step3bb_plot_validation_fmri_meg_combo.m
function step3bb_plot_validation_fmri_meg_combo(bids_dir, varargin)
%% Function that plots the results of the combination analysis between fMRI and MEG
% we are taking the univariate activation in V1 and FFA and use the
% time-resolved MEG data to predict these
%
% @ Lina Teichmann, 2022
%
% Usage:
% step3bb_plot_validation_fmri_meg_combo(bids_dir, ...)
%
% Inputs:
% bids_dir path to the bids root folder
%
% Returns:
% _ Figure in BIDS/derivatives folder
%% folders
res_dir = [bids_dir '/derivatives/output/'];
figdir = [bids_dir '/derivatives/figures/'];
n_participants = 4;
% plotting parameters
col_pp = [0.21528455710115266, 0.5919540462603717, 0.3825837270552851;
0.24756252096251694, 0.43757475330612905, 0.5968141290988245;
0.7153368599631209, 0.546895038817448, 0.1270092896093349;
0.6772691643574462, 0.3168004639904812, 0.3167958318320575];
col_pp_light = [0.6020264172614653, 0.8666010337189269, 0.7198621708097467;
0.6329411764705883, 0.7552941176470587, 0.8572549019607842;
0.9347450980392157, 0.8266666666666667, 0.5554509803921569;
0.9019607843137256, 0.6803921568627451, 0.6803921568627451];
x_size = 0.19;
y_size = 0.15;
x_pos = linspace(0.1,0.9-x_size,4);
%% load results
ffa_res = [];v1_res = [];
for p = 1:n_participants
tmp=table2array(readtable([res_dir,'/validation_fMRI-MEG-regression_ffa_P',num2str(p),'.csv'],'ReadVariableNames',1,'PreserveVariableNames',1));
ffa_res(:,:,p) = tmp(:,2:end);
tmp=table2array(readtable([res_dir,'/validation_fMRI-MEG-regression_v1_P',num2str(p),'.csv'],'ReadVariableNames',1,'PreserveVariableNames',1));
v1_res(:,:,p) = tmp(:,2:end);
end
% load one example output file to get the time vector
load([res_dir '/pairwise_decoding/P1_pairwise_decoding_1854_block1.mat'], 'res')
tv = res.a.fdim.values{1}*1000;
%% plot
f = figure(1);clf
f.Position=[0,0,600,700];
for p = 1:n_participants
[bci_ffa,~] = bootci(10000,{@mean,ffa_res(:,:,p)'},'alpha',.05,'type','per');
[bci_v1,~] = bootci(10000,{@mean,v1_res(:,:,p)'},'alpha',.05,'type','per');
% plot data with shaded bootci confidence intervals
ax1 = axes('Position',[x_pos(p),0.5,x_size,y_size],'Units','normalized');hold on
fill([tv,fliplr(tv)],[bci_ffa(1,:),fliplr(bci_ffa(2,:))],col_pp(p,:),'FaceAlpha',0.4,'EdgeColor',col_pp(p,:),'LineStyle','none')
a(1)=plot(tv,movmean(mean(ffa_res(:,:,p),2),5),'Color',col_pp(p,:),'LineWidth',2);
fill([tv,fliplr(tv)],[bci_v1(1,:),fliplr(bci_v1(2,:))],col_pp_light(p,:),'FaceAlpha',0.4,'EdgeColor',col_pp_light(p,:),'LineStyle','none')
a(2)=plot(tv,movmean(mean(v1_res(:,:,p),2),5),'Color',col_pp_light(p,:),'LineWidth',2);
plot(tv,tv*0,'k--')
% make it look pretty
xlim([tv(1),tv(end)])
ylim([-0.1,.25])
legend(a,[{'FFA'},{'V1'}],'box','off')
% add subject title
ax1_title = axes('Position',[x_pos(p)+0.001,0.5+y_size-0.01,0.03,0.03]);
text(0,0,['M' num2str(p)],'FontSize',12,'FontName','Helvetica');
ax1_title.Visible = 'off';
% add labels
if p ==1
ax1.YLabel.String = 'r';
else
ax1.YTick = [];
end
ax1.XLabel.String = 'time (ms)';
set(ax1,'FontSize',14,'box','off','FontName','Helvetica');
end
% Plot differences
clear('a')
for p = 1:4
toplot = v1_res(:,:,p)-ffa_res(:,:,p);
[bci,~] = bootci(10000,{@mean,toplot'},'alpha',.05,'type','per');
% plot data with shaded bootci confidence intervals
ax1 = axes('Position',[x_pos(p),0.5-y_size*1.5,x_size,y_size],'Units','normalized');hold on
fill([tv,fliplr(tv)],[bci(1,:),fliplr(bci(2,:))],'k','FaceAlpha',0.4,'EdgeColor',col_pp(p,:),'LineStyle','none')
a(1)=plot(tv,movmean(mean(toplot,2),5),'Color','k','LineWidth',2);
plot(tv,tv*0,'k--')
% make it look pretty
xlim([tv(1),tv(end)])
ylim([-0.15,.25])
% add labels
if p ==1
ax1.YLabel.String = 'V1 - FFA';
else
ax1.YTick = [];
end
ax1.XLabel.String = 'time (ms)';
set(ax1,'FontSize',14,'box','off','FontName','Helvetica');
[highest,idx] = max(movmean(mean(toplot,2),5));
ah = annotation('textarrow','X',[tv(idx)+200,tv(idx)+25],'Y',[highest,highest],'String',[num2str(tv(idx)),' ms'],'HorizontalAlignment','left','FontName','Helvetica','FontSize',14);
set(ah,'parent',ax1);
end
%% save figure
fn = [figdir,'/validation_fmri-meg-combo'];
tn = tempname;
print(gcf,'-dpng','-r500',tn)
im=imread([tn '.png']);
[i,j]=find(mean(im,3)<255);margin=0;
imwrite(im(min(i-margin):max(i+margin),min(j-margin):max(j+margin),:),[fn '.png'],'png');
print([fn '.pdf'],'-dpdf')