immutable Rational{T<:Integer} <: Real num::T den::T function Rational(num::T, den::T) num == den == 0 && error("invalid rational: 0//0") g = den < 0 ? -gcd(den, num) : gcd(den, num) new(div(num, g), div(den, g)) end end Rational{T<:Integer}(n::T, d::T) = Rational{T}(n,d) Rational(n::Integer, d::Integer) = Rational(promote(n,d)...) Rational(n::Integer) = Rational(n,one(n)) //(n::Integer, d::Integer ) = Rational(n,d) //(x::Rational, y::Integer ) = x.num//(x.den*y) //(x::Integer, y::Rational) = (x*y.den)//y.num //(x::Rational, y::Rational) = (x.num*y.den)//(x.den*y.num) //(x::Complex, y::Real ) = complex(real(x)//y,imag(x)//y) //(x::Real, y::Complex ) = x*y'//real(y*y') function //(x::Complex, y::Complex) xy = x*y' yy = real(y*y') complex(real(xy)//yy, imag(xy)//yy) end //(X::AbstractArray, y::Number) = X .// y .//(X::AbstractArray, y::Number) = reshape([ x // y for x in X ], size(X)) .//(y::Number, X::AbstractArray) = reshape([ y // x for x in X ], size(X)) function show(io::IO, x::Rational) show(io, num(x)) print(io, "//") show(io, den(x)) end convert{T<:Integer}(::Type{Rational{T}}, x::Rational) = Rational{T}(convert(T,x.num),convert(T,x.den)) convert{T<:Integer}(::Type{Rational{T}}, x::Integer) = Rational{T}(convert(T,x), convert(T,1)) convert(::Type{Rational}, x::Rational) = x convert(::Type{Rational}, x::Integer) = convert(Rational{typeof(x)},x) convert(::Type{Bool}, x::Rational) = (x!=0) # to resolve ambiguity convert{T<:Integer}(::Type{T}, x::Rational) = (isinteger(x) ? convert(T, x.num) : throw(InexactError())) convert(::Type{FloatingPoint}, x::Rational) = float(x.num)/float(x.den) function convert{T<:FloatingPoint,S}(::Type{T}, x::Rational{S}) P = promote_type(T,S) convert(T, convert(P,x.num)/convert(P,x.den)) end function convert{T<:Integer}(::Type{Rational{T}}, x::FloatingPoint) r = rationalize(T, x, tol=0) x == convert(typeof(x), r) || throw(InexactError()) r end convert(::Type{Rational}, x::Float64) = convert(Rational{Int64}, x) convert(::Type{Rational}, x::Float32) = convert(Rational{Int}, x) promote_rule{T<:Integer,S<:Integer}(::Type{Rational{T}}, ::Type{S}) = Rational{promote_type(T,S)} promote_rule{T<:Integer,S<:Integer}(::Type{Rational{T}}, ::Type{Rational{S}}) = Rational{promote_type(T,S)} promote_rule{T<:Integer,S<:FloatingPoint}(::Type{Rational{T}}, ::Type{S}) = promote_type(T,S) widen{T}(::Type{Rational{T}}) = Rational{widen(T)} function rationalize{T<:Integer}(::Type{T}, x::FloatingPoint; tol::Real=eps(x)) if isnan(x); return zero(T)//zero(T); end if x < typemin(T); return -one(T)//zero(T); end if typemax(T) < x; return one(T)//zero(T); end tm = x < 0 ? typemin(T) : typemax(T) z = x*tm if z <= 0.5 return zero(T)//one(T) end if z <= 1.0 return one(T)//tm end y = x a = d = 1 b = c = 0 while true f = itrunc(y); y -= f p, q = f*a+c, f*b+d typemin(T) <= p <= typemax(T) && typemin(T) <= q <= typemax(T) || break 0 != sign(a)*sign(b) != sign(p)*sign(q) && break a, b, c, d = p, q, a, b if y == 0 || abs(a/b-x) <= tol break end y = inv(y) end return convert(T,a)//convert(T,b) end rationalize(x::Union(Float64,Float32); tol::Real=eps(x)) = rationalize(Int, x, tol=tol) num(x::Integer) = x den(x::Integer) = one(x) num(x::Rational) = x.num den(x::Rational) = x.den sign(x::Rational) = sign(x.num) signbit(x::Rational) = signbit(x.num) copysign(x::Rational, y::Real) = copysign(x.num,y) // x.den copysign(x::Rational, y::Rational) = copysign(x.num,y.num) // x.den typemin{T<:Integer}(::Type{Rational{T}}) = -one(T)//zero(T) typemax{T<:Integer}(::Type{Rational{T}}) = one(T)//zero(T) isinteger(x::Rational) = x.den == 1 -(x::Rational) = (-x.num) // x.den for op in (:+, :-, :rem, :mod) @eval begin function ($op)(x::Rational, y::Rational) g = gcd(x.den, y.den) Rational(($op)(x.num * div(y.den, g), y.num * div(x.den, g)), x.den * div(y.den, g)) end end end *(x::Rational, y::Rational) = (x.num*y.num) // (x.den*y.den) /(x::Rational, y::Rational) = (x.num*y.den) // (x.den*y.num) /(x::Rational, z::Complex ) = inv(z/x) ==(x::Rational, y::Rational) = (x.den == y.den) & (x.num == y.num) ==(x::Rational, y::Integer ) = (x.den == 1) & (x.num == y) ==(x::Integer , y::Rational) = y == x # needed to avoid ambiguity between ==(x::Real, z::Complex) and ==(x::Rational, y::Number) ==(z::Complex , x::Rational) = isreal(z) & (real(z) == x) ==(x::Rational, z::Complex ) = isreal(z) & (real(z) == x) ==(x::FloatingPoint, q::Rational) = count_ones(q.den) <= 1 & (x == q.num/q.den) & (x*q.den == q.num) ==(q::Rational, x::FloatingPoint) = count_ones(q.den) <= 1 & (x == q.num/q.den) & (x*q.den == q.num) # TODO: fix inequalities to be in line with equality check < (x::Rational, y::Rational) = x.den == y.den ? x.num < y.num : widemul(x.num,y.den) < widemul(x.den,y.num) < (x::Rational, y::Integer ) = x.num < widemul(x.den,y) < (x::Rational, y::Real ) = x.num < x.den*y < (x::Integer , y::Rational) = widemul(x,y.den) < y.num < (x::Real , y::Rational) = x*y.den < y.num <=(x::Rational, y::Rational) = x.den == y.den ? x.num <= y.num : widemul(x.num,y.den) <= widemul(x.den,y.num) <=(x::Rational, y::Integer ) = x.num <= widemul(x.den,y) <=(x::Rational, y::Real ) = x.num <= x.den*y <=(x::Integer , y::Rational) = widemul(x,y.den) <= y.num <=(x::Real , y::Rational) = x*y.den <= y.num div(x::Rational, y::Rational) = div(x.num*y.den, x.den*y.num) div(x::Rational, y::Real ) = div(x.num, x.den*y) div(x::Real , y::Rational) = div(x*y.den, y.num) fld(x::Rational, y::Rational) = fld(x.num*y.den, x.den*y.num) fld(x::Rational, y::Real ) = fld(x.num, x.den*y) fld(x::Real , y::Rational) = fld(x*y.den, y.num) itrunc(x::Rational) = div(x.num,x.den) ifloor(x::Rational) = fld(x.num,x.den) iceil (x::Rational) = -fld(-x.num,x.den) iround(x::Rational) = div(x.num*2 + copysign(x.den,x.num), x.den*2) trunc(x::Rational) = Rational(itrunc(x)) floor(x::Rational) = Rational(ifloor(x)) ceil (x::Rational) = Rational(iceil(x)) round(x::Rational) = Rational(iround(x)) ## rational to int coercion ## for f in (:int8, :int16, :int32, :int64, :int128, :uint8, :uint16, :uint32, :uint64, :uint128, :signed, :integer, :unsigned, :int, :uint) @eval ($f)(x::Rational) = ($f)(iround(x)) end ^(x::Rational, y::Integer) = y < 0 ? Rational(x.den^-y, x.num^-y) : Rational(x.num^y, x.den^y) ^(x::Number, y::Rational) = x^(y.num/y.den) ^{T<:FloatingPoint}(x::T, y::Rational) = x^(convert(T,y.num)/y.den) ^{T<:FloatingPoint}(x::Complex{T}, y::Rational) = x^(convert(T,y.num)/y.den) ^{T<:Rational}(z::Complex{T}, n::Bool) = n ? z : one(z) # to resolve ambiguity ^{T<:Rational}(z::Complex{T}, n::Integer) = n>=0 ? power_by_squaring(z,n) : power_by_squaring(inv(z),-n)