Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/sns
11 November 2022, 14:07:59 UTC
  • Code
  • Branches (8)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.9
    • refs/tags/0.9.1
    • refs/tags/1.0.0
    • refs/tags/1.1.0
    • refs/tags/1.1.1
    • refs/tags/1.1.2
    • refs/tags/1.2.2
    No releases to show
  • 19b637c
  • /
  • R
  • /
  • sns.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:bde5864ba1db93b4191dc9fae7f500d16ea17019
origin badgedirectory badge Iframe embedding
swh:1:dir:3f9917389f75c8281afed647d11acde9ce210747
origin badgerevision badge
swh:1:rev:766b6821a98ea206fe461d23237bc4a4589c24af
origin badgesnapshot badge
swh:1:snp:218ce733af7de6247148caa3cf8c71ef1c66e614
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 766b6821a98ea206fe461d23237bc4a4589c24af authored by Alireza Mahani on 02 November 2022, 10:02:22 UTC
version 1.2.2
Tip revision: 766b682
sns.R
sns <- function(x, fghEval, rnd=TRUE, gfit=NULL, mh.diag = FALSE, part = NULL
  , numderiv = 0, numderiv.method = c("Richardson", "simple"), numderiv.args = list()
  , ...)
{ 

  fitGaussian <- function(x, f, ...) 
  {
    ret <- f(x,...)                # Evaluate the function at 'x'
    Sigma <- solve(-ret$h)           
    mu <- x + Sigma %*% ret$g

    return (list(mu=as.vector(mu), # Newton method solution
               Sigma=Sigma,        # Inverse Hessian or Covariance matrix
               iSigma=-ret$h,      # Inverse covariance or Hessian
               f=ret$f,            # function value 
               g=ret$g))           # gradient 
  }
  
  numderiv <- as.integer(numderiv)
  if (numderiv > 0) {
    numderiv.method <- match.arg(numderiv.method)
    if (numderiv == 1) { # we need numeric hessian
      fghEval.int <- function(x, ...) {
        fg <- fghEval(x, ...)
        h <- hessian(func = function(x, ...) fghEval(x, ...)$f, x = x, ..., method = numderiv.method, method.args = numderiv.args)
        return (list(f = fg$f, g = fg$g, h = h))
      }
    } else { # we need numeric gradient and hessian
      fghEval.int <- function(x, ...) {
        f <- fghEval(x, ...)
        g <- grad(func = fghEval, x = x, ..., method = numderiv.method, method.args = numderiv.args)
        h <- hessian(func = fghEval, x = x, ..., method = numderiv.method, method.args = numderiv.args)
        return (list(f = f, g = g, h = h))
      }
    }
  } else {
    fghEval.int <- fghEval
  }
  
  if (!is.null(part)) { # code for 'state space partitioning', recursive call
    fghEval.part <- function(xsub, xfull, subset, ...) {
      xfull[subset] <- xsub
      ret <- fghEval.int(xfull, ...)
      return (list(f = ret$f, g = ret$g[subset], h = ret$h[subset, subset]))
    }
    npart <- length(part)
    accept <- logical(npart)
    if (mh.diag) {
      diag <- array(NA, dim = c(4, npart))
      dimnames(diag) <- list(c("log.p", "log.p.prop", "log.q", "log.q.prop"), 1:npart)
    }
    for (n in 1:npart) {
      subset <- part[[n]]
      rettmp <- sns(x = x[subset], fghEval = fghEval.part, rnd = rnd, gfit = NULL, part = NULL, mh.diag = mh.diag, xfull = x, subset = subset, ...)
      x[subset] <- rettmp
      accept[n] <- attr(rettmp, "accept")
      if (mh.diag) diag[, n] <- attr(rettmp, "mh.diag")
    }
    attr(x, "lp") <- attr(rettmp, "lp")
    attr(x, "accept") <- accept
    attr(x, "gfit") <- fitGaussian(x, fghEval.int, ...)
    if (mh.diag) attr(x, "mh.diag") <- mh.diag
    return (x)
  }

  # rnd: if FALSE, perform Newton's optimization (non-stochastic)
  # Fit Gaussian at x
  if (is.null(gfit)) gfit <- fitGaussian(x = x, f = fghEval.int, ...)
  mu     <- gfit$mu 
  Sigma  <- gfit$Sigma   # Covariance
  iSigma <- gfit$iSigma  # Inverse covariance

  K <- length(x)
      
  if (rnd) {
    # Draw sample from proposal distribution (Gaussian fit at x)
    x.prop <- as.vector(rmvnorm(n=1, mean=mu, sigma=Sigma))
  } else {
    # Run (non-stochastic) Newton optimization 
    rho <- 0.5; c <- 0.5;
    alphak <- 1; 
    d <- mu - x; # use newton's direction as step
    search_x <- as.vector(mu);
        
    fk <- gfit$f; # Values at the current point
    gk <- gfit$g; 
    fk1 <- fghEval.int(search_x, ...)$f; # Function value at searching point
    ls_iter <- 1;
    # Linesearch by backtracking from full Newton step
    while (fk1 < fk + c*alphak*(t(gk)%*%d) && ls_iter < 20) { 
      alphak <- alphak*rho; # if so, then go half way
      search_x <- x + alphak*d;
      fk1 <- fghEval.int(search_x, ...)$f;
      ls_iter <- ls_iter + 1;
    }
    x.prop <- as.vector(search_x);
  }

  log.q.prop <- dmvnorm(as.vector(x.prop), mu, Sigma, log=TRUE)
  
  # fit Gaussian at x.prop
  gfit.prop <- fitGaussian(x=x.prop,f=fghEval.int,...)
  mu.prop <- gfit.prop$mu
  Sigma.prop <- gfit.prop$Sigma
  iSigma.prop <- gfit.prop$iSigma

  # create MH acceptance ratio
  log.q <- dmvnorm(as.vector(x), mu.prop, Sigma.prop, log=TRUE)
  
  log.p <- gfit$f
  log.p.prop <- gfit.prop$f
  
  log.ratio <- (log.p.prop-log.p) + (log.q-log.q.prop)
  ratio <- min(1, exp(log.ratio))
    
  # perform acceptance test
  if (!rnd || ratio==1 || runif(1)<ratio) {
   gfit <- gfit.prop
	 x <- x.prop;
	 attr(x,"accept") <- TRUE
	 attr(x,"lp") <- log.p.prop
  } else {
	 attr(x,"accept") <- FALSE
	 attr(x,"lp") <- log.p
  }
  attr(x,"gfit") <- gfit

  if (mh.diag) {
    diag <- c(log.p, log.p.prop, log.q, log.q.prop)
    names(diag) <- c("log.p", "log.p.prop", "log.q", "log.q.prop")
    attr(x, "mh.diag") <- diag
  }

  return (x)
}

sns.run <- function(init, fghEval, niter = 100, nnr = min(10, round(niter/4))
  , mh.diag = FALSE, part = NULL, print.level = 0
  , report.progress = ceiling(niter/10)
  , numderiv = 0, numderiv.method = c("Richardson", "simple"), numderiv.args = list()
  , ...)
{
  fghEval.int <- sns.fghEval.numaug(fghEval, numderiv, numderiv.method, numderiv.args)

  # checking arguments
  stopifnot(niter >= 1)
  if (report.progress <= 0) {
      warning("invalid value specific for 'report.progress', using default.")
      report.progress <- ceiling(niter/10)
  }
  if (missing(init)) stop("starting point for MCMC chain must be specified")
  npart <- max(length(part),1)

  # initialization
  K <- length(init)
  x <- init
  accept <- matrix(logical(niter * npart), ncol = npart)
  lp <- double(niter)
  chain <- matrix( , nrow = niter, ncol = K)
  if (mh.diag) {
    diagnostic <- array(NA, dim = c(niter, 4, npart))
    dimnames(diagnostic) <- list(1:niter, c("log.p", "log.p.prop", "log.q", "log.q.prop"), 1:npart)
    if (niter > nnr && npart == 1) f.reldev <- rep(NA, niter - nnr)
  }

  # performing nr/mcmc iterations
  for (i in 1:niter) {
      x <- sns(x, fghEval.int, rnd = i > nnr, gfit = attr(x, "gfit"), mh.diag = mh.diag, part = part
               , numderiv = 0#, numderiv.method = numderiv.method, numderiv.args = numderiv.args
               , ...)
      accept[i, ] <- attr(x, "accept")
      lp[i] <- attr(x, "lp")
      chain[i, ] <- x
      if (mh.diag) {
        diagnostic[i, , ] <- attr(x, "mh.diag")
        if (npart == 1) {
          if (i == nnr) {
            f.ref <- attr(x, "gfit")$f
            x.ref <- attr(x, "gfit")$mu
          } else if (i > nnr) {
            if (attr(x, "gfit")$f < f.ref) f.reldev[i - nnr] <- (attr(x, "gfit")$f - f.ref + 0.5 * t(x - x.ref) %*% attr(x, "gfit")$iSigma %*% (x - x.ref)) / (f.ref - attr(x, "gfit")$f)
          }
        }
      }
      if (print.level && (i %% report.progress == 0))
          cat(paste0("finished iter ", i, " of ", niter, "\n"))
  }

  # assembling output
  attr(chain, "init") <- init
  attr(chain, "lp.init") <- fghEval.int(init, ...)$f
  attr(chain, "accept") <- accept
  attr(chain, "lp") <- lp
  attr(chain, "nnr") <- nnr
  attr(chain, "part") <- part
  if (mh.diag) {
    attr(chain, "mh.diag") <- drop(diagnostic)
    if (niter > nnr && npart == 1) attr(chain, "reldev") <- f.reldev
  }
  class(chain) <- "sns"
  return (chain)
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top