/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jsarray.h" #include "mozilla/ArrayUtils.h" #include "mozilla/DebugOnly.h" #include "mozilla/FloatingPoint.h" #include "mozilla/MathAlgorithms.h" #include #include "jsapi.h" #include "jsatom.h" #include "jscntxt.h" #include "jsfriendapi.h" #include "jsfun.h" #include "jsiter.h" #include "jsnum.h" #include "jsobj.h" #include "jstypes.h" #include "jsutil.h" #include "ds/Sort.h" #include "gc/Heap.h" #include "vm/ArgumentsObject.h" #include "vm/ForkJoin.h" #include "vm/Interpreter.h" #include "vm/NumericConversions.h" #include "vm/Shape.h" #include "vm/StringBuffer.h" #include "vm/TypedArrayCommon.h" #include "jsatominlines.h" #include "vm/ArgumentsObject-inl.h" #include "vm/ArrayObject-inl.h" #include "vm/Interpreter-inl.h" #include "vm/NativeObject-inl.h" #include "vm/Runtime-inl.h" using namespace js; using namespace js::gc; using namespace js::types; using mozilla::Abs; using mozilla::ArrayLength; using mozilla::CeilingLog2; using mozilla::DebugOnly; using mozilla::IsNaN; using JS::AutoCheckCannotGC; bool js::GetLengthProperty(JSContext *cx, HandleObject obj, uint32_t *lengthp) { if (obj->is()) { *lengthp = obj->as().length(); return true; } if (obj->is()) { ArgumentsObject &argsobj = obj->as(); if (!argsobj.hasOverriddenLength()) { *lengthp = argsobj.initialLength(); return true; } } RootedValue value(cx); if (!JSObject::getProperty(cx, obj, obj, cx->names().length, &value)) return false; if (value.isInt32()) { *lengthp = uint32_t(value.toInt32()); // uint32_t cast does ToUint32 return true; } return ToUint32(cx, value, lengthp); } /* * Determine if the id represents an array index. * * An id is an array index according to ECMA by (15.4): * * "Array objects give special treatment to a certain class of property names. * A property name P (in the form of a string value) is an array index if and * only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not equal * to 2^32-1." * * This means the largest allowed index is actually 2^32-2 (4294967294). * * In our implementation, it would be sufficient to check for id.isInt32() * except that by using signed 31-bit integers we miss the top half of the * valid range. This function checks the string representation itself; note * that calling a standard conversion routine might allow strings such as * "08" or "4.0" as array indices, which they are not. * */ template static bool StringIsArrayIndex(const CharT *s, uint32_t length, uint32_t *indexp) { const CharT *end = s + length; if (length == 0 || length > (sizeof("4294967294") - 1) || !JS7_ISDEC(*s)) return false; uint32_t c = 0, previous = 0; uint32_t index = JS7_UNDEC(*s++); /* Don't allow leading zeros. */ if (index == 0 && s != end) return false; for (; s < end; s++) { if (!JS7_ISDEC(*s)) return false; previous = index; c = JS7_UNDEC(*s); index = 10 * index + c; } /* Make sure we didn't overflow. */ if (previous < (MAX_ARRAY_INDEX / 10) || (previous == (MAX_ARRAY_INDEX / 10) && c <= (MAX_ARRAY_INDEX % 10))) { MOZ_ASSERT(index <= MAX_ARRAY_INDEX); *indexp = index; return true; } return false; } JS_FRIEND_API(bool) js::StringIsArrayIndex(JSLinearString *str, uint32_t *indexp) { AutoCheckCannotGC nogc; return str->hasLatin1Chars() ? ::StringIsArrayIndex(str->latin1Chars(nogc), str->length(), indexp) : ::StringIsArrayIndex(str->twoByteChars(nogc), str->length(), indexp); } static bool ToId(JSContext *cx, double index, MutableHandleId id) { if (index == uint32_t(index)) return IndexToId(cx, uint32_t(index), id); Value tmp = DoubleValue(index); return ValueToId(cx, HandleValue::fromMarkedLocation(&tmp), id); } static bool ToId(JSContext *cx, uint32_t index, MutableHandleId id) { return IndexToId(cx, index, id); } /* * If the property at the given index exists, get its value into location * pointed by vp and set *hole to false. Otherwise set *hole to true and *vp * to JSVAL_VOID. This function assumes that the location pointed by vp is * properly rooted and can be used as GC-protected storage for temporaries. */ template static inline bool DoGetElement(JSContext *cx, HandleObject obj, HandleObject receiver, IndexType index, bool *hole, MutableHandleValue vp) { RootedId id(cx); if (!ToId(cx, index, &id)) return false; RootedObject obj2(cx); RootedShape prop(cx); if (!JSObject::lookupGeneric(cx, obj, id, &obj2, &prop)) return false; if (!prop) { vp.setUndefined(); *hole = true; } else { if (!JSObject::getGeneric(cx, obj, receiver, id, vp)) return false; *hole = false; } return true; } template static void AssertGreaterThanZero(IndexType index) { MOZ_ASSERT(index >= 0); MOZ_ASSERT(index == floor(index)); } template<> void AssertGreaterThanZero(uint32_t index) { } template static bool GetElement(JSContext *cx, HandleObject obj, HandleObject receiver, IndexType index, bool *hole, MutableHandleValue vp) { AssertGreaterThanZero(index); if (obj->isNative() && index < obj->as().getDenseInitializedLength()) { vp.set(obj->as().getDenseElement(uint32_t(index))); if (!vp.isMagic(JS_ELEMENTS_HOLE)) { *hole = false; return true; } } if (obj->is()) { if (obj->as().maybeGetElement(uint32_t(index), vp)) { *hole = false; return true; } } return DoGetElement(cx, obj, receiver, index, hole, vp); } template static inline bool GetElement(JSContext *cx, HandleObject obj, IndexType index, bool *hole, MutableHandleValue vp) { return GetElement(cx, obj, obj, index, hole, vp); } void ElementAdder::append(JSContext *cx, HandleValue v) { MOZ_ASSERT(index_ < length_); if (resObj_) resObj_->as().setDenseElementWithType(cx, index_++, v); else vp_[index_++] = v; } void ElementAdder::appendHole() { MOZ_ASSERT(getBehavior_ == ElementAdder::CheckHasElemPreserveHoles); MOZ_ASSERT(index_ < length_); if (resObj_) { MOZ_ASSERT(resObj_->as().getDenseElement(index_).isMagic(JS_ELEMENTS_HOLE)); index_++; } else { vp_[index_++].setMagic(JS_ELEMENTS_HOLE); } } bool js::GetElementsWithAdder(JSContext *cx, HandleObject obj, HandleObject receiver, uint32_t begin, uint32_t end, ElementAdder *adder) { MOZ_ASSERT(begin <= end); RootedValue val(cx); for (uint32_t i = begin; i < end; i++) { if (adder->getBehavior() == ElementAdder::CheckHasElemPreserveHoles) { bool hole; if (!GetElement(cx, obj, receiver, i, &hole, &val)) return false; if (hole) { adder->appendHole(); continue; } } else { MOZ_ASSERT(adder->getBehavior() == ElementAdder::GetElement); if (!JSObject::getElement(cx, obj, receiver, i, &val)) return false; } adder->append(cx, val); } return true; } bool js::GetElements(JSContext *cx, HandleObject aobj, uint32_t length, Value *vp) { if (aobj->is() && length <= aobj->as().getDenseInitializedLength() && !ObjectMayHaveExtraIndexedProperties(aobj)) { /* No other indexed properties so hole = undefined */ const Value *srcbeg = aobj->as().getDenseElements(); const Value *srcend = srcbeg + length; const Value *src = srcbeg; for (Value *dst = vp; src < srcend; ++dst, ++src) *dst = src->isMagic(JS_ELEMENTS_HOLE) ? UndefinedValue() : *src; return true; } if (aobj->is()) { ArgumentsObject &argsobj = aobj->as(); if (!argsobj.hasOverriddenLength()) { if (argsobj.maybeGetElements(0, length, vp)) return true; } } if (js::GetElementsOp op = aobj->getOps()->getElements) { ElementAdder adder(cx, vp, length, ElementAdder::GetElement); return op(cx, aobj, 0, length, &adder); } for (uint32_t i = 0; i < length; i++) { if (!JSObject::getElement(cx, aobj, aobj, i, MutableHandleValue::fromMarkedLocation(&vp[i]))) return false; } return true; } /* * Set the value of the property at the given index to v assuming v is rooted. */ static bool SetArrayElement(JSContext *cx, HandleObject obj, double index, HandleValue v) { MOZ_ASSERT(index >= 0); if (obj->is() && !obj->isIndexed()) { Rooted arr(cx, &obj->as()); /* Predicted/prefetched code should favor the remains-dense case. */ NativeObject::EnsureDenseResult result = NativeObject::ED_SPARSE; do { if (index > uint32_t(-1)) break; uint32_t idx = uint32_t(index); if (idx >= arr->length() && !arr->lengthIsWritable()) { JS_ReportErrorFlagsAndNumber(cx, JSREPORT_ERROR, js_GetErrorMessage, nullptr, JSMSG_CANT_REDEFINE_ARRAY_LENGTH); return false; } result = arr->ensureDenseElements(cx, idx, 1); if (result != NativeObject::ED_OK) break; if (idx >= arr->length()) arr->setLengthInt32(idx + 1); arr->setDenseElementWithType(cx, idx, v); return true; } while (false); if (result == NativeObject::ED_FAILED) return false; MOZ_ASSERT(result == NativeObject::ED_SPARSE); } RootedId id(cx); if (!ToId(cx, index, &id)) return false; RootedValue tmp(cx, v); return JSObject::setGeneric(cx, obj, obj, id, &tmp, true); } /* * Attempt to delete the element |index| from |obj| as if by * |obj.[[Delete]](index)|. * * If an error occurs while attempting to delete the element (that is, the call * to [[Delete]] threw), return false. * * Otherwise set *succeeded to indicate whether the deletion attempt succeeded * (that is, whether the call to [[Delete]] returned true or false). (Deletes * generally fail only when the property is non-configurable, but proxies may * implement different semantics.) */ static bool DeleteArrayElement(JSContext *cx, HandleObject obj, double index, bool *succeeded) { MOZ_ASSERT(index >= 0); MOZ_ASSERT(floor(index) == index); if (obj->is() && !obj->isIndexed()) { ArrayObject *aobj = &obj->as(); if (index <= UINT32_MAX) { uint32_t idx = uint32_t(index); if (idx < aobj->getDenseInitializedLength()) { if (!aobj->maybeCopyElementsForWrite(cx)) return false; if (idx+1 == aobj->getDenseInitializedLength()) { aobj->setDenseInitializedLength(idx); } else { aobj->markDenseElementsNotPacked(cx); aobj->setDenseElement(idx, MagicValue(JS_ELEMENTS_HOLE)); } if (!SuppressDeletedElement(cx, obj, idx)) return false; } } *succeeded = true; return true; } RootedId id(cx); if (!ToId(cx, index, &id)) return false; return JSObject::deleteGeneric(cx, obj, id, succeeded); } /* ES6 20130308 draft 9.3.5 */ static bool DeletePropertyOrThrow(JSContext *cx, HandleObject obj, double index) { bool succeeded; if (!DeleteArrayElement(cx, obj, index, &succeeded)) return false; if (succeeded) return true; RootedId id(cx); RootedValue indexv(cx, NumberValue(index)); if (!ValueToId(cx, indexv, &id)) return false; return obj->reportNotConfigurable(cx, id, JSREPORT_ERROR); } bool js::SetLengthProperty(JSContext *cx, HandleObject obj, double length) { RootedValue v(cx, NumberValue(length)); return JSObject::setProperty(cx, obj, obj, cx->names().length, &v, true); } /* * Since SpiderMonkey supports cross-class prototype-based delegation, we have * to be careful about the length getter and setter being called on an object * not of Array class. For the getter, we search obj's prototype chain for the * array that caused this getter to be invoked. In the setter case to overcome * the JSPROP_SHARED attribute, we must define a shadowing length property. */ static bool array_length_getter(JSContext *cx, HandleObject obj_, HandleId id, MutableHandleValue vp) { RootedObject obj(cx, obj_); do { if (obj->is()) { vp.setNumber(obj->as().length()); return true; } if (!JSObject::getProto(cx, obj, &obj)) return false; } while (obj); return true; } static bool array_length_setter(JSContext *cx, HandleObject obj, HandleId id, bool strict, MutableHandleValue vp) { if (!obj->is()) { return JSObject::defineProperty(cx, obj, cx->names().length, vp, nullptr, nullptr, JSPROP_ENUMERATE); } Rooted arr(cx, &obj->as()); MOZ_ASSERT(arr->lengthIsWritable(), "setter shouldn't be called if property is non-writable"); return ArraySetLength(cx, arr, id, JSPROP_PERMANENT, vp, strict); } struct ReverseIndexComparator { bool operator()(const uint32_t& a, const uint32_t& b, bool *lessOrEqualp) { MOZ_ASSERT(a != b, "how'd we get duplicate indexes?"); *lessOrEqualp = b <= a; return true; } }; template bool js::CanonicalizeArrayLengthValue(typename ExecutionModeTraits::ContextType cx, HandleValue v, uint32_t *newLen) { double d; if (mode == ParallelExecution) { if (v.isObject()) return false; if (!NonObjectToUint32(cx, v, newLen)) return false; if (!NonObjectToNumber(cx, v, &d)) return false; } else { if (!ToUint32(cx->asJSContext(), v, newLen)) return false; if (!ToNumber(cx->asJSContext(), v, &d)) return false; } if (d == *newLen) return true; if (cx->isJSContext()) JS_ReportErrorNumber(cx->asJSContext(), js_GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } template bool js::CanonicalizeArrayLengthValue(JSContext *cx, HandleValue v, uint32_t *newLen); template bool js::CanonicalizeArrayLengthValue(ForkJoinContext *cx, HandleValue v, uint32_t *newLen); /* ES6 20130308 draft 8.4.2.4 ArraySetLength */ template bool js::ArraySetLength(typename ExecutionModeTraits::ContextType cxArg, Handle arr, HandleId id, unsigned attrs, HandleValue value, bool setterIsStrict) { MOZ_ASSERT(cxArg->isThreadLocal(arr)); MOZ_ASSERT(id == NameToId(cxArg->names().length)); if (!arr->maybeCopyElementsForWrite(cxArg)) return false; /* Steps 1-2 are irrelevant in our implementation. */ /* Steps 3-5. */ uint32_t newLen; if (!CanonicalizeArrayLengthValue(cxArg, value, &newLen)) return false; // Abort if we're being asked to change enumerability or configurability. // (The length property of arrays is non-configurable, so such attempts // must fail.) This behavior is spread throughout the ArraySetLength spec // algorithm, but we only need check it once as our array implementation // is internally so different from the spec algorithm. (ES5 and ES6 define // behavior by delegating to the default define-own-property algorithm -- // OrdinaryDefineOwnProperty in ES6, the default [[DefineOwnProperty]] in // ES5 -- but we reimplement all the conflict-detection bits ourselves here // so that we can use a customized length representation.) if (!(attrs & JSPROP_PERMANENT) || (attrs & JSPROP_ENUMERATE)) { if (!setterIsStrict) return true; // Bail for strict mode in parallel execution, as we need to go back // to sequential mode to throw the error. if (mode == ParallelExecution) return false; return Throw(cxArg->asJSContext(), id, JSMSG_CANT_REDEFINE_PROP); } /* Steps 6-7. */ bool lengthIsWritable = arr->lengthIsWritable(); #ifdef DEBUG { RootedShape lengthShape(cxArg, arr->lookupPure(id)); MOZ_ASSERT(lengthShape); MOZ_ASSERT(lengthShape->writable() == lengthIsWritable); } #endif uint32_t oldLen = arr->length(); /* Steps 8-9 for arrays with non-writable length. */ if (!lengthIsWritable) { if (newLen == oldLen) return true; if (!cxArg->isJSContext()) return false; if (setterIsStrict) { return JS_ReportErrorFlagsAndNumber(cxArg->asJSContext(), JSREPORT_ERROR, js_GetErrorMessage, nullptr, JSMSG_CANT_REDEFINE_ARRAY_LENGTH); } return JSObject::reportReadOnly(cxArg->asJSContext(), id, JSREPORT_STRICT | JSREPORT_WARNING); } /* Step 8. */ bool succeeded = true; do { // The initialized length and capacity of an array only need updating // when non-hole elements are added or removed, which doesn't happen // when array length stays the same or increases. if (newLen >= oldLen) break; // Attempt to propagate dense-element optimization tricks, if possible, // and avoid the generic (and accordingly slow) deletion code below. // We can only do this if there are only densely-indexed elements. // Once there's a sparse indexed element, there's no good way to know, // save by enumerating all the properties to find it. But we *have* to // know in case that sparse indexed element is non-configurable, as // that element must prevent any deletions below it. Bug 586842 should // fix this inefficiency by moving indexed storage to be entirely // separate from non-indexed storage. if (!arr->isIndexed()) { if (!arr->maybeCopyElementsForWrite(cxArg)) return false; uint32_t oldCapacity = arr->getDenseCapacity(); uint32_t oldInitializedLength = arr->getDenseInitializedLength(); MOZ_ASSERT(oldCapacity >= oldInitializedLength); if (oldInitializedLength > newLen) arr->setDenseInitializedLength(newLen); if (oldCapacity > newLen) arr->shrinkElements(cxArg, newLen); // We've done the work of deleting any dense elements needing // deletion, and there are no sparse elements. Thus we can skip // straight to defining the length. break; } // Bail from parallel execution if need to perform step 15, which is // unsafe and isn't a common case. if (mode == ParallelExecution) return false; JSContext *cx = cxArg->asJSContext(); // Step 15. // // Attempt to delete all elements above the new length, from greatest // to least. If any of these deletions fails, we're supposed to define // the length to one greater than the index that couldn't be deleted, // *with the property attributes specified*. This might convert the // length to be not the value specified, yet non-writable. (You may be // forgiven for thinking these are interesting semantics.) Example: // // var arr = // Object.defineProperty([0, 1, 2, 3], 1, { writable: false }); // Object.defineProperty(arr, "length", // { value: 0, writable: false }); // // will convert |arr| to an array of non-writable length two, then // throw a TypeError. // // We implement this behavior, in the relevant lops below, by setting // |succeeded| to false. Then we exit the loop, define the length // appropriately, and only then throw a TypeError, if necessary. uint32_t gap = oldLen - newLen; const uint32_t RemoveElementsFastLimit = 1 << 24; if (gap < RemoveElementsFastLimit) { // If we're removing a relatively small number of elements, just do // it exactly by the spec. while (newLen < oldLen) { /* Step 15a. */ oldLen--; /* Steps 15b-d. */ bool deleteSucceeded; if (!JSObject::deleteElement(cx, arr, oldLen, &deleteSucceeded)) return false; if (!deleteSucceeded) { newLen = oldLen + 1; succeeded = false; break; } } } else { // If we're removing a large number of elements from an array // that's probably sparse, try a different tack. Get all the own // property names, sift out the indexes in the deletion range into // a vector, sort the vector greatest to least, then delete the // indexes greatest to least using that vector. See bug 322135. // // This heuristic's kind of a huge guess -- "large number of // elements" and "probably sparse" are completely unprincipled // predictions. In the long run, bug 586842 will support the right // fix: store sparse elements in a sorted data structure that // permits fast in-reverse-order traversal and concurrent removals. Vector indexes(cx); { AutoIdVector props(cx); if (!GetPropertyKeys(cx, arr, JSITER_OWNONLY | JSITER_HIDDEN, &props)) return false; for (size_t i = 0; i < props.length(); i++) { if (!CheckForInterrupt(cx)) return false; uint32_t index; if (!js_IdIsIndex(props[i], &index)) continue; if (index >= newLen && index < oldLen) { if (!indexes.append(index)) return false; } } } uint32_t count = indexes.length(); { // We should use radix sort to be O(n), but this is uncommon // enough that we'll punt til someone complains. Vector scratch(cx); if (!scratch.resize(count)) return false; MOZ_ALWAYS_TRUE(MergeSort(indexes.begin(), count, scratch.begin(), ReverseIndexComparator())); } uint32_t index = UINT32_MAX; for (uint32_t i = 0; i < count; i++) { MOZ_ASSERT(indexes[i] < index, "indexes should never repeat"); index = indexes[i]; /* Steps 15b-d. */ bool deleteSucceeded; if (!JSObject::deleteElement(cx, arr, index, &deleteSucceeded)) return false; if (!deleteSucceeded) { newLen = index + 1; succeeded = false; break; } } } } while (false); /* Steps 12, 16. */ // Yes, we totally drop a non-stub getter/setter from a defineProperty // API call on the floor here. Given that getter/setter will go away in // the long run, with accessors replacing them both internally and at the // API level, just run with this. RootedShape lengthShape(cxArg, mode == ParallelExecution ? arr->lookupPure(id) : arr->lookup(cxArg->asJSContext(), id)); if (!NativeObject::changeProperty(cxArg, arr, lengthShape, attrs, JSPROP_PERMANENT | JSPROP_READONLY | JSPROP_SHARED, array_length_getter, array_length_setter)) { return false; } if (mode == ParallelExecution) { // Overflowing int32 requires changing TI state. if (newLen > INT32_MAX) return false; arr->setLengthInt32(newLen); } else { JSContext *cx = cxArg->asJSContext(); arr->setLength(cx, newLen); } // All operations past here until the |!succeeded| code must be infallible, // so that all element fields remain properly synchronized. // Trim the initialized length, if needed, to preserve the <= length // invariant. (Capacity was already reduced during element deletion, if // necessary.) ObjectElements *header = arr->getElementsHeader(); header->initializedLength = Min(header->initializedLength, newLen); if (attrs & JSPROP_READONLY) { header->setNonwritableArrayLength(); // When an array's length becomes non-writable, writes to indexes // greater than or equal to the length don't change the array. We // handle this with a check for non-writable length in most places. // But in JIT code every check counts -- so we piggyback the check on // the already-required range check for |index < capacity| by making // capacity of arrays with non-writable length never exceed the length. if (arr->getDenseCapacity() > newLen) { arr->shrinkElements(cxArg, newLen); arr->getElementsHeader()->capacity = newLen; } } if (setterIsStrict && !succeeded) { // We can't have arrived here under ParallelExecution, as we have // returned from the function before step 15 above. JSContext *cx = cxArg->asJSContext(); RootedId elementId(cx); if (!IndexToId(cx, newLen - 1, &elementId)) return false; return arr->reportNotConfigurable(cx, elementId); } return true; } template bool js::ArraySetLength(JSContext *cx, Handle arr, HandleId id, unsigned attrs, HandleValue value, bool setterIsStrict); template bool js::ArraySetLength(ForkJoinContext *cx, Handle arr, HandleId id, unsigned attrs, HandleValue value, bool setterIsStrict); bool js::WouldDefinePastNonwritableLength(ThreadSafeContext *cx, HandleObject obj, uint32_t index, bool strict, bool *definesPast) { if (!obj->is()) { *definesPast = false; return true; } Rooted arr(cx, &obj->as()); uint32_t length = arr->length(); if (index < length) { *definesPast = false; return true; } if (arr->lengthIsWritable()) { *definesPast = false; return true; } *definesPast = true; // Error in strict mode code or warn with strict option. unsigned flags = strict ? JSREPORT_ERROR : (JSREPORT_STRICT | JSREPORT_WARNING); if (cx->isForkJoinContext()) return cx->asForkJoinContext()->reportError(flags); if (!cx->isJSContext()) return true; JSContext *ncx = cx->asJSContext(); if (!strict && !ncx->compartment()->options().extraWarnings(ncx)) return true; // XXX include the index and maybe array length in the error message return JS_ReportErrorFlagsAndNumber(ncx, flags, js_GetErrorMessage, nullptr, JSMSG_CANT_DEFINE_PAST_ARRAY_LENGTH); } static bool array_addProperty(JSContext *cx, HandleObject obj, HandleId id, MutableHandleValue vp) { Rooted arr(cx, &obj->as()); uint32_t index; if (!js_IdIsIndex(id, &index)) return true; uint32_t length = arr->length(); if (index >= length) { MOZ_ASSERT(arr->lengthIsWritable(), "how'd this element get added if length is non-writable?"); arr->setLength(cx, index + 1); } return true; } bool js::ObjectMayHaveExtraIndexedProperties(JSObject *obj) { /* * Whether obj may have indexed properties anywhere besides its dense * elements. This includes other indexed properties in its shape hierarchy, * and indexed properties or elements along its prototype chain. */ MOZ_ASSERT(obj->isNative()); if (obj->isIndexed()) return true; /* * Walk up the prototype chain and see if this indexed element already * exists. If we hit the end of the prototype chain, it's safe to set the * element on the original object. */ while ((obj = obj->getProto()) != nullptr) { /* * If the prototype is a non-native object (possibly a dense array), or * a native object (possibly a slow array) that has indexed properties, * return true. */ if (!obj->isNative()) return true; if (obj->isIndexed()) return true; if (obj->as().getDenseInitializedLength() > 0) return true; if (IsAnyTypedArray(obj)) return true; } return false; } static bool AddLengthProperty(ExclusiveContext *cx, HandleArrayObject obj) { /* * Add the 'length' property for a newly created array, * and update the elements to be an empty array owned by the object. * The shared emptyObjectElements singleton cannot be used for slow arrays, * as accesses to 'length' will use the elements header. */ RootedId lengthId(cx, NameToId(cx->names().length)); MOZ_ASSERT(!obj->lookup(cx, lengthId)); return NativeObject::addProperty(cx, obj, lengthId, array_length_getter, array_length_setter, SHAPE_INVALID_SLOT, JSPROP_PERMANENT | JSPROP_SHARED, 0, /* allowDictionary = */ false); } #if JS_HAS_TOSOURCE static bool array_toSource(JSContext *cx, unsigned argc, Value *vp) { JS_CHECK_RECURSION(cx, return false); CallArgs args = CallArgsFromVp(argc, vp); if (!args.thisv().isObject()) { ReportIncompatible(cx, args); return false; } Rooted obj(cx, &args.thisv().toObject()); RootedValue elt(cx); AutoCycleDetector detector(cx, obj); if (!detector.init()) return false; StringBuffer sb(cx); if (detector.foundCycle()) { if (!sb.append("[]")) return false; goto make_string; } if (!sb.append('[')) return false; uint32_t length; if (!GetLengthProperty(cx, obj, &length)) return false; for (uint32_t index = 0; index < length; index++) { bool hole; if (!CheckForInterrupt(cx) || !GetElement(cx, obj, index, &hole, &elt)) { return false; } /* Get element's character string. */ JSString *str; if (hole) { str = cx->runtime()->emptyString; } else { str = ValueToSource(cx, elt); if (!str) return false; } /* Append element to buffer. */ if (!sb.append(str)) return false; if (index + 1 != length) { if (!sb.append(", ")) return false; } else if (hole) { if (!sb.append(',')) return false; } } /* Finalize the buffer. */ if (!sb.append(']')) return false; make_string: JSString *str = sb.finishString(); if (!str) return false; args.rval().setString(str); return true; } #endif struct EmptySeparatorOp { bool operator()(JSContext *, StringBuffer &sb) { return true; } }; template struct CharSeparatorOp { const CharT sep; explicit CharSeparatorOp(CharT sep) : sep(sep) {} bool operator()(JSContext *, StringBuffer &sb) { return sb.append(sep); } }; struct StringSeparatorOp { HandleLinearString sep; explicit StringSeparatorOp(HandleLinearString sep) : sep(sep) {} bool operator()(JSContext *cx, StringBuffer &sb) { return sb.append(sep); } }; template static bool ArrayJoinKernel(JSContext *cx, SeparatorOp sepOp, HandleObject obj, uint32_t length, StringBuffer &sb) { uint32_t i = 0; if (!Locale && obj->is() && !ObjectMayHaveExtraIndexedProperties(obj)) { // This loop handles all elements up to initializedLength. If // length > initLength we rely on the second loop to add the // other elements. uint32_t initLength = obj->as().getDenseInitializedLength(); while (i < initLength) { if (!CheckForInterrupt(cx)) return false; const Value &elem = obj->as().getDenseElement(i); if (elem.isString()) { if (!sb.append(elem.toString())) return false; } else if (elem.isNumber()) { if (!NumberValueToStringBuffer(cx, elem, sb)) return false; } else if (elem.isBoolean()) { if (!BooleanToStringBuffer(elem.toBoolean(), sb)) return false; } else if (elem.isObject() || elem.isSymbol()) { /* * Object stringifying could modify the initialized length or make * the array sparse. Delegate it to a separate loop to keep this * one tight. * * Symbol stringifying is a TypeError, so into the slow path * with those as well. */ break; } else { MOZ_ASSERT(elem.isMagic(JS_ELEMENTS_HOLE) || elem.isNullOrUndefined()); } if (++i != length && !sepOp(cx, sb)) return false; } } if (i != length) { RootedValue v(cx); while (i < length) { if (!CheckForInterrupt(cx)) return false; bool hole; if (!GetElement(cx, obj, i, &hole, &v)) return false; if (!hole && !v.isNullOrUndefined()) { if (Locale) { JSObject *robj = ToObject(cx, v); if (!robj) return false; RootedId id(cx, NameToId(cx->names().toLocaleString)); if (!robj->callMethod(cx, id, 0, nullptr, &v)) return false; } if (!ValueToStringBuffer(cx, v, sb)) return false; } if (++i != length && !sepOp(cx, sb)) return false; } } return true; } template JSString * js::ArrayJoin(JSContext *cx, HandleObject obj, HandleLinearString sepstr, uint32_t length) { // This method is shared by Array.prototype.join and // Array.prototype.toLocaleString. The steps in ES5 are nearly the same, so // the annotations in this function apply to both toLocaleString and join. // Steps 1 to 6, should be done by the caller. // Step 6 is implicit in the loops below. // An optimized version of a special case of steps 7-11: when length==1 and // the 0th element is a string, ToString() of that element is a no-op and // so it can be immediately returned as the result. if (length == 1 && !Locale && obj->is() && obj->as().getDenseInitializedLength() == 1) { const Value &elem0 = obj->as().getDenseElement(0); if (elem0.isString()) { return elem0.toString(); } } StringBuffer sb(cx); if (sepstr->hasTwoByteChars() && !sb.ensureTwoByteChars()) return nullptr; // The separator will be added |length - 1| times, reserve space for that // so that we don't have to unnecessarily grow the buffer. size_t seplen = sepstr->length(); if (length > 0 && !sb.reserve(seplen * (length - 1))) return nullptr; // Various optimized versions of steps 7-10. if (seplen == 0) { EmptySeparatorOp op; if (!ArrayJoinKernel(cx, op, obj, length, sb)) return nullptr; } else if (seplen == 1) { char16_t c = sepstr->latin1OrTwoByteChar(0); if (c <= JSString::MAX_LATIN1_CHAR) { CharSeparatorOp op(c); if (!ArrayJoinKernel(cx, op, obj, length, sb)) return nullptr; } else { CharSeparatorOp op(c); if (!ArrayJoinKernel(cx, op, obj, length, sb)) return nullptr; } } else { StringSeparatorOp op(sepstr); if (!ArrayJoinKernel(cx, op, obj, length, sb)) return nullptr; } // Step 11 JSString *str = sb.finishString(); if (!str) return nullptr; return str; } template bool ArrayJoin(JSContext *cx, CallArgs &args) { // Step 1 RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; AutoCycleDetector detector(cx, obj); if (!detector.init()) return false; if (detector.foundCycle()) { args.rval().setString(cx->names().empty); return true; } // Steps 2 and 3 uint32_t length; if (!GetLengthProperty(cx, obj, &length)) return false; // Steps 4 and 5 RootedLinearString sepstr(cx); if (!Locale && args.hasDefined(0)) { JSString *s = ToString(cx, args[0]); if (!s) return false; sepstr = s->ensureLinear(cx); if (!sepstr) return false; } else { sepstr = cx->names().comma; } // Step 6 to 11 JSString *res = js::ArrayJoin(cx, obj, sepstr, length); if (!res) return false; args.rval().setString(res); return true; } /* ES5 15.4.4.2. NB: The algorithm here differs from the one in ES3. */ static bool array_toString(JSContext *cx, unsigned argc, Value *vp) { JS_CHECK_RECURSION(cx, return false); CallArgs args = CallArgsFromVp(argc, vp); RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; RootedValue join(cx, args.calleev()); if (!JSObject::getProperty(cx, obj, obj, cx->names().join, &join)) return false; if (!IsCallable(join)) { JSString *str = JS_BasicObjectToString(cx, obj); if (!str) return false; args.rval().setString(str); return true; } InvokeArgs args2(cx); if (!args2.init(0)) return false; args2.setCallee(join); args2.setThis(ObjectValue(*obj)); /* Do the call. */ if (!Invoke(cx, args2)) return false; args.rval().set(args2.rval()); return true; } /* ES5 15.4.4.3 */ static bool array_toLocaleString(JSContext *cx, unsigned argc, Value *vp) { JS_CHECK_RECURSION(cx, return false); CallArgs args = CallArgsFromVp(argc, vp); return ArrayJoin(cx, args); } /* ES5 15.4.4.5 */ bool js::array_join(JSContext *cx, unsigned argc, Value *vp) { JS_CHECK_RECURSION(cx, return false); CallArgs args = CallArgsFromVp(argc, vp); return ArrayJoin(cx, args); } static inline bool InitArrayTypes(JSContext *cx, TypeObject *type, const Value *vector, unsigned count) { if (!type->unknownProperties()) { AutoEnterAnalysis enter(cx); HeapTypeSet *types = type->getProperty(cx, JSID_VOID); if (!types) return false; for (unsigned i = 0; i < count; i++) { if (vector[i].isMagic(JS_ELEMENTS_HOLE)) continue; Type valtype = GetValueType(vector[i]); types->addType(cx, valtype); } } return true; } enum ShouldUpdateTypes { UpdateTypes = true, DontUpdateTypes = false }; /* vector must point to rooted memory. */ static bool InitArrayElements(JSContext *cx, HandleObject obj, uint32_t start, uint32_t count, const Value *vector, ShouldUpdateTypes updateTypes) { MOZ_ASSERT(count <= MAX_ARRAY_INDEX); if (count == 0) return true; types::TypeObject *type = obj->getType(cx); if (!type) return false; if (updateTypes && !InitArrayTypes(cx, type, vector, count)) return false; /* * Optimize for dense arrays so long as adding the given set of elements * wouldn't otherwise make the array slow or exceed a non-writable array * length. */ do { if (!obj->is()) break; if (ObjectMayHaveExtraIndexedProperties(obj)) break; HandleArrayObject arr = obj.as(); if (arr->shouldConvertDoubleElements()) break; if (!arr->lengthIsWritable() && start + count > arr->length()) break; NativeObject::EnsureDenseResult result = arr->ensureDenseElements(cx, start, count); if (result != NativeObject::ED_OK) { if (result == NativeObject::ED_FAILED) return false; MOZ_ASSERT(result == NativeObject::ED_SPARSE); break; } uint32_t newlen = start + count; if (newlen > arr->length()) arr->setLengthInt32(newlen); MOZ_ASSERT(count < UINT32_MAX / sizeof(Value)); arr->copyDenseElements(start, vector, count); MOZ_ASSERT_IF(count != 0, !arr->getDenseElement(newlen - 1).isMagic(JS_ELEMENTS_HOLE)); return true; } while (false); const Value* end = vector + count; while (vector < end && start <= MAX_ARRAY_INDEX) { if (!CheckForInterrupt(cx) || !SetArrayElement(cx, obj, start++, HandleValue::fromMarkedLocation(vector++))) { return false; } } if (vector == end) return true; MOZ_ASSERT(start == MAX_ARRAY_INDEX + 1); RootedValue value(cx); RootedId id(cx); RootedValue indexv(cx); double index = MAX_ARRAY_INDEX + 1; do { value = *vector++; indexv = DoubleValue(index); if (!ValueToId(cx, indexv, &id) || !JSObject::setGeneric(cx, obj, obj, id, &value, true)) { return false; } index += 1; } while (vector != end); return true; } static bool array_reverse(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; uint32_t len; if (!GetLengthProperty(cx, obj, &len)) return false; do { if (!obj->is()) break; if (ObjectMayHaveExtraIndexedProperties(obj)) break; HandleArrayObject arr = obj.as(); /* An empty array or an array with no elements is already reversed. */ if (len == 0 || arr->getDenseCapacity() == 0) { args.rval().setObject(*obj); return true; } /* * It's actually surprisingly complicated to reverse an array due to the * orthogonality of array length and array capacity while handling * leading and trailing holes correctly. Reversing seems less likely to * be a common operation than other array mass-mutation methods, so for * now just take a probably-small memory hit (in the absence of too many * holes in the array at its start) and ensure that the capacity is * sufficient to hold all the elements in the array if it were full. */ NativeObject::EnsureDenseResult result = arr->ensureDenseElements(cx, len, 0); if (result != NativeObject::ED_OK) { if (result == NativeObject::ED_FAILED) return false; MOZ_ASSERT(result == NativeObject::ED_SPARSE); break; } /* Fill out the array's initialized length to its proper length. */ arr->ensureDenseInitializedLength(cx, len, 0); RootedValue origlo(cx), orighi(cx); uint32_t lo = 0, hi = len - 1; for (; lo < hi; lo++, hi--) { origlo = arr->getDenseElement(lo); orighi = arr->getDenseElement(hi); arr->setDenseElement(lo, orighi); if (orighi.isMagic(JS_ELEMENTS_HOLE) && !SuppressDeletedProperty(cx, arr, INT_TO_JSID(lo))) { return false; } arr->setDenseElement(hi, origlo); if (origlo.isMagic(JS_ELEMENTS_HOLE) && !SuppressDeletedProperty(cx, arr, INT_TO_JSID(hi))) { return false; } } /* * Per ECMA-262, don't update the length of the array, even if the new * array has trailing holes (and thus the original array began with * holes). */ args.rval().setObject(*arr); return true; } while (false); RootedValue lowval(cx), hival(cx); for (uint32_t i = 0, half = len / 2; i < half; i++) { bool hole, hole2; if (!CheckForInterrupt(cx) || !GetElement(cx, obj, i, &hole, &lowval) || !GetElement(cx, obj, len - i - 1, &hole2, &hival)) { return false; } if (!hole && !hole2) { if (!SetArrayElement(cx, obj, i, hival)) return false; if (!SetArrayElement(cx, obj, len - i - 1, lowval)) return false; } else if (hole && !hole2) { if (!SetArrayElement(cx, obj, i, hival)) return false; if (!DeletePropertyOrThrow(cx, obj, len - i - 1)) return false; } else if (!hole && hole2) { if (!DeletePropertyOrThrow(cx, obj, i)) return false; if (!SetArrayElement(cx, obj, len - i - 1, lowval)) return false; } else { // No action required. } } args.rval().setObject(*obj); return true; } static inline bool CompareStringValues(JSContext *cx, const Value &a, const Value &b, bool *lessOrEqualp) { if (!CheckForInterrupt(cx)) return false; JSString *astr = a.toString(); JSString *bstr = b.toString(); int32_t result; if (!CompareStrings(cx, astr, bstr, &result)) return false; *lessOrEqualp = (result <= 0); return true; } static const uint64_t powersOf10[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 1000000000000ULL }; static inline unsigned NumDigitsBase10(uint32_t n) { /* * This is just floor_log10(n) + 1 * Algorithm taken from * http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 */ uint32_t log2 = CeilingLog2(n); uint32_t t = log2 * 1233 >> 12; return t - (n < powersOf10[t]) + 1; } static inline bool CompareLexicographicInt32(const Value &a, const Value &b, bool *lessOrEqualp) { int32_t aint = a.toInt32(); int32_t bint = b.toInt32(); /* * If both numbers are equal ... trivial * If only one of both is negative --> arithmetic comparison as char code * of '-' is always less than any other digit * If both numbers are negative convert them to positive and continue * handling ... */ if (aint == bint) { *lessOrEqualp = true; } else if ((aint < 0) && (bint >= 0)) { *lessOrEqualp = true; } else if ((aint >= 0) && (bint < 0)) { *lessOrEqualp = false; } else { uint32_t auint = Abs(aint); uint32_t buint = Abs(bint); /* * ... get number of digits of both integers. * If they have the same number of digits --> arithmetic comparison. * If digits_a > digits_b: a < b*10e(digits_a - digits_b). * If digits_b > digits_a: a*10e(digits_b - digits_a) <= b. */ unsigned digitsa = NumDigitsBase10(auint); unsigned digitsb = NumDigitsBase10(buint); if (digitsa == digitsb) { *lessOrEqualp = (auint <= buint); } else if (digitsa > digitsb) { MOZ_ASSERT((digitsa - digitsb) < ArrayLength(powersOf10)); *lessOrEqualp = (uint64_t(auint) < uint64_t(buint) * powersOf10[digitsa - digitsb]); } else { /* if (digitsb > digitsa) */ MOZ_ASSERT((digitsb - digitsa) < ArrayLength(powersOf10)); *lessOrEqualp = (uint64_t(auint) * powersOf10[digitsb - digitsa] <= uint64_t(buint)); } } return true; } template static inline bool CompareSubStringValues(JSContext *cx, const Char1 *s1, size_t len1, const Char2 *s2, size_t len2, bool *lessOrEqualp) { if (!CheckForInterrupt(cx)) return false; if (!s1 || !s2) return false; int32_t result = CompareChars(s1, len1, s2, len2); *lessOrEqualp = (result <= 0); return true; } namespace { struct SortComparatorStrings { JSContext *const cx; explicit SortComparatorStrings(JSContext *cx) : cx(cx) {} bool operator()(const Value &a, const Value &b, bool *lessOrEqualp) { return CompareStringValues(cx, a, b, lessOrEqualp); } }; struct SortComparatorLexicographicInt32 { bool operator()(const Value &a, const Value &b, bool *lessOrEqualp) { return CompareLexicographicInt32(a, b, lessOrEqualp); } }; struct StringifiedElement { size_t charsBegin; size_t charsEnd; size_t elementIndex; }; struct SortComparatorStringifiedElements { JSContext *const cx; const StringBuffer &sb; SortComparatorStringifiedElements(JSContext *cx, const StringBuffer &sb) : cx(cx), sb(sb) {} bool operator()(const StringifiedElement &a, const StringifiedElement &b, bool *lessOrEqualp) { size_t lenA = a.charsEnd - a.charsBegin; size_t lenB = b.charsEnd - b.charsBegin; if (sb.isUnderlyingBufferLatin1()) { return CompareSubStringValues(cx, sb.rawLatin1Begin() + a.charsBegin, lenA, sb.rawLatin1Begin() + b.charsBegin, lenB, lessOrEqualp); } return CompareSubStringValues(cx, sb.rawTwoByteBegin() + a.charsBegin, lenA, sb.rawTwoByteBegin() + b.charsBegin, lenB, lessOrEqualp); } }; struct SortComparatorFunction { JSContext *const cx; const Value &fval; FastInvokeGuard &fig; SortComparatorFunction(JSContext *cx, const Value &fval, FastInvokeGuard &fig) : cx(cx), fval(fval), fig(fig) { } bool operator()(const Value &a, const Value &b, bool *lessOrEqualp); }; bool SortComparatorFunction::operator()(const Value &a, const Value &b, bool *lessOrEqualp) { /* * array_sort deals with holes and undefs on its own and they should not * come here. */ MOZ_ASSERT(!a.isMagic() && !a.isUndefined()); MOZ_ASSERT(!a.isMagic() && !b.isUndefined()); if (!CheckForInterrupt(cx)) return false; InvokeArgs &args = fig.args(); if (!args.init(2)) return false; args.setCallee(fval); args.setThis(UndefinedValue()); args[0].set(a); args[1].set(b); if (!fig.invoke(cx)) return false; double cmp; if (!ToNumber(cx, args.rval(), &cmp)) return false; /* * XXX eport some kind of error here if cmp is NaN? ECMA talks about * 'consistent compare functions' that don't return NaN, but is silent * about what the result should be. So we currently ignore it. */ *lessOrEqualp = (IsNaN(cmp) || cmp <= 0); return true; } struct NumericElement { double dv; size_t elementIndex; }; static bool ComparatorNumericLeftMinusRight(const NumericElement &a, const NumericElement &b, bool *lessOrEqualp) { *lessOrEqualp = (a.dv <= b.dv); return true; } static bool ComparatorNumericRightMinusLeft(const NumericElement &a, const NumericElement &b, bool *lessOrEqualp) { *lessOrEqualp = (b.dv <= a.dv); return true; } typedef bool (*ComparatorNumeric)(const NumericElement &a, const NumericElement &b, bool *lessOrEqualp); static const ComparatorNumeric SortComparatorNumerics[] = { nullptr, nullptr, ComparatorNumericLeftMinusRight, ComparatorNumericRightMinusLeft }; static bool ComparatorInt32LeftMinusRight(const Value &a, const Value &b, bool *lessOrEqualp) { *lessOrEqualp = (a.toInt32() <= b.toInt32()); return true; } static bool ComparatorInt32RightMinusLeft(const Value &a, const Value &b, bool *lessOrEqualp) { *lessOrEqualp = (b.toInt32() <= a.toInt32()); return true; } typedef bool (*ComparatorInt32)(const Value &a, const Value &b, bool *lessOrEqualp); static const ComparatorInt32 SortComparatorInt32s[] = { nullptr, nullptr, ComparatorInt32LeftMinusRight, ComparatorInt32RightMinusLeft }; // Note: Values for this enum must match up with SortComparatorNumerics // and SortComparatorInt32s. enum ComparatorMatchResult { Match_Failure = 0, Match_None, Match_LeftMinusRight, Match_RightMinusLeft }; } /* namespace anonymous */ /* * Specialize behavior for comparator functions with particular common bytecode * patterns: namely, |return x - y| and |return y - x|. */ static ComparatorMatchResult MatchNumericComparator(JSContext *cx, const Value &v) { if (!v.isObject()) return Match_None; JSObject &obj = v.toObject(); if (!obj.is()) return Match_None; JSFunction *fun = &obj.as(); if (!fun->isInterpreted()) return Match_None; JSScript *script = fun->getOrCreateScript(cx); if (!script) return Match_Failure; jsbytecode *pc = script->code(); uint16_t arg0, arg1; if (JSOp(*pc) != JSOP_GETARG) return Match_None; arg0 = GET_ARGNO(pc); pc += JSOP_GETARG_LENGTH; if (JSOp(*pc) != JSOP_GETARG) return Match_None; arg1 = GET_ARGNO(pc); pc += JSOP_GETARG_LENGTH; if (JSOp(*pc) != JSOP_SUB) return Match_None; pc += JSOP_SUB_LENGTH; if (JSOp(*pc) != JSOP_RETURN) return Match_None; if (arg0 == 0 && arg1 == 1) return Match_LeftMinusRight; if (arg0 == 1 && arg1 == 0) return Match_RightMinusLeft; return Match_None; } template static inline bool MergeSortByKey(K keys, size_t len, K scratch, C comparator, AutoValueVector *vec) { MOZ_ASSERT(vec->length() >= len); /* Sort keys. */ if (!MergeSort(keys, len, scratch, comparator)) return false; /* * Reorder vec by keys in-place, going element by element. When an out-of- * place element is encountered, move that element to its proper position, * displacing whatever element was at *that* point to its proper position, * and so on until an element must be moved to the current position. * * At each outer iteration all elements up to |i| are sorted. If * necessary each inner iteration moves some number of unsorted elements * (including |i|) directly to sorted position. Thus on completion |*vec| * is sorted, and out-of-position elements have moved once. Complexity is * Θ(len) + O(len) == O(2*len), with each element visited at most twice. */ for (size_t i = 0; i < len; i++) { size_t j = keys[i].elementIndex; if (i == j) continue; // fixed point MOZ_ASSERT(j > i, "Everything less than |i| should be in the right place!"); Value tv = (*vec)[j]; do { size_t k = keys[j].elementIndex; keys[j].elementIndex = j; (*vec)[j].set((*vec)[k]); j = k; } while (j != i); // We could assert the loop invariant that |i == keys[i].elementIndex| // here if we synced |keys[i].elementIndex|. But doing so would render // the assertion vacuous, so don't bother, even in debug builds. (*vec)[i].set(tv); } return true; } /* * Sort Values as strings. * * To minimize #conversions, SortLexicographically() first converts all Values * to strings at once, then sorts the elements by these cached strings. */ static bool SortLexicographically(JSContext *cx, AutoValueVector *vec, size_t len) { MOZ_ASSERT(vec->length() >= len); StringBuffer sb(cx); Vector strElements(cx); /* MergeSort uses the upper half as scratch space. */ if (!strElements.reserve(2 * len)) return false; /* Convert Values to strings. */ size_t cursor = 0; for (size_t i = 0; i < len; i++) { if (!CheckForInterrupt(cx)) return false; if (!ValueToStringBuffer(cx, (*vec)[i], sb)) return false; StringifiedElement el = { cursor, sb.length(), i }; strElements.infallibleAppend(el); cursor = sb.length(); } /* Resize strElements so we can perform MergeSort. */ JS_ALWAYS_TRUE(strElements.resize(2 * len)); /* Sort Values in vec alphabetically. */ return MergeSortByKey(strElements.begin(), len, strElements.begin() + len, SortComparatorStringifiedElements(cx, sb), vec); } /* * Sort Values as numbers. * * To minimize #conversions, SortNumerically first converts all Values to * numerics at once, then sorts the elements by these cached numerics. */ static bool SortNumerically(JSContext *cx, AutoValueVector *vec, size_t len, ComparatorMatchResult comp) { MOZ_ASSERT(vec->length() >= len); Vector numElements(cx); /* MergeSort uses the upper half as scratch space. */ if (!numElements.reserve(2 * len)) return false; /* Convert Values to numerics. */ for (size_t i = 0; i < len; i++) { if (!CheckForInterrupt(cx)) return false; double dv; if (!ToNumber(cx, (*vec)[i], &dv)) return false; NumericElement el = { dv, i }; numElements.infallibleAppend(el); } /* Resize strElements so we can perform MergeSort. */ JS_ALWAYS_TRUE(numElements.resize(2 * len)); /* Sort Values in vec numerically. */ return MergeSortByKey(numElements.begin(), len, numElements.begin() + len, SortComparatorNumerics[comp], vec); } bool js::array_sort(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); RootedValue fvalRoot(cx); Value &fval = fvalRoot.get(); if (args.hasDefined(0)) { if (args[0].isPrimitive()) { JS_ReportErrorNumber(cx, js_GetErrorMessage, nullptr, JSMSG_BAD_SORT_ARG); return false; } fval = args[0]; /* non-default compare function */ } else { fval.setNull(); } RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; uint32_t len; if (!GetLengthProperty(cx, obj, &len)) return false; if (len < 2) { /* [] and [a] remain unchanged when sorted. */ args.rval().setObject(*obj); return true; } /* * We need a temporary array of 2 * len Value to hold the array elements * and the scratch space for merge sort. Check that its size does not * overflow size_t, which would allow for indexing beyond the end of the * malloc'd vector. */ #if JS_BITS_PER_WORD == 32 if (size_t(len) > size_t(-1) / (2 * sizeof(Value))) { js_ReportAllocationOverflow(cx); return false; } #endif /* * Initialize vec as a root. We will clear elements of vec one by * one while increasing the rooted amount of vec when we know that the * property at the corresponding index exists and its value must be rooted. * * In this way when sorting a huge mostly sparse array we will not * access the tail of vec corresponding to properties that do not * exist, allowing OS to avoiding committing RAM. See bug 330812. */ size_t n, undefs; { AutoValueVector vec(cx); if (!vec.reserve(2 * size_t(len))) return false; /* * By ECMA 262, 15.4.4.11, a property that does not exist (which we * call a "hole") is always greater than an existing property with * value undefined and that is always greater than any other property. * Thus to sort holes and undefs we simply count them, sort the rest * of elements, append undefs after them and then make holes after * undefs. */ undefs = 0; bool allStrings = true; bool allInts = true; RootedValue v(cx); for (uint32_t i = 0; i < len; i++) { if (!CheckForInterrupt(cx)) return false; /* Clear vec[newlen] before including it in the rooted set. */ bool hole; if (!GetElement(cx, obj, i, &hole, &v)) return false; if (hole) continue; if (v.isUndefined()) { ++undefs; continue; } vec.infallibleAppend(v); allStrings = allStrings && v.isString(); allInts = allInts && v.isInt32(); } /* * If the array only contains holes, we're done. But if it contains * undefs, those must be sorted to the front of the array. */ n = vec.length(); if (n == 0 && undefs == 0) { args.rval().setObject(*obj); return true; } /* Here len == n + undefs + number_of_holes. */ if (fval.isNull()) { /* * Sort using the default comparator converting all elements to * strings. */ if (allStrings) { JS_ALWAYS_TRUE(vec.resize(n * 2)); if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorStrings(cx))) return false; } else if (allInts) { JS_ALWAYS_TRUE(vec.resize(n * 2)); if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorLexicographicInt32())) { return false; } } else { if (!SortLexicographically(cx, &vec, n)) return false; } } else { ComparatorMatchResult comp = MatchNumericComparator(cx, fval); if (comp == Match_Failure) return false; if (comp != Match_None) { if (allInts) { JS_ALWAYS_TRUE(vec.resize(n * 2)); if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorInt32s[comp])) return false; } else { if (!SortNumerically(cx, &vec, n, comp)) return false; } } else { FastInvokeGuard fig(cx, fval); MOZ_ASSERT(!InParallelSection(), "Array.sort() can't currently be used from parallel code"); JS_ALWAYS_TRUE(vec.resize(n * 2)); if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorFunction(cx, fval, fig))) { return false; } } } if (!InitArrayElements(cx, obj, 0, uint32_t(n), vec.begin(), DontUpdateTypes)) return false; } /* Set undefs that sorted after the rest of elements. */ while (undefs != 0) { --undefs; if (!CheckForInterrupt(cx) || !SetArrayElement(cx, obj, n++, UndefinedHandleValue)) return false; } /* Re-create any holes that sorted to the end of the array. */ while (len > n) { if (!CheckForInterrupt(cx) || !DeletePropertyOrThrow(cx, obj, --len)) return false; } args.rval().setObject(*obj); return true; } bool js::NewbornArrayPush(JSContext *cx, HandleObject obj, const Value &v) { Rooted arr(cx, &obj->as()); MOZ_ASSERT(!v.isMagic()); MOZ_ASSERT(arr->lengthIsWritable()); uint32_t length = arr->length(); MOZ_ASSERT(length <= arr->getDenseCapacity()); if (!arr->ensureElements(cx, length + 1)) return false; arr->setDenseInitializedLength(length + 1); arr->setLengthInt32(length + 1); arr->initDenseElementWithType(cx, length, v); return true; } /* ES5 15.4.4.7 */ bool js::array_push(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); /* Step 1. */ RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; /* Steps 2-3. */ uint32_t length; if (!GetLengthProperty(cx, obj, &length)) return false; /* Fast path for native objects with dense elements. */ do { if (!obj->isNative() || IsAnyTypedArray(obj.get())) break; if (obj->is() && !obj->as().lengthIsWritable()) break; if (ObjectMayHaveExtraIndexedProperties(obj)) break; uint32_t argCount = args.length(); NativeObject::EnsureDenseResult result = obj->as().ensureDenseElements(cx, length, argCount); if (result == NativeObject::ED_FAILED) return false; if (result == NativeObject::ED_OK) { for (uint32_t i = 0, index = length; i < argCount; index++, i++) obj->as().setDenseElementWithType(cx, index, args[i]); uint32_t newlength = length + argCount; args.rval().setNumber(newlength); if (obj->is()) { obj->as().setLengthInt32(newlength); return true; } return SetLengthProperty(cx, obj, newlength); } MOZ_ASSERT(result == NativeObject::ED_SPARSE); } while (false); /* Steps 4-5. */ if (!InitArrayElements(cx, obj, length, args.length(), args.array(), UpdateTypes)) return false; /* Steps 6-7. */ double newlength = length + double(args.length()); args.rval().setNumber(newlength); return SetLengthProperty(cx, obj, newlength); } /* ES6 20130308 draft 15.4.4.6. */ bool js::array_pop(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); /* Step 1. */ RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; /* Steps 2-3. */ uint32_t index; if (!GetLengthProperty(cx, obj, &index)) return false; /* Steps 4-5. */ if (index == 0) { /* Step 4b. */ args.rval().setUndefined(); } else { /* Step 5a. */ index--; /* Step 5b, 5e. */ bool hole; if (!GetElement(cx, obj, index, &hole, args.rval())) return false; /* Step 5c. */ if (!hole && !DeletePropertyOrThrow(cx, obj, index)) return false; } /* Steps 4a, 5d. */ return SetLengthProperty(cx, obj, index); } void js::ArrayShiftMoveElements(ArrayObject *obj) { MOZ_ASSERT(obj->lengthIsWritable()); /* * At this point the length and initialized length have already been * decremented and the result fetched, so just shift the array elements * themselves. */ uint32_t initlen = obj->getDenseInitializedLength(); obj->moveDenseElementsNoPreBarrier(0, 1, initlen); } /* ES5 15.4.4.9 */ bool js::array_shift(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); /* Step 1. */ RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; /* Steps 2-3. */ uint32_t len; if (!GetLengthProperty(cx, obj, &len)) return false; /* Step 4. */ if (len == 0) { /* Step 4a. */ if (!SetLengthProperty(cx, obj, 0)) return false; /* Step 4b. */ args.rval().setUndefined(); return true; } uint32_t newlen = len - 1; /* Fast paths. */ if (obj->is()) { ArrayObject *aobj = &obj->as(); if (aobj->getDenseInitializedLength() > 0 && newlen < aobj->getDenseCapacity() && !ObjectMayHaveExtraIndexedProperties(aobj)) { args.rval().set(aobj->getDenseElement(0)); if (args.rval().isMagic(JS_ELEMENTS_HOLE)) args.rval().setUndefined(); if (!aobj->maybeCopyElementsForWrite(cx)) return false; aobj->moveDenseElements(0, 1, aobj->getDenseInitializedLength() - 1); aobj->setDenseInitializedLength(aobj->getDenseInitializedLength() - 1); if (!SetLengthProperty(cx, obj, newlen)) return false; return SuppressDeletedProperty(cx, obj, INT_TO_JSID(newlen)); } } /* Steps 5, 10. */ bool hole; if (!GetElement(cx, obj, uint32_t(0), &hole, args.rval())) return false; /* Steps 6-7. */ RootedValue value(cx); for (uint32_t i = 0; i < newlen; i++) { if (!CheckForInterrupt(cx)) return false; if (!GetElement(cx, obj, i + 1, &hole, &value)) return false; if (hole) { if (!DeletePropertyOrThrow(cx, obj, i)) return false; } else { if (!SetArrayElement(cx, obj, i, value)) return false; } } /* Step 8. */ if (!DeletePropertyOrThrow(cx, obj, newlen)) return false; /* Step 9. */ return SetLengthProperty(cx, obj, newlen); } bool js::array_unshift(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; uint32_t length; if (!GetLengthProperty(cx, obj, &length)) return false; double newlen = length; if (args.length() > 0) { /* Slide up the array to make room for all args at the bottom. */ if (length > 0) { bool optimized = false; do { if (!obj->is()) break; if (ObjectMayHaveExtraIndexedProperties(obj)) break; ArrayObject *aobj = &obj->as(); if (!aobj->lengthIsWritable()) break; NativeObject::EnsureDenseResult result = aobj->ensureDenseElements(cx, length, args.length()); if (result != NativeObject::ED_OK) { if (result == NativeObject::ED_FAILED) return false; MOZ_ASSERT(result == NativeObject::ED_SPARSE); break; } aobj->moveDenseElements(args.length(), 0, length); for (uint32_t i = 0; i < args.length(); i++) aobj->setDenseElement(i, MagicValue(JS_ELEMENTS_HOLE)); optimized = true; } while (false); if (!optimized) { double last = length; double upperIndex = last + args.length(); RootedValue value(cx); do { --last, --upperIndex; bool hole; if (!CheckForInterrupt(cx)) return false; if (!GetElement(cx, obj, last, &hole, &value)) return false; if (hole) { if (!DeletePropertyOrThrow(cx, obj, upperIndex)) return false; } else { if (!SetArrayElement(cx, obj, upperIndex, value)) return false; } } while (last != 0); } } /* Copy from args to the bottom of the array. */ if (!InitArrayElements(cx, obj, 0, args.length(), args.array(), UpdateTypes)) return false; newlen += args.length(); } if (!SetLengthProperty(cx, obj, newlen)) return false; /* Follow Perl by returning the new array length. */ args.rval().setNumber(newlen); return true; } static inline void TryReuseArrayType(JSObject *obj, ArrayObject *narr) { /* * Try to change the type of a newly created array narr to the same type * as obj. This can only be performed if the original object is an array * and has the same prototype. */ MOZ_ASSERT(narr->getProto()->hasNewType(&ArrayObject::class_, narr->type())); if (obj->is() && !obj->hasSingletonType() && obj->getProto() == narr->getProto()) narr->setType(obj->type()); } /* * Returns true if this is a dense array whose |count| properties starting from * |startingIndex| may be accessed (get, set, delete) directly through its * contiguous vector of elements without fear of getters, setters, etc. along * the prototype chain, or of enumerators requiring notification of * modifications. */ static inline bool CanOptimizeForDenseStorage(HandleObject arr, uint32_t startingIndex, uint32_t count, JSContext *cx) { /* If the desired properties overflow dense storage, we can't optimize. */ if (UINT32_MAX - startingIndex < count) return false; /* There's no optimizing possible if it's not an array. */ if (!arr->is()) return false; /* * Don't optimize if the array might be in the midst of iteration. We * rely on this to be able to safely move dense array elements around with * just a memmove (see JSObject::moveDenseArrayElements), without worrying * about updating any in-progress enumerators for properties implicitly * deleted if a hole is moved from one location to another location not yet * visited. See bug 690622. * * Another potential wrinkle: what if the enumeration is happening on an * object which merely has |arr| on its prototype chain? It turns out this * case can't happen, because any dense array used as the prototype of * another object is first slowified, for type inference's sake. */ types::TypeObject *arrType = arr->getType(cx); if (MOZ_UNLIKELY(!arrType || arrType->hasAllFlags(OBJECT_FLAG_ITERATED))) return false; /* * Now watch out for getters and setters along the prototype chain or in * other indexed properties on the object. (Note that non-writable length * is subsumed by the initializedLength comparison.) */ return !ObjectMayHaveExtraIndexedProperties(arr) && startingIndex + count <= arr->as().getDenseInitializedLength(); } /* ES5 15.4.4.12. */ bool js::array_splice(JSContext *cx, unsigned argc, Value *vp) { return array_splice_impl(cx, argc, vp, true); } bool js::array_splice_impl(JSContext *cx, unsigned argc, Value *vp, bool returnValueIsUsed) { CallArgs args = CallArgsFromVp(argc, vp); /* Step 1. */ RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; /* Steps 3-4. */ uint32_t len; if (!GetLengthProperty(cx, obj, &len)) return false; /* Step 5. */ double relativeStart; if (!ToInteger(cx, args.get(0), &relativeStart)) return false; /* Step 6. */ uint32_t actualStart; if (relativeStart < 0) actualStart = Max(len + relativeStart, 0.0); else actualStart = Min(relativeStart, double(len)); /* Step 7. */ uint32_t actualDeleteCount; if (args.length() != 1) { double deleteCountDouble; RootedValue cnt(cx, args.length() >= 2 ? args[1] : Int32Value(0)); if (!ToInteger(cx, cnt, &deleteCountDouble)) return false; actualDeleteCount = Min(Max(deleteCountDouble, 0.0), double(len - actualStart)); } else { /* * Non-standard: if start was specified but deleteCount was omitted, * delete to the end of the array. See bug 668024 for discussion. */ actualDeleteCount = len - actualStart; } MOZ_ASSERT(len - actualStart >= actualDeleteCount); /* Steps 2, 8-9. */ Rooted arr(cx); if (CanOptimizeForDenseStorage(obj, actualStart, actualDeleteCount, cx)) { if (returnValueIsUsed) { arr = NewDenseCopiedArray(cx, actualDeleteCount, obj.as(), actualStart); if (!arr) return false; TryReuseArrayType(obj, arr); } } else { arr = NewDenseFullyAllocatedArray(cx, actualDeleteCount); if (!arr) return false; TryReuseArrayType(obj, arr); RootedValue fromValue(cx); for (uint32_t k = 0; k < actualDeleteCount; k++) { bool hole; if (!CheckForInterrupt(cx) || !GetElement(cx, obj, actualStart + k, &hole, &fromValue) || (!hole && !JSObject::defineElement(cx, arr, k, fromValue))) { return false; } } } /* Step 11. */ uint32_t itemCount = (args.length() >= 2) ? (args.length() - 2) : 0; if (itemCount < actualDeleteCount) { /* Step 12: the array is being shrunk. */ uint32_t sourceIndex = actualStart + actualDeleteCount; uint32_t targetIndex = actualStart + itemCount; uint32_t finalLength = len - actualDeleteCount + itemCount; if (CanOptimizeForDenseStorage(obj, 0, len, cx)) { ArrayObject *aobj = &obj->as(); if (!aobj->maybeCopyElementsForWrite(cx)) return false; /* Steps 12(a)-(b). */ aobj->moveDenseElements(targetIndex, sourceIndex, len - sourceIndex); /* * Update the initialized length. Do so before shrinking so that we * can apply the write barrier to the old slots. */ aobj->setDenseInitializedLength(finalLength); /* Steps 12(c)-(d). */ aobj->shrinkElements(cx, finalLength); } else { /* * This is all very slow if the length is very large. We don't yet * have the ability to iterate in sorted order, so we just do the * pessimistic thing and let CheckForInterrupt handle the * fallout. */ /* Steps 12(a)-(b). */ RootedValue fromValue(cx); for (uint32_t from = sourceIndex, to = targetIndex; from < len; from++, to++) { if (!CheckForInterrupt(cx)) return false; bool hole; if (!GetElement(cx, obj, from, &hole, &fromValue)) return false; if (hole) { if (!DeletePropertyOrThrow(cx, obj, to)) return false; } else { if (!SetArrayElement(cx, obj, to, fromValue)) return false; } } /* Steps 12(c)-(d). */ for (uint32_t k = len; k > finalLength; k--) { if (!DeletePropertyOrThrow(cx, obj, k - 1)) return false; } } } else if (itemCount > actualDeleteCount) { /* Step 13. */ /* * Optimize only if the array is already dense and we can extend it to * its new length. It would be wrong to extend the elements here for a * number of reasons. * * First, this could cause us to fall into the fast-path below. This * would cause elements to be moved into places past the non-writable * length. And when the dense initialized length is updated, that'll * cause the |in| operator to think that those elements actually exist, * even though, properly, setting them must fail. * * Second, extending the elements here will trigger assertions inside * ensureDenseElements that the elements aren't being extended past the * length of a non-writable array. This is because extending elements * will extend capacity -- which might extend them past a non-writable * length, violating the |capacity <= length| invariant for such * arrays. And that would make the various JITted fast-path method * implementations of [].push, [].unshift, and so on wrong. * * If the array length is non-writable, this method *will* throw. For * simplicity, have the slow-path code do it. (Also note that the slow * path may validly *not* throw -- if all the elements being moved are * holes.) */ if (obj->is()) { Rooted arr(cx, &obj->as()); if (arr->lengthIsWritable()) { NativeObject::EnsureDenseResult res = arr->ensureDenseElements(cx, arr->length(), itemCount - actualDeleteCount); if (res == NativeObject::ED_FAILED) return false; } } if (CanOptimizeForDenseStorage(obj, len, itemCount - actualDeleteCount, cx)) { ArrayObject *aobj = &obj->as(); if (!aobj->maybeCopyElementsForWrite(cx)) return false; aobj->moveDenseElements(actualStart + itemCount, actualStart + actualDeleteCount, len - (actualStart + actualDeleteCount)); aobj->setDenseInitializedLength(len + itemCount - actualDeleteCount); } else { RootedValue fromValue(cx); for (double k = len - actualDeleteCount; k > actualStart; k--) { if (!CheckForInterrupt(cx)) return false; double from = k + actualDeleteCount - 1; double to = k + itemCount - 1; bool hole; if (!GetElement(cx, obj, from, &hole, &fromValue)) return false; if (hole) { if (!DeletePropertyOrThrow(cx, obj, to)) return false; } else { if (!SetArrayElement(cx, obj, to, fromValue)) return false; } } } } /* Step 10. */ Value *items = args.array() + 2; /* Steps 14-15. */ for (uint32_t k = actualStart, i = 0; i < itemCount; i++, k++) { if (!SetArrayElement(cx, obj, k, HandleValue::fromMarkedLocation(&items[i]))) return false; } /* Step 16. */ double finalLength = double(len) - actualDeleteCount + itemCount; if (!SetLengthProperty(cx, obj, finalLength)) return false; /* Step 17. */ if (returnValueIsUsed) args.rval().setObject(*arr); return true; } bool js::array_concat_dense(JSContext *cx, Handle arr1, Handle arr2, Handle result) { uint32_t initlen1 = arr1->getDenseInitializedLength(); MOZ_ASSERT(initlen1 == arr1->length()); uint32_t initlen2 = arr2->getDenseInitializedLength(); MOZ_ASSERT(initlen2 == arr2->length()); /* No overflow here due to nelements limit. */ uint32_t len = initlen1 + initlen2; if (!result->ensureElements(cx, len)) return false; MOZ_ASSERT(!result->getDenseInitializedLength()); result->setDenseInitializedLength(len); result->initDenseElements(0, arr1->getDenseElements(), initlen1); result->initDenseElements(initlen1, arr2->getDenseElements(), initlen2); result->setLengthInt32(len); return true; } /* * Python-esque sequence operations. */ bool js::array_concat(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); /* Treat our |this| object as the first argument; see ECMA 15.4.4.4. */ Value *p = args.array() - 1; /* Create a new Array object and root it using *vp. */ RootedObject aobj(cx, ToObject(cx, args.thisv())); if (!aobj) return false; Rooted narr(cx); uint32_t length; if (aobj->is() && !aobj->isIndexed()) { length = aobj->as().length(); uint32_t initlen = aobj->as().getDenseInitializedLength(); narr = NewDenseCopiedArray(cx, initlen, aobj.as(), 0); if (!narr) return false; TryReuseArrayType(aobj, narr); narr->setLength(cx, length); args.rval().setObject(*narr); if (argc == 0) return true; argc--; p++; } else { narr = NewDenseEmptyArray(cx); if (!narr) return false; args.rval().setObject(*narr); length = 0; } /* Loop over [0, argc] to concat args into narr, expanding all Arrays. */ for (unsigned i = 0; i <= argc; i++) { if (!CheckForInterrupt(cx)) return false; HandleValue v = HandleValue::fromMarkedLocation(&p[i]); if (v.isObject()) { RootedObject obj(cx, &v.toObject()); // This should be IsConcatSpreadable if (IsArray(obj, cx)) { uint32_t alength; if (!GetLengthProperty(cx, obj, &alength)) return false; RootedValue tmp(cx); for (uint32_t slot = 0; slot < alength; slot++) { bool hole; if (!CheckForInterrupt(cx) || !GetElement(cx, obj, slot, &hole, &tmp)) return false; /* * Per ECMA 262, 15.4.4.4, step 9, ignore nonexistent * properties. */ if (!hole && !SetArrayElement(cx, narr, length + slot, tmp)) return false; } length += alength; continue; } } if (!SetArrayElement(cx, narr, length, v)) return false; length++; } return SetLengthProperty(cx, narr, length); } struct SortComparatorIndexes { bool operator()(uint32_t a, uint32_t b, bool *lessOrEqualp) { *lessOrEqualp = (a <= b); return true; } }; // Returns all indexed properties in the range [begin, end) found on |obj| or // its proto chain. This function does not handle proxies, objects with // resolve/lookupGeneric hooks or indexed getters, as those can introduce // new properties. In those cases, *success is set to |false|. static bool GetIndexedPropertiesInRange(JSContext *cx, HandleObject obj, uint32_t begin, uint32_t end, Vector &indexes, bool *success) { *success = false; // First, look for proxies or class hooks that can introduce extra // properties. JSObject *pobj = obj; do { if (!pobj->isNative() || pobj->getClass()->resolve != JS_ResolveStub || pobj->getOps()->lookupGeneric) { return true; } } while ((pobj = pobj->getProto())); // Collect indexed property names. pobj = obj; do { // Append dense elements. NativeObject *nativeObj = &pobj->as(); uint32_t initLen = nativeObj->getDenseInitializedLength(); for (uint32_t i = begin; i < initLen && i < end; i++) { if (nativeObj->getDenseElement(i).isMagic(JS_ELEMENTS_HOLE)) continue; if (!indexes.append(i)) return false; } // Append typed array elements. if (IsAnyTypedArray(pobj)) { uint32_t len = AnyTypedArrayLength(pobj); for (uint32_t i = begin; i < len && i < end; i++) { if (!indexes.append(i)) return false; } } // Append sparse elements. if (pobj->isIndexed()) { Shape::Range r(pobj->lastProperty()); for (; !r.empty(); r.popFront()) { Shape &shape = r.front(); jsid id = shape.propid(); if (!JSID_IS_INT(id)) continue; uint32_t i = uint32_t(JSID_TO_INT(id)); if (!(begin <= i && i < end)) continue; // Watch out for getters, they can add new properties. if (!shape.hasDefaultGetter()) return true; if (!indexes.append(i)) return false; } } } while ((pobj = pobj->getProto())); // Sort the indexes. Vector tmp(cx); size_t n = indexes.length(); if (!tmp.resize(n)) return false; if (!MergeSort(indexes.begin(), n, tmp.begin(), SortComparatorIndexes())) return false; // Remove duplicates. if (!indexes.empty()) { uint32_t last = 0; for (size_t i = 1, len = indexes.length(); i < len; i++) { uint32_t elem = indexes[i]; if (indexes[last] != elem) { last++; indexes[last] = elem; } } if (!indexes.resize(last + 1)) return false; } *success = true; return true; } static bool SliceSlowly(JSContext* cx, HandleObject obj, HandleObject receiver, uint32_t begin, uint32_t end, HandleObject result) { RootedValue value(cx); for (uint32_t slot = begin; slot < end; slot++) { bool hole; if (!CheckForInterrupt(cx) || !GetElement(cx, obj, receiver, slot, &hole, &value)) { return false; } if (!hole && !JSObject::defineElement(cx, result, slot - begin, value)) return false; } return true; } static bool SliceSparse(JSContext *cx, HandleObject obj, uint32_t begin, uint32_t end, HandleObject result) { MOZ_ASSERT(begin <= end); Vector indexes(cx); bool success; if (!GetIndexedPropertiesInRange(cx, obj, begin, end, indexes, &success)) return false; if (!success) return SliceSlowly(cx, obj, obj, begin, end, result); RootedValue value(cx); for (size_t i = 0, len = indexes.length(); i < len; i++) { uint32_t index = indexes[i]; MOZ_ASSERT(begin <= index && index < end); bool hole; if (!GetElement(cx, obj, obj, index, &hole, &value)) return false; if (!hole && !JSObject::defineElement(cx, result, index - begin, value)) return false; } return true; } bool js::array_slice(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; uint32_t length; if (!GetLengthProperty(cx, obj, &length)) return false; uint32_t begin = 0; uint32_t end = length; if (args.length() > 0) { double d; if (!ToInteger(cx, args[0], &d)) return false; if (d < 0) { d += length; if (d < 0) d = 0; } else if (d > length) { d = length; } begin = (uint32_t)d; if (args.hasDefined(1)) { if (!ToInteger(cx, args[1], &d)) return false; if (d < 0) { d += length; if (d < 0) d = 0; } else if (d > length) { d = length; } end = (uint32_t)d; } } if (begin > end) begin = end; Rooted narr(cx); if (obj->is() && !ObjectMayHaveExtraIndexedProperties(obj)) { narr = NewDenseFullyAllocatedArray(cx, end - begin); if (!narr) return false; TryReuseArrayType(obj, narr); ArrayObject *aobj = &obj->as(); if (aobj->getDenseInitializedLength() > begin) { uint32_t numSourceElements = aobj->getDenseInitializedLength() - begin; uint32_t initLength = Min(numSourceElements, end - begin); narr->setDenseInitializedLength(initLength); narr->initDenseElements(0, &aobj->getDenseElement(begin), initLength); } args.rval().setObject(*narr); return true; } narr = NewDensePartlyAllocatedArray(cx, end - begin); if (!narr) return false; TryReuseArrayType(obj, narr); if (js::GetElementsOp op = obj->getOps()->getElements) { // Ensure that we have dense elements, so that ElementAdder::append can // use setDenseElementWithType. NativeObject::EnsureDenseResult result = narr->ensureDenseElements(cx, 0, end - begin); if (result == NativeObject::ED_FAILED) return false; if (result == NativeObject::ED_OK) { ElementAdder adder(cx, narr, end - begin, ElementAdder::CheckHasElemPreserveHoles); if (!op(cx, obj, begin, end, &adder)) return false; args.rval().setObject(*narr); return true; } // Fallthrough MOZ_ASSERT(result == NativeObject::ED_SPARSE); } if (obj->isNative() && obj->isIndexed() && end - begin > 1000) { if (!SliceSparse(cx, obj, begin, end, narr)) return false; } else { if (!SliceSlowly(cx, obj, obj, begin, end, narr)) return false; } args.rval().setObject(*narr); return true; } /* ES5 15.4.4.20. */ static bool array_filter(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); /* Step 1. */ RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; /* Step 2-3. */ uint32_t len; if (!GetLengthProperty(cx, obj, &len)) return false; /* Step 4. */ if (args.length() == 0) { js_ReportMissingArg(cx, args.calleev(), 0); return false; } RootedObject callable(cx, ValueToCallable(cx, args[0], args.length() - 1)); if (!callable) return false; /* Step 5. */ RootedValue thisv(cx, args.length() >= 2 ? args[1] : UndefinedValue()); /* Step 6. */ RootedObject arr(cx, NewDenseFullyAllocatedArray(cx, 0)); if (!arr) return false; TypeObject *newtype = GetTypeCallerInitObject(cx, JSProto_Array); if (!newtype) return false; arr->setType(newtype); /* Step 7. */ uint32_t k = 0; /* Step 8. */ uint32_t to = 0; /* Step 9. */ MOZ_ASSERT(!InParallelSection()); FastInvokeGuard fig(cx, ObjectValue(*callable)); InvokeArgs &args2 = fig.args(); RootedValue kValue(cx); while (k < len) { if (!CheckForInterrupt(cx)) return false; /* Step a, b, and c.i. */ bool kNotPresent; if (!GetElement(cx, obj, k, &kNotPresent, &kValue)) return false; /* Step c.ii-iii. */ if (!kNotPresent) { if (!args2.init(3)) return false; args2.setCallee(ObjectValue(*callable)); args2.setThis(thisv); args2[0].set(kValue); args2[1].setNumber(k); args2[2].setObject(*obj); if (!fig.invoke(cx)) return false; if (ToBoolean(args2.rval())) { if (!SetArrayElement(cx, arr, to, kValue)) return false; to++; } } /* Step d. */ k++; } /* Step 10. */ args.rval().setObject(*arr); return true; } static bool array_isArray(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); bool isArray = false; if (args.get(0).isObject()) { RootedObject obj(cx, &args[0].toObject()); isArray = IsArray(obj, cx); } args.rval().setBoolean(isArray); return true; } static bool IsArrayConstructor(const Value &v) { // This must only return true if v is *the* Array constructor for the // current compartment; we rely on the fact that any other Array // constructor would be represented as a wrapper. return v.isObject() && v.toObject().is() && v.toObject().as().isNative() && v.toObject().as().native() == js_Array; } static bool ArrayFromCallArgs(JSContext *cx, HandleTypeObject type, CallArgs &args) { if (!InitArrayTypes(cx, type, args.array(), args.length())) return false; JSObject *obj = (args.length() == 0) ? NewDenseEmptyArray(cx) : NewDenseCopiedArray(cx, args.length(), args.array()); if (!obj) return false; obj->setType(type); args.rval().setObject(*obj); return true; } static bool array_of(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (IsArrayConstructor(args.thisv()) || !IsConstructor(args.thisv())) { // IsArrayConstructor(this) will usually be true in practice. This is // the most common path. RootedTypeObject type(cx, GetTypeCallerInitObject(cx, JSProto_Array)); if (!type) return false; return ArrayFromCallArgs(cx, type, args); } // Step 4. RootedObject obj(cx); { RootedValue v(cx); Value argv[1] = {NumberValue(args.length())}; if (!InvokeConstructor(cx, args.thisv(), 1, argv, &v)) return false; obj = ToObject(cx, v); if (!obj) return false; } // Step 8. for (unsigned k = 0; k < args.length(); k++) { if (!JSObject::defineElement(cx, obj, k, args[k])) return false; } // Steps 9-10. RootedValue v(cx, NumberValue(args.length())); if (!JSObject::setProperty(cx, obj, obj, cx->names().length, &v, true)) return false; // Step 11. args.rval().setObject(*obj); return true; } #define GENERIC JSFUN_GENERIC_NATIVE static const JSFunctionSpec array_methods[] = { #if JS_HAS_TOSOURCE JS_FN(js_toSource_str, array_toSource, 0,0), #endif JS_FN(js_toString_str, array_toString, 0,0), JS_FN(js_toLocaleString_str,array_toLocaleString,0,0), /* Perl-ish methods. */ JS_FN("join", array_join, 1,JSFUN_GENERIC_NATIVE), JS_FN("reverse", array_reverse, 0,JSFUN_GENERIC_NATIVE), JS_FN("sort", array_sort, 1,JSFUN_GENERIC_NATIVE), JS_FN("push", array_push, 1,JSFUN_GENERIC_NATIVE), JS_FN("pop", array_pop, 0,JSFUN_GENERIC_NATIVE), JS_FN("shift", array_shift, 0,JSFUN_GENERIC_NATIVE), JS_FN("unshift", array_unshift, 1,JSFUN_GENERIC_NATIVE), JS_FN("splice", array_splice, 2,JSFUN_GENERIC_NATIVE), /* Pythonic sequence methods. */ JS_FN("concat", array_concat, 1,JSFUN_GENERIC_NATIVE), JS_FN("slice", array_slice, 2,JSFUN_GENERIC_NATIVE), JS_SELF_HOSTED_FN("lastIndexOf", "ArrayLastIndexOf", 1,0), JS_SELF_HOSTED_FN("indexOf", "ArrayIndexOf", 1,0), JS_SELF_HOSTED_FN("forEach", "ArrayForEach", 1,0), JS_SELF_HOSTED_FN("map", "ArrayMap", 1,0), JS_SELF_HOSTED_FN("reduce", "ArrayReduce", 1,0), JS_SELF_HOSTED_FN("reduceRight", "ArrayReduceRight", 1,0), JS_FN("filter", array_filter, 1,JSFUN_GENERIC_NATIVE), JS_SELF_HOSTED_FN("some", "ArraySome", 1,0), JS_SELF_HOSTED_FN("every", "ArrayEvery", 1,0), #ifdef ENABLE_PARALLEL_JS /* Parallelizable and pure methods. */ JS_SELF_HOSTED_FN("mapPar", "ArrayMapPar", 2,0), JS_SELF_HOSTED_FN("reducePar", "ArrayReducePar", 2,0), JS_SELF_HOSTED_FN("scanPar", "ArrayScanPar", 2,0), JS_SELF_HOSTED_FN("scatterPar", "ArrayScatterPar", 5,0), JS_SELF_HOSTED_FN("filterPar", "ArrayFilterPar", 2,0), #endif /* ES6 additions */ JS_SELF_HOSTED_FN("find", "ArrayFind", 1,0), JS_SELF_HOSTED_FN("findIndex", "ArrayFindIndex", 1,0), JS_SELF_HOSTED_FN("copyWithin", "ArrayCopyWithin", 3,0), JS_SELF_HOSTED_FN("fill", "ArrayFill", 3,0), JS_SELF_HOSTED_SYM_FN(iterator, "ArrayValues", 0,0), JS_SELF_HOSTED_FN("entries", "ArrayEntries", 0,0), JS_SELF_HOSTED_FN("keys", "ArrayKeys", 0,0), /* ES7 additions */ #ifdef NIGHTLY_BUILD JS_SELF_HOSTED_FN("includes", "ArrayIncludes", 2,0), #endif JS_FS_END }; static const JSFunctionSpec array_static_methods[] = { JS_FN("isArray", array_isArray, 1,0), JS_SELF_HOSTED_FN("lastIndexOf", "ArrayStaticLastIndexOf", 2,0), JS_SELF_HOSTED_FN("indexOf", "ArrayStaticIndexOf", 2,0), JS_SELF_HOSTED_FN("forEach", "ArrayStaticForEach", 2,0), JS_SELF_HOSTED_FN("map", "ArrayStaticMap", 2,0), JS_SELF_HOSTED_FN("every", "ArrayStaticEvery", 2,0), JS_SELF_HOSTED_FN("some", "ArrayStaticSome", 2,0), JS_SELF_HOSTED_FN("reduce", "ArrayStaticReduce", 2,0), JS_SELF_HOSTED_FN("reduceRight", "ArrayStaticReduceRight", 2,0), JS_SELF_HOSTED_FN("from", "ArrayFrom", 3,0), JS_FN("of", array_of, 0,0), #ifdef ENABLE_PARALLEL_JS JS_SELF_HOSTED_FN("build", "ArrayStaticBuild", 2,0), /* Parallelizable and pure static methods. */ JS_SELF_HOSTED_FN("buildPar", "ArrayStaticBuildPar", 3,0), #endif JS_FS_END }; /* ES5 15.4.2 */ bool js_Array(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); RootedTypeObject type(cx, GetTypeCallerInitObject(cx, JSProto_Array)); if (!type) return false; if (args.length() != 1 || !args[0].isNumber()) return ArrayFromCallArgs(cx, type, args); uint32_t length; if (args[0].isInt32()) { int32_t i = args[0].toInt32(); if (i < 0) { JS_ReportErrorNumber(cx, js_GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } length = uint32_t(i); } else { double d = args[0].toDouble(); length = ToUint32(d); if (d != double(length)) { JS_ReportErrorNumber(cx, js_GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } } /* * Allocate up to |EagerAllocationMaxLength| dense elements eagerly, to * avoid reallocating elements when filling the array. */ AllocatingBehaviour allocating = (length <= ArrayObject::EagerAllocationMaxLength) ? NewArray_FullyAllocating : NewArray_PartlyAllocating; RootedObject obj(cx, NewDenseArray(cx, length, type, allocating)); if (!obj) return false; args.rval().setObject(*obj); return true; } ArrayObject * js::ArrayConstructorOneArg(JSContext *cx, HandleTypeObject type, int32_t lengthInt) { if (lengthInt < 0) { JS_ReportErrorNumber(cx, js_GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return nullptr; } uint32_t length = uint32_t(lengthInt); AllocatingBehaviour allocating = (length <= ArrayObject::EagerAllocationMaxLength) ? NewArray_FullyAllocating : NewArray_PartlyAllocating; return NewDenseArray(cx, length, type, allocating); } static JSObject * CreateArrayPrototype(JSContext *cx, JSProtoKey key) { MOZ_ASSERT(key == JSProto_Array); RootedObject proto(cx, cx->global()->getOrCreateObjectPrototype(cx)); if (!proto) return nullptr; RootedTypeObject type(cx, cx->getNewType(&ArrayObject::class_, TaggedProto(proto))); if (!type) return nullptr; JSObject *metadata = nullptr; if (!NewObjectMetadata(cx, &metadata)) return nullptr; RootedShape shape(cx, EmptyShape::getInitialShape(cx, &ArrayObject::class_, TaggedProto(proto), proto->getParent(), metadata, gc::FINALIZE_OBJECT0)); if (!shape) return nullptr; RootedArrayObject arrayProto(cx, ArrayObject::createArray(cx, gc::FINALIZE_OBJECT4, gc::TenuredHeap, shape, type, 0)); if (!arrayProto || !JSObject::setSingletonType(cx, arrayProto) || !AddLengthProperty(cx, arrayProto)) { return nullptr; } /* * The default 'new' type of Array.prototype is required by type inference * to have unknown properties, to simplify handling of e.g. heterogenous * arrays in JSON and script literals and allows setDenseArrayElement to * be used without updating the indexed type set for such default arrays. */ if (!JSObject::setNewTypeUnknown(cx, &ArrayObject::class_, arrayProto)) return nullptr; return arrayProto; } const Class ArrayObject::class_ = { "Array", JSCLASS_HAS_CACHED_PROTO(JSProto_Array), array_addProperty, JS_DeletePropertyStub, /* delProperty */ JS_PropertyStub, /* getProperty */ JS_StrictPropertyStub, /* setProperty */ JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, nullptr, nullptr, /* call */ nullptr, /* hasInstance */ nullptr, /* construct */ nullptr, /* trace */ { GenericCreateConstructor, CreateArrayPrototype, array_static_methods, array_methods } }; /* * Array allocation functions. */ static inline bool EnsureNewArrayElements(ExclusiveContext *cx, ArrayObject *obj, uint32_t length) { /* * If ensureElements creates dynamically allocated slots, then having * fixedSlots is a waste. */ DebugOnly cap = obj->getDenseCapacity(); if (!obj->ensureElements(cx, length)) return false; MOZ_ASSERT_IF(cap, !obj->hasDynamicElements()); return true; } template static MOZ_ALWAYS_INLINE ArrayObject * NewArray(ExclusiveContext *cxArg, uint32_t length, JSObject *protoArg, NewObjectKind newKind = GenericObject) { gc::AllocKind allocKind = GuessArrayGCKind(length); MOZ_ASSERT(CanBeFinalizedInBackground(allocKind, &ArrayObject::class_)); allocKind = GetBackgroundAllocKind(allocKind); NewObjectCache::EntryIndex entry = -1; uint64_t gcNumber = 0; if (JSContext *cx = cxArg->maybeJSContext()) { JSRuntime *rt = cx->runtime(); NewObjectCache &cache = rt->newObjectCache; if (newKind == GenericObject && !cx->compartment()->hasObjectMetadataCallback() && cache.lookupGlobal(&ArrayObject::class_, cx->global(), allocKind, &entry)) { gc::InitialHeap heap = GetInitialHeap(newKind, &ArrayObject::class_); JSObject *obj = cache.newObjectFromHit(cx, entry, heap); if (obj) { /* Fixup the elements pointer and length, which may be incorrect. */ ArrayObject *arr = &obj->as(); arr->setFixedElements(); arr->setLength(cx, length); if (maxLength > 0 && !EnsureNewArrayElements(cx, arr, std::min(maxLength, length))) { return nullptr; } return arr; } else { RootedObject proto(cxArg, protoArg); obj = cache.newObjectFromHit(cx, entry, heap); MOZ_ASSERT(!obj); protoArg = proto; } } else { gcNumber = rt->gc.gcNumber(); } } RootedObject proto(cxArg, protoArg); if (protoArg) JS::PoisonPtr(&protoArg); if (!proto && !GetBuiltinPrototype(cxArg, JSProto_Array, &proto)) return nullptr; RootedTypeObject type(cxArg, cxArg->getNewType(&ArrayObject::class_, TaggedProto(proto))); if (!type) return nullptr; JSObject *metadata = nullptr; if (!NewObjectMetadata(cxArg, &metadata)) return nullptr; /* * Get a shape with zero fixed slots, regardless of the size class. * See JSObject::createArray. */ RootedShape shape(cxArg, EmptyShape::getInitialShape(cxArg, &ArrayObject::class_, TaggedProto(proto), cxArg->global(), metadata, gc::FINALIZE_OBJECT0)); if (!shape) return nullptr; RootedArrayObject arr(cxArg, ArrayObject::createArray(cxArg, allocKind, GetInitialHeap(newKind, &ArrayObject::class_), shape, type, length)); if (!arr) return nullptr; if (shape->isEmptyShape()) { if (!AddLengthProperty(cxArg, arr)) return nullptr; shape = arr->lastProperty(); EmptyShape::insertInitialShape(cxArg, shape, proto); } if (newKind == SingletonObject && !JSObject::setSingletonType(cxArg, arr)) return nullptr; if (entry != -1 && cxArg->asJSContext()->runtime()->gc.gcNumber() == gcNumber) { cxArg->asJSContext()->runtime()->newObjectCache.fillGlobal(entry, &ArrayObject::class_, cxArg->global(), allocKind, arr); } if (maxLength > 0 && !EnsureNewArrayElements(cxArg, arr, std::min(maxLength, length))) return nullptr; probes::CreateObject(cxArg, arr); return arr; } ArrayObject * JS_FASTCALL js::NewDenseEmptyArray(JSContext *cx, JSObject *proto /* = nullptr */, NewObjectKind newKind /* = GenericObject */) { return NewArray<0>(cx, 0, proto, newKind); } ArrayObject * JS_FASTCALL js::NewDenseFullyAllocatedArray(ExclusiveContext *cx, uint32_t length, JSObject *proto /* = nullptr */, NewObjectKind newKind /* = GenericObject */) { return NewArray(cx, length, proto, newKind); } ArrayObject * JS_FASTCALL js::NewDensePartlyAllocatedArray(ExclusiveContext *cx, uint32_t length, JSObject *proto /* = nullptr */, NewObjectKind newKind /* = GenericObject */) { return NewArray(cx, length, proto, newKind); } ArrayObject * JS_FASTCALL js::NewDenseUnallocatedArray(ExclusiveContext *cx, uint32_t length, JSObject *proto /* = nullptr */, NewObjectKind newKind /* = GenericObject */) { return NewArray<0>(cx, length, proto, newKind); } ArrayObject * js::NewDenseArray(ExclusiveContext *cx, uint32_t length, HandleTypeObject type, AllocatingBehaviour allocating) { NewObjectKind newKind = !type ? SingletonObject : GenericObject; if (type && type->shouldPreTenure()) newKind = TenuredObject; ArrayObject *arr; if (allocating == NewArray_Unallocating) { arr = NewDenseUnallocatedArray(cx, length, nullptr, newKind); } else if (allocating == NewArray_PartlyAllocating) { arr = NewDensePartlyAllocatedArray(cx, length, nullptr, newKind); } else { MOZ_ASSERT(allocating == NewArray_FullyAllocating); arr = NewDenseFullyAllocatedArray(cx, length, nullptr, newKind); } if (!arr) return nullptr; if (type) arr->setType(type); // If the length calculation overflowed, make sure that is marked for the // new type. if (arr->length() > INT32_MAX) arr->setLength(cx, arr->length()); return arr; } ArrayObject * js::NewDenseCopiedArray(JSContext *cx, uint32_t length, HandleArrayObject src, uint32_t elementOffset, JSObject *proto /* = nullptr */) { MOZ_ASSERT(!src->isIndexed()); ArrayObject *arr = NewArray(cx, length, proto); if (!arr) return nullptr; MOZ_ASSERT(arr->getDenseCapacity() >= length); const Value* vp = src->getDenseElements() + elementOffset; arr->setDenseInitializedLength(vp ? length : 0); if (vp) arr->initDenseElements(0, vp, length); return arr; } // values must point at already-rooted Value objects ArrayObject * js::NewDenseCopiedArray(JSContext *cx, uint32_t length, const Value *values, JSObject *proto /* = nullptr */, NewObjectKind newKind /* = GenericObject */) { ArrayObject *arr = NewArray(cx, length, proto); if (!arr) return nullptr; MOZ_ASSERT(arr->getDenseCapacity() >= length); arr->setDenseInitializedLength(values ? length : 0); if (values) arr->initDenseElements(0, values, length); return arr; } ArrayObject * js::NewDenseFullyAllocatedArrayWithTemplate(JSContext *cx, uint32_t length, JSObject *templateObject) { gc::AllocKind allocKind = GuessArrayGCKind(length); MOZ_ASSERT(CanBeFinalizedInBackground(allocKind, &ArrayObject::class_)); allocKind = GetBackgroundAllocKind(allocKind); RootedTypeObject type(cx, templateObject->type()); RootedShape shape(cx, templateObject->lastProperty()); gc::InitialHeap heap = GetInitialHeap(GenericObject, &ArrayObject::class_); Rooted arr(cx, ArrayObject::createArray(cx, allocKind, heap, shape, type, length)); if (!arr) return nullptr; if (!EnsureNewArrayElements(cx, arr, length)) return nullptr; probes::CreateObject(cx, arr); return arr; } JSObject * js::NewDenseCopyOnWriteArray(JSContext *cx, HandleNativeObject templateObject, gc::InitialHeap heap) { RootedShape shape(cx, templateObject->lastProperty()); MOZ_ASSERT(!gc::IsInsideNursery(templateObject)); JSObject *metadata = nullptr; if (!NewObjectMetadata(cx, &metadata)) return nullptr; if (metadata) { shape = Shape::setObjectMetadata(cx, metadata, templateObject->getTaggedProto(), shape); if (!shape) return nullptr; } ArrayObject *arr = ArrayObject::createCopyOnWriteArray(cx, heap, shape, templateObject); if (!arr) return nullptr; probes::CreateObject(cx, arr); return arr; } #ifdef DEBUG bool js_ArrayInfo(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); JSObject *obj; for (unsigned i = 0; i < args.length(); i++) { RootedValue arg(cx, args[i]); char *bytes = DecompileValueGenerator(cx, JSDVG_SEARCH_STACK, arg, NullPtr()); if (!bytes) return false; if (arg.isPrimitive() || !(obj = arg.toObjectOrNull())->is()) { fprintf(stderr, "%s: not array\n", bytes); js_free(bytes); continue; } fprintf(stderr, "%s: (len %u", bytes, obj->as().length()); fprintf(stderr, ", capacity %u", obj->as().getDenseCapacity()); fputs(")\n", stderr); js_free(bytes); } args.rval().setUndefined(); return true; } #endif