrid dynamics with constraints. Here, 𝑗 refers to joint frame, 𝑝 refers to the
parent of 𝑗 , 𝑐 refers to a child of 𝑗 , and 𝑖 refers to the body owned by 𝑗 . Forward traversal starts from the root, and
backward traversal starts from a leaf. In forward traversal, the parent is processed before its children, and in backward
traversal, all children are processed before their parent.
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Recall the structure of the Jacobian, as we saw in Eq. (2.14):

©«
𝑦1

𝑦2

𝑦3

ª®®®¬ =

©«
1
𝐽1
Ad𝑆 0 0

2
1
Ad 1

𝐽1
Ad𝑆 2

𝐽2
Ad𝑆 0

3
2
Ad 2

1
Ad 1

𝐽1
Ad𝑆 3

2
Ad 2

𝐽2
Ad𝑆 3

𝐽3
Ad𝑆

ª®®®¬
©«
𝑥1

𝑥2

𝑥3

ª®®®¬ . (2.112)

Given this triangular structure, to compute y = Jx, we start with the top row: 𝑦1 = 1
𝐽1
Ad𝑆 𝑥1. For the 2nd row, note that

the parent (i.e., row 1) already computed a subexpression that we need, and so 𝑦2 = 2
1
Ad𝑦1 + 2

𝐽2
Ad𝑆 𝑥2. For the 3rd row,

note again that we have already computed much of the subexpression, since

𝑦3 = 3
2Ad

2
1Ad

1
𝐽1
Ad𝑆 𝑥1 + 3

2Ad
2
𝐽2
Ad𝑆 𝑥2 + 3

𝐽3
Ad𝑆 𝑥3

= 3
2Ad

(
2
1Ad

1
𝐽1
Ad𝑆 𝑥1 + 2

𝐽2
Ad𝑆 𝑥2

)
+ 3

𝐽3
Ad𝑆 𝑥3

= 3
2Ad

(
2
1Ad𝑦1 +

2
𝐽2
Ad𝑆 𝑥2

)
+ 3

𝐽3
Ad𝑆 𝑥3

= 3
2Ad𝑦2 +

3
𝐽3
Ad𝑆 𝑥3 .

(2.113)

So the recursive expression is 𝑦𝑖 = 𝑖
𝑝Ad𝑦𝑝 + 𝑖

𝑗
Ad𝑆 𝑥 𝑗 . (Keep in mind that 𝑖 and 𝑗 are almost interchangeable. For each

joint 𝑗 , there is a corresponding body 𝑖 , and vice-versa.) For a general tree structure, we need to do a forward traversal
starting from the root, so that the parents are processed before their children. The resulting algorithm is shown in
Alg. 5.

Algorithm 5 Compute products 𝑦 = J𝑥 and 𝑧 = ¤J𝑥
1: while forward traversal do
2: 𝑦 (𝑖) = 𝑖

𝑗
Ad 𝑆 𝑥 ( 𝑗)

3: 𝑧 (𝑖) = 𝑖
𝑗
Ad ¤𝑆 𝑥 ( 𝑗)

4: if parent != null then
5: 𝑦 (𝑖) += 𝑖

𝑝Ad𝑦 (𝑝)
6: 𝑧 (𝑖) += 𝑖

𝑝Ad 𝑧 (𝑝) + 𝑖
𝑝
¤Ad𝑦 (𝑝)

7: end if
8: end while

Computing the product with the Jacobian transpose is slightly more involved.

©«
𝑥1

𝑥2

𝑥3

𝑥4

ª®®®®®¬
=

©«
1
𝐽1
Ad⊤

𝑆
1
𝐽1
Ad⊤

𝑆
2
1
Ad⊤ 1

𝐽1
Ad⊤

𝑆
2
1
Ad⊤ 3

2
Ad⊤ 1

𝐽1
Ad⊤

𝑆
2
1
Ad⊤ 3

2
Ad⊤ 4

3
Ad⊤

0 2
𝐽2
Ad⊤

𝑆
2
𝐽2
Ad⊤

𝑆
3
2
Ad⊤ 2

𝐽2
Ad⊤

𝑆
3
2
Ad⊤ 4

3
Ad⊤

0 0 3
𝐽3
Ad⊤

𝑆
3
𝐽3
Ad⊤

𝑆
4
3
Ad⊤

0 0 0 4
𝐽4
Ad⊤

𝑆

ª®®®®®®¬
©«
𝑦1

𝑦2

𝑦3

𝑦4

ª®®®®®¬
. (2.114)

2019-10-28 14:51. Page 42 of 1–51.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

Rigid Body Dynamics Notes 43

Given this upper triangular structure, we start at the bottom and go up (i.e., backward traversal from leaf to root).

𝑥4 = 4
𝐽4
Ad⊤𝑆 𝑦4

𝑥3 = 3
𝐽3
Ad⊤𝑆 𝑦3 +

3
𝐽3
Ad⊤𝑆

4
3Ad

⊤𝑦4

= 3
𝐽3
Ad⊤𝑆

(
𝑦3 + 4

3Ad
⊤𝑦4

)
𝑥2 = 2

𝐽2
Ad⊤𝑆 𝑦2 +

2
𝐽2
Ad⊤𝑆

3
2Ad

⊤𝑦3 + 2
𝐽2
Ad⊤𝑆

3
2Ad

⊤ 4
3Ad

⊤𝑦4

= 2
𝐽2
Ad⊤𝑆

(
𝑦2 +

(
3
2Ad

⊤𝑦3 + 4
3Ad

⊤𝑦4
))

𝑥1 = 1
𝐽1
Ad⊤𝑆 𝑦1 +

1
𝐽1
Ad⊤𝑆

2
1Ad

⊤𝑦2 + 1
𝐽1
Ad⊤𝑆

2
1Ad

⊤ 3
2Ad

⊤𝑦3 + 1
𝐽1
Ad⊤𝑆

2
1Ad

⊤ 3
2Ad

⊤ 4
3Ad

⊤𝑦4

= 1
𝐽1
Ad⊤𝑆

(
𝑦1 +

(
2
1Ad

⊤𝑦2 +
(
3
2Ad

⊤𝑦3 + 4
3Ad

⊤𝑦4
)))

.

(2.115)

This can be expressed recursively using a temporary variable 𝛼 , stored for each joint:

𝑥4 = 4
𝐽4
Ad⊤𝑆 (𝑦4 + 0) , 𝛼4 = 4

3Ad
⊤ (𝑦4 + 0)

𝑥3 = 3
𝐽3
Ad⊤𝑆 (𝑦3 + 𝛼4) , 𝛼3 = 3

2Ad
⊤ (𝑦3 + 𝛼4)

𝑥2 = 2
𝐽2
Ad⊤𝑆 (𝑦2 + 𝛼3) , 𝛼2 = 2

1Ad
⊤ (𝑦2 + 𝛼3)

𝑥1 = 1
𝐽1
Ad⊤𝑆 (𝑦1 + 𝛼2) , 𝛼1 = ∅.

(2.116)

This is implemented in Alg. 6.

Algorithm 6 Compute product 𝑥 = J⊤𝑦

1: while backward traversal do
2: 𝑦𝑖 = 𝑦 (𝑖)
3: for all children 𝑐 do
4: 𝑦𝑖 += 𝛼𝑐 ⊲ 𝛼 is a temporary variable stored by each joint
5: end for
6: 𝛼𝑖 =

𝑖
𝑝Ad

⊤𝑦𝑖 ⊲ to be used by 𝑖’s parent later
7: 𝑥 ( 𝑗) = 𝑆⊤ 𝑖

𝑗
Ad⊤ 𝑦𝑖

8: end while

2.11 Bilateral Staggered Projections

The original Staggered Projections (SP) algorithm was developed for solids undergoing unilateral contact constraints
with friction [Kaufman et al. 2008]. SP is shown in Alg. 7, slightly modified to match our notation. Since SP was designed
for maximal rigid bodies, we remove the𝑚 and 𝑟 (maximal & reduced) subscripts for clarity. There are two quadratic
programs (QP) that are solved iteratively: contact and friction. Let ¤qunc = ¤qprev + ℎM−1f be the unconstrained velocity.
The contact QP can then be written as:

minimize
𝛼

1

2
𝛼⊤NM−1N⊤𝛼 − 𝛼⊤N( ¤qunc + ℎM−1f𝛽 )

subject to 𝛼 ≥ 0,

(2.117)

where 𝛼 is the contact impulse,N is the contact normal matrix,M is the maximal mass matrix, f is the maximal force, and
f𝛽 is the frictional force, which is initially zero. After solving for 𝛼 , we can compute the contact force as f𝛼 = −N⊤𝛼/ℎ.
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The frictional QP is:

minimize
𝛽

1

2
𝛽⊤TM−1T⊤𝛽 − 𝛽⊤T( ¤qunc + ℎM−1f𝛼 )

subject to − `𝛼 ≤ 𝛽 ≤ `𝛼,

(2.118)

where 𝛽 is the frictional impulse, T is the contact tangent matrix, and ` ≥ 0 is the coefficient of friction. The box
constraints can only accommodate a four-sided friction cone—if needed, we can rewrite this constraint to give us a
better approximation or switch to a quadratically constrained quadratic program. After solving for 𝛽 , we can compute
the frictional force as f𝛽 = −T⊤𝛽/ℎ. In most simulations, the convergence rate can be improved by caching the frictional
force, f𝛽 , and warm-starting SP with this cached value at every time step.

Algorithm 7 Staggered Projections
1: Fill mass matrix M
2: f𝛽 = 0

3: while simulating do
4: Fill force vector f
5: Fill contact normal matrix N
6: Fill contact tangent matrix T
7: f0𝛼 = 0

8: ¤qunc = ¤qprev + ℎM−1f
9: while true do
10: // CONTACT
11: Solve contact QP (2.117) for 𝛼
12: f𝛼 = −N⊤𝛼/ℎ
13: // CONVERGENCE CHECK
14: if ∥f𝛼 − f0𝛼 ∥M−1 ≤ 𝜖 or max iterations then
15: break
16: end if
17: f0𝛼 = f𝛼
18: // FRICTION
19: Solve friction QP (2.118) for 𝛽
20: f𝛽 = −T⊤𝛽/ℎ
21: end while
22: ¤q = ¤qprev + ℎM−1 (f + f𝛼 + f𝛽 )
23: end while

We can extend SP by taking advantage of the bilateral constraints present in articulated rigid body dynamics. The
resulting algorithm, which we call Bilateral Staggered Projections (BISP), is an order of magnitude faster than SP and
can also be combined with SP for handling external frictional contacts, such as between a body and the environment
[to be confirmed].

The first advantage with bilateral contacts is that we do not need collision detection. With BISP, for each joint type
(e.g., revolute, spherical, prismatic), we use implicit contacts at pre-determined positions around the joint. For example,
for a revolute joint, we assume that the joint geometry is a cylinder, and we populate the two ends of the cylinder with
contact points. By changing the parameters of this cylinder, we get different frictional effects.

In reduced coordinates, we do not need a contact QP, since the reduced equations of motion automatically give us
reduced velocities that satisfy the joint constraints. For frictional contact, however, we need access to the Lagrange
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multipliers of the contact constraints. In BISP, we compute these multipliers by first solving for the equivalent constraint
forces that would produce the same constrained motion as the one generated by reduced coordinates. This can be done
by comparing the velocity generated by the reduced solve against the velocity generated by an unconstrained solve. In
other words, we can rearrange the constrained equations of motion to solve for the constraint forces:

M¤q + N⊤𝛼 = M¤qprev + ℎf

¤q︸︷︷︸
¤qcon

+M−1N⊤𝛼 = ¤qprev + ℎM−1f︸            ︷︷            ︸
¤qunc

. (2.119)

The right hand side is the unconstrained velocity, obtained by ignoring the constraint force. The first term on the left
hand side is the solution to the constrained equations of motion, which we call ¤qcon to be explicit. We can rearrange the
second term on the left hand side to obtain the expression for the constraint force, f𝛼 = −N⊤𝛼/ℎ:

M−1N⊤𝛼 = ¤qunc − ¤qcon

N⊤𝛼 = M
(
¤qunc − ¤qcon

)
f𝛼 =

1

ℎ
M

(
¤qcon − ¤qunc

)
.

(2.120)

With BISP, the contact solve is replaced by a reduced solve. As shown in Eq. (2.120), we can compute the constraint
force, f𝛼 , by comparing the constrained velocity to the unconstrained velocity. Also, as in SP, the current friction force
must be taken into account when computing the constrained and unconstrained velocities. In the equations below,
since we now must differentiate between reduced and maximal coordinates, we add back the subscripts𝑚 and 𝑟 . (The
contact and friction forces, f𝛼 and f𝛽 , are maximal quantities.)

¤qunc𝛽𝑚 = J𝑚𝑟 ¤q
prev
𝑟 + ℎM−1

𝑚

(
f𝑚 + f𝛽

)
¤qcon𝛽𝑚 = J𝑚𝑟

(
¤qprev𝑟 + ℎM−1

𝑟

(
J⊤𝑚𝑟

(
f𝑚 + f𝛽 −M𝑚

¤J𝑚𝑟 ¤q
prev
𝑟

)))
f𝛼 =

1

ℎ
M𝑚

(
¤qcon𝛽𝑚 − ¤qunc𝛽𝑚

)
.

(2.121)

The computed constraint force, f𝛼 , is a global force vector that accounts for all joint reaction forces. Therefore, if
we extract a portion of f𝛼 corresponding to a single body, what we obtain is the sum of all the joint reaction forces
acting on that body. To compute the Lagrange multipliers for joint contacts, we first need to isolate the joint reaction
force from this sum. Fortunately, this can be done in a linear fashion by traversing the joints backward from the leaf.
(Reminder: assuming there are no cycles, there is a one-to-one mapping between joints and bodies. Each body owns a
joint that connects the body to the parent body.) For a leaf body, there is only one joint acting on it, and so the portion
of f𝛼 is exactly the required joint reaction force. Since this joint reaction force exerts an equal and opposite force on the
parent of the leaf, we must subtract this force from the parent’s portion of f𝛼 before continuing the backward traversal.
As long as we process all the children before the parent, when we process a body, its portion of f𝛼 will be exactly the
required joint reaction force. While processing a body, before subtracting the equal and opposite force from the parent,
we must first transform the force with the adjoint transpose to the parent’s frame.

Once we have the joint reaction forces distributed to each joint, we can compute the contact Lagrange multipliers
that generate the joint reaction force. This can be done in parallel, since these are local operations performed for each

2019-10-28 14:51. Page 45 of 1–51.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

46 Sueda

Algorithm 8 Bilateral Staggered Projections
1: Fill mass matrix M
2: f𝛽 = 0

3: while simulating do
4: Fill force vector f
5: Fill contact normal matrix N
6: Fill contact tangent matrix T
7: f0𝛼 = 0

8: while true do
9: // CONTACT
10: Evaluate (2.121) for f𝛼
11: while backward traversal do
12: Distribute f𝛼 to joint
13: end while
14: while parallel traversal do
15: Locally solve (2.122) for 𝛼
16: end while
17: // CONVERGENCE CHECK
18: if ∥f𝛼 − f0𝛼 ∥M−1 ≤ 𝜖 or max iterations then
19: break
20: end if
21: f0𝛼 = f𝛼
22: // FRICTION
23: Solve friction QP (2.118) for 𝛽
24: f𝛽 = −T⊤𝛽/ℎ
25: end while
26: ¤q𝑟 = ¤qprev𝑟 + ℎM−1

𝑟 (f𝑟 + J⊤𝑚𝑟 (f𝛼 + f𝛽 ))
27: end while

joint independently of each other. For each joint, we solve the following linear system:

𝛼 = ℎ

(
N𝑖M−1

𝑖 N⊤
𝑖 + 𝜖𝐼

)−1 (
N𝑖M−1

𝑖 f𝛼𝑖
)
, (2.122)

where the subscript 𝑖 indicates the blocks corresponding to the 𝑖𝑡ℎ joint. We do not require 𝛼 to be positive, since these
“contact” constraints are bilateral—they cannot come apart. The regularization term ensures that we obtain the smallest
contact impulses. This is critical because otherwise the joint can become arbitrarily tight. For instance, for a revolute
joint, setting 𝛼 = 1000 for all contacts will generate the same effective constraint as setting 𝛼 = 0.1.

After the contact impulses, 𝛼 , are computed, the convergence check and the friction solve are the same as in SP.

2.11.1 BISP with External Constraints. BISP can also take into account external constraints, such as loop-closing
(bilateral) constraints or frictional contact (unilateral) constraints with the environment. BISP (Alg. 8) is modified as
follows to take into account these additional constraints.

• Line 10: To compute the contact force, both the unconstrained and constrained velocities must take into account
the additional external constraints. The unconstrained velocity is obtained by solving a maximal system with only
the external constraints, ignoring the implicit constraints exerted by the joints. The corresponding constrained
velocity is obtained by solving a reduced system with the external constraint. The difference between these
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velocities will give us the joint reaction forces. Thus, instead of Eq. (2.121), we evaluate the following:

¤qunc𝛽𝑚 = argmin
¤q𝑚

1

2
¤q⊤𝑚M𝑚 ¤q𝑚 − ¤q⊤𝑚

(
M𝑚J𝑚𝑟 ¤q

prev
𝑟 + ℎ

(
f𝑚 + f𝛽

))
subject to G𝑚 ¤q𝑚 = 0

C𝑚 ¤q𝑚 ≥ 0,

¤qcon𝛽𝑚 = argmin
¤q𝑟

1

2
¤q⊤𝑟 M𝑟 ¤q𝑟 − ¤q⊤𝑟

(
M𝑟 ¤qprev𝑟 + ℎ J⊤𝑚𝑟

(
f𝑚 + f𝛽 −M𝑚

¤J𝑚𝑟 ¤q
prev
𝑟

))
subject to G𝑚J𝑚𝑟 ¤q𝑟 = 0

C𝑚J𝑚𝑟 ¤q𝑟 ≥ 0,

f𝛼 =
1

ℎ
M𝑚

(
J𝑚𝑟 ¤q

con𝛽
𝑟 − ¤qunc𝛽𝑚

)
.

(2.123)

The loop-closing constraint reaction forces are computed as f_ = −J⊤𝑚𝑟G
⊤
𝑚_/ℎ, where _ is the vector of Lagrange

multipliers corresponding to the loop-closing constraints, G𝑚J𝑚𝑟 ¤q𝑟 = 0, from the minimization for ¤qcon𝛽𝑚 .
• Line 15: We need to compute the contact forces due to the loop-closing constraints, by again solving a small
linear system (2.122). These small linear systems are solved for each joint and for each loop-closing constraint.

• Line 26: To compute the final velocity, we solve a quadratic program that takes into account the external
constraints:

minimize
¤q𝑟

1

2
¤q⊤𝑟 M𝑟 ¤q𝑟 − ¤q⊤𝑟

(
M𝑟 ¤qprev𝑟 + ℎ J⊤𝑚𝑟

(
f𝑚 + f𝛼 + f𝛽 −M𝑚

¤J𝑚𝑟 ¤q
prev
𝑟

))
subject to G𝑚J𝑚𝑟 ¤q𝑟 = 0

C𝑚J𝑚𝑟 ¤q𝑟 ≥ 0.

(2.124)

2.12 Recursive Hybrid Dynamics

Just for reference, we duplicate here the recursive hybrid dynamics algorithm by Kim and Pollard [2011] and Kim
[2012], with minor notational changes. Here, 𝑗 refers to joint frame, 𝑝 refers to the parent of 𝑗 , 𝑐 refers to a child of 𝑗 ,
and 𝑖 refers to the body owned by 𝑗 .

List of symbols:

• q𝑗 , ¤q𝑗 , ¥q𝑗 ∈ R𝑛 𝑗 : generalized position, velocity, acceleration of the joint.
• 𝜏 𝑗 ∈ R𝑛 𝑗 : torque (or generalized force) on joint.
• 𝑝

𝑗
E ∈ SE(3): Transformation matrix from 𝑝 to 𝑗 , a function of q𝑗 . E.g., see Eq. (2.5) and Eq. (2.31).

• 𝑆 𝑗 =
(
𝑝

𝑗
E−1

𝑑
𝑝

𝑗
E

𝑑q1
· · · 𝑝

𝑗
E−1

𝑑
𝑝

𝑗
E

𝑑q𝑛𝑗

)
∈ R6×𝑛 𝑗 : Jacobian of 𝑝

𝑗
E, viewed in 𝑗 . E.g., see Eq. (2.5) and Eq. (2.34).

• V𝑗 ∈ se(3): twist at the joint. The twist at the body center is 𝑖𝜙𝑖 = 𝑖
𝑗
AdV𝑗 and vice-versa.

• ¤V𝑗 ∈ se(3): Component-wise time derivative of V𝑗 .
• M𝑗 ∈ R6×6: Body inertia at the joint. Since the joint is not at the body center, it is not diagonal. It can be
calculated from body-centered inertia asM𝑗 =

𝑖
𝑗
Ad⊤M𝑖

𝑖
𝑗
Ad.

• F𝑗 ∈ dse(3): Generalized force acting on the joint due to the connection to the parent, viewed in 𝑗 . (dse(3) is the
space of generalized forces acting on SE(3))
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• Fext
𝑗

∈ dse(3): Generalized external force viewed in 𝑖 . Gravity can be calculated as Fext
𝑗

= 𝑖
𝑗
Ad⊤ Fgrav

𝑖
, where Fgrav

𝑖

is the force of gravity acting on the body center. (It has zeros in the top three rows and𝑚𝒈 in the bottom three
rows.)

Algorithm 9 Recursive Hybrid Dynamics

1: while forward traversal do
2:

𝑝

𝑗
E = function of q𝑗

3: V𝑗 =
𝑗
𝑝AdV𝑝 + 𝑆 𝑗 ¤q𝑗

4: [ 𝑗 = ad(V𝑗 ) 𝑆 𝑗 ¤q𝑗 + ¤𝑆 𝑗 ¤q𝑗
5: end while
6: while backward traversal do
7: M̂𝑗 = M𝑗 +

∑
𝑐
𝑐
𝑗
Ad⊤ Π𝑐

𝑐
𝑗
Ad

8: B̂𝑗 = −ad(V𝑗 )⊤M𝑗V𝑗 − Fext
𝑗

+ ∑
𝑐
𝑐
𝑗
Ad⊤ 𝛽𝑐

9: if prescribed acceleration then
10: Π 𝑗 = M̂𝑗

11: 𝛽 𝑗 = B̂𝑗 + M̂𝑗

(
[ 𝑗 + 𝑆 𝑗 ¥q𝑗

)
12: else
13: Ψ𝑗 = (𝑆⊤

𝑗
M̂𝑗𝑆 𝑗 )−1

14: Π 𝑗 = M̂𝑗 − M̂𝑗𝑆 𝑗Ψ𝑗𝑆
⊤
𝑗
M̂𝑗

15: 𝛽 𝑗 = B̂𝑗 + M̂𝑗

(
[ 𝑗 + 𝑆 𝑗Ψ𝑗

(
𝜏 𝑗 − 𝑆⊤𝑗

(
M̂𝑗[ 𝑗 + B̂𝑗

)))
16: end if
17: end while
18: while forward traversal do
19: if prescribed acceleration then
20: ¤V𝑗 =

𝑗
𝑝Ad ¤V𝑝 + 𝑆 𝑗 ¥q𝑗 + [ 𝑗

21: F𝑗 = M̂𝑗
¤V𝑗 + B̂𝑗

22: 𝜏 𝑗 = 𝑆
⊤
𝑗
F𝑗

23: else
24: ¥q𝑗 = Ψ𝑗

(
𝜏 𝑗 − 𝑆⊤𝑗 M̂𝑗

(
𝑗
𝑝Ad ¤V𝑝 + [ 𝑗

)
− 𝑆⊤

𝑗
B̂𝑗

)
25: ¤V𝑗 =

𝑗
𝑝Ad ¤V𝑝 + 𝑆 𝑗 ¥q𝑗 + [ 𝑗

26: F𝑗 = M̂𝑗
¤V𝑗 + B̂𝑗

27: end if
28: end while

The Recursive Hybrid Dynamics algorithm can also be used with constraints. Let the equality and inequality
constraints be (as before)

Ḡ𝑟 =

(
G𝑟

G𝑚 J𝑚𝑟

)
, ¤̄G𝑟 =

(
¤G𝑟

¤G𝑚 J𝑚𝑟 + G𝑚
¤J𝑚𝑟

)
, C̄𝑟 =

(
C𝑟

C𝑚 J𝑚𝑟

)
, ¤̄C𝑟 =

(
¤C𝑟

¤C𝑚 J𝑚𝑟 + C𝑚 ¤J𝑚𝑟

)
. (2.125)

Then we can solve the dual problem [Boyd and Vandenberghe 2004] using the fact that the Recursive Hybrid Dynamics
algorithm can be used to “invert” or “solve using” the reduced mass matrix. The basic idea is to solve the unconstrained
problem first and then to compute the constrained forces required to fix the constraint violations. The computed
constrained forces can then be reapplied to obtain the final accelerations that produces feasible motion.
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We will first assume that we only have equality constraints. Let ¥q∗𝑟 be the unconstrained accelerations obtained by
ignoring the constraints. The primal problem to compute the change in acceleration to produce feasible motion is:(

M𝑟 Ḡ⊤
𝑟

Ḡ𝑟 0

) (
𝜕¥q𝑟
_

)
=

(
0

− ¤̄G𝑟 ¤q𝑟 − Ḡ𝑟 ¥q∗𝑟

)
. (2.126)

By applying block Gaussian elimination (also known as Schur complement or Delassus operator), we arrive at the dual
problem:

Ḡ𝑟M−1
𝑟 Ḡ⊤

𝑟 _ = − ¤̄G𝑟 ¤q𝑟 − Ḡ𝑟 ¥q∗𝑟 , (2.127)

which can be solved for the Lagrange multipliers, _. To form the left-hand-side matrix, we need the inverse of the
reduced mass matrix. Rather than forming this matrix explicitly, we backsolve using the columns of Ḡ⊤

𝑟 (or equivalently
the rows of Ḡ𝑟 ). This can be accomplished by running the Recursive Hybrid Dynamics algorithm with force and
momentum terms removed. The computed accelerations then form a column of the inverse product. If there are maximal
constraints, G𝑚 , then we also have to take the product of the Jacobian with a vector, since we must backsolve with
the columns of J⊤𝑚𝑟G

⊤
𝑚 . This means that we take a column of G𝑚 (or equivalently a row of G𝑚), multiply by J𝑚𝑟 , then

backsolve with the resulting product. Both the Jacobian products and the backsolve must be done in linear time using
the recursive algorithms Alg. 5, Alg. 6, and Alg. 9. The constraint forces to keep the system feasible are then

fcon = Ḡ⊤
𝑟 _. (2.128)

We can then rerun the Recursive Hybrid Dynamics algorithm with fcon as an external force.
Now we will add inequality constraints. The primal problem for computing the change in acceleration due to

constraints is

minimize
𝜕 ¥q𝑟

1

2
𝜕¥q⊤𝑟 M𝑟 𝜕¥q𝑟

subject to C̄𝑟 𝜕¥q𝑟 ≥ − ¤̄C𝑟 ¤q𝑟 − C̄𝑟 ¥q∗𝑟
Ḡ𝑟 𝜕¥q𝑟 = − ¤̄G𝑟 ¤q𝑟 − Ḡ𝑟 ¥q∗𝑟 .

(2.129)

The corresponding dual problem is to solve for the Lagrange multipliers instead. First, let Ā𝑟 be the combined constraint
matrix:

Ā𝑟 =

(
C̄𝑟

Ḡ𝑟

)
, ¤̄A𝑟 =

( ¤̄C𝑟

¤̄G𝑟

)
. (2.130)

Then the dual problem is

minimize
_

1

2
_⊤Ā𝑟M−1

𝑟 Ā⊤𝑟 _ + _⊤
(
¤̄A𝑟 ¤q𝑟 + Ā𝑟 ¥q∗𝑟

)
subject to _c ≤ 0,

(2.131)

where _c contains the Lagrange multipliers corresponding to the inequality constraints, C̄𝑟 . The Lagrange multipliers
corresponding to the equality constraints, Ḡ𝑟 , are unconstrained.

2.13 Inverse Inertia via RFD

We can use the recursive forward dynamics algorithm to compute the inverse inertia product in𝑂 (𝑛) time [Drumwright
2012; Kim 2012]. The insight is to recognize that the recursive forward dynamics algorithm solves M¥q = f, which
implies that it can compute 𝑦 = M−1𝑥 by inputting an arbitrary vector 𝑥 as the generalized force and extracting the
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solution from the computed acceleration. Therefore, the inverse inertia product can be computed in 𝑂 (𝑛) time, and the
inverse inertia matrix can be formed in 𝑂 (𝑛2) time by using the columns of the identity matrix as the right-hand-side
vectors. Alg. 10 shows the steps. The first backward traversal loop needs to be run just once as a preprocessing step.
The next two loops then must be run for each right-hand-side vector 𝑥 . In the preprocessing loop, we can optionally
include joint damping and stiffness for linearly implicit integration. If there are maximal damping and stiffness, we can
only include the diagonal terms, since off-diagonal terms break the tree structure of the system.

Algorithm 10 Inverse reduced inertia product via recursive forward dynamics. Computes 𝑦 = M−1
𝑟 𝑥 in linear time.

Alternatively, it can compute 𝑦 = (M𝑟 + J⊤𝑚𝑟 blkdiag(ℎD𝑚 −ℎ2K𝑚)J𝑚𝑟 +ℎD𝑟 −ℎ2K𝑟 )−1𝑥 for preconditioning a linearly
implicit solver.
1: // Run this loop once as a preprocessing step
2: while backward traversal do
3: P𝑟

𝑗
= 0

4: P𝑚
𝑗
= 0

5: if preconditioner then
6: P𝑟

𝑗
= ℎD𝑟

𝑗
− ℎ2K𝑟

𝑗
⊲ Reduced terms

7: P𝑚
𝑗
= 𝑖

𝑗
Ad⊤ blkdiag(ℎD𝑚

𝑖
− ℎ2 K𝑚

𝑖
) 𝑖
𝑗
Ad ⊲ Maximal terms

8: end if
9: M̂𝑗 = M𝑗 + P𝑚

𝑗
+ ∑

𝑐
𝑐
𝑗
Ad⊤ Π𝑐

𝑐
𝑗
Ad

10: Ψ𝑗 = (𝑆⊤
𝑗
M̂𝑗𝑆 𝑗 + P𝑟

𝑗
)−1

11: Π 𝑗 = M̂𝑗 − M̂𝑗𝑆 𝑗Ψ𝑗𝑆
⊤
𝑗
M̂𝑗

12: end while
13:
14: // Run these two loops for each RHS vector 𝑥
15: while backward traversal do
16: B̂𝑗 =

∑
𝑐
𝑐
𝑗
Ad⊤ 𝛽𝑐

17: 𝛽 𝑗 = B̂𝑗 + M̂𝑗

(
𝑆 𝑗Ψ𝑗

(
𝑥 𝑗 − 𝑆⊤𝑗 B̂𝑗

))
18: end while
19: while forward traversal do
20: 𝑦 𝑗 = Ψ𝑗

(
𝑥 𝑗 − 𝑆⊤𝑗 M̂𝑗

𝑗
𝑝Ad ¤V𝑝 − 𝑆⊤

𝑗
B̂𝑗

)
21: ¤V𝑗 =

𝑗
𝑝Ad ¤V𝑝 + 𝑆 𝑗𝑦 𝑗

22: end while
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