% file sn/man/sn-st.info.Rd % This file is a component of the package 'sn' for R % copyright (C) 2013 Adelchi Azzalini %--------------------- \name{sn-st.info} \alias{sn.infoUv} \alias{sn.infoMv} \alias{st.infoUv} \alias{st.infoMv} \title{Expected and observed Fisher information for \acronym{SN} and \acronym{ST} distributions} \description{ Computes Fisher information for parameters of simple sample having skew-normal (\acronym{SN}) or skew-\eqn{t} (\acronym{ST}) distribution or for a regression model with errors term having such distributions, in the \acronym{DP} and \acronym{CP} parametrizations. } \usage{ sn.infoUv(dp=NULL, cp=NULL, x=NULL, y, w, penalty=NULL, norm2.tol=1e-06) sn.infoMv(dp, x=NULL, y, w, norm2.tol=1e-06) st.infoUv(dp=NULL, cp=NULL, x=NULL, y, fixed.nu=NULL, w, penalty=NULL, norm2.tol=1e-06) st.infoMv(dp, x=NULL, y, fixed.nu=NULL, w, penalty=NULL, norm2.tol=1e-06) } \arguments{ \item{dp, cp}{direct or centred parameters, respectively; one of the two vectors must be supplied, but not both. For the univariate \acronym{SN} distribution, \code{sn.infoUv} is to be used, and these arguments are vectors. In the multivariate case, \code{sn.infoMv} is to be used and these arguments are lists. See \code{\link{dp2cp}} for their description.} \item{x}{an optional matrix which represents the design matrix of a regression model} \item{y}{a numeric vector (for \code{sn.infoUv} and \code{st.infoUv}) or a matrix (for \code{sn.infoMv} and \code{st.infoMv}) representing the response. In the \acronym{SN} case ( \code{sn.infoUv} and \code{sn.infoMv}), \code{y} can be missing, and in this case the observed information matrix is computed; otherwise the observed information is computed. In the \acronym{ST} case ( \code{st.infoUv} and \code{st.infoMv}, \code{y} is a required argument, since only the observed information matrix for \acronym{ST} distributions is implemented. See \sQuote{Details} for additional information.} \item{w}{an optional vector of weights; if missing, a vector of 1's is generated.} \item{fixed.nu}{an optional numeric value which declared a fixed value of the degrees of freedom, \code{nu}. If not \code{NULL}, the information matrix has a dimension reduced by 1.} \item{penalty}{a optional string?? with the same penalty function used in the call to \code{\link{selm}}; see this function for its description;} \item{norm2.tol}{for the observed information case, the Mahalanobis squared distance of the score 0 is evaluated; if it exceeds \code{norm2.tol}, a warning message is issued, since the \sQuote{information matrix} so evaluated may be not positive-definite. See \sQuote{Details} for additional information. } } \value{ a list containing the following components: \item{dp, cp}{one of the two arguments is the one supplied on input; the other one matches the previous one in the alternative parametrization.} \item{type}{the type of information matrix: "observed" or "expected".} \item{info.dp, info.cp}{matrices of Fisher (observed or expected) information in the two parametrizations.} \item{asyvar.dp, asyvar.cp}{inverse matrices of Fisher information in the two parametrizations, when available; See \sQuote{Details} for additional information. } \item{aux}{a list containing auxiliary elements, depending of the selected function and the type of computation.} } \section{Details}{ In the univariate case, when \code{x} is not set, then a simple random sample is assumed and a matrix \code{x} with a single column of all 1's is constructed; in this case, the supplied vector \code{dp} or \code{cp} must have length 3. If \code{x} is set, then the supplied vector of parameters, \code{dp} or \code{cp}, must have length \code{ncol(x)+2}. In the multivariate case, a direct extension of this scheme applies. If the observed information matrix is required, \code{dp} or \code{dp} should represent the maximum likelihood estimates (MLE) for the given \code{y}, otherwise the information matrix may fail to be positive-definite. Therefore, the squared Mahalobis norm of the score vector is evaluated and compared with \code{norm2.tol}. If it exceeds this threshold, it is taken as an indication that the parameter is not at the MLE and a warning message is issued. The returned list still includes \code{info.dp} and \code{info.cp}, but in this case these represent merely the matrices of second derivatives; \code{asyvar.dp} and \code{asyvar.cp} are set to \code{NULL}. } \section{Background}{ The information matrix for the the univariate \acronym{SN} distribution in the two stated parameterizations in discussed in Sections 3.1.3--4 of Azzalini and Capitanio (2014). For the multivariate distribution, Section 5.2.2 of this monograph summarizes briefly the findings of Arellano-Valle and Azzalini (2008). For \acronym{ST} ?? } \references{ Arellano-Valle, R. B., and Azzalini, A. (2008). The centred parametrization for the multivariate skew-normal distribution. \emph{J.\ Multiv.\ Anal.} \bold{99}, 1362--1382. Corrigendum: vol.\,100 (2009), p.\,816. Azzalini, A. with the collaboration of Capitanio, A. (2014). \emph{The Skew-Normal and Related Families}. Cambridge University Press, IMS Monographs series. } \seealso{\code{\link{dsn}}, \code{\link{dmsn}}, \code{\link{dp2cp}}} \examples{ infoE <- sn.infoUv(dp=c(0,1,5)) infoO <- sn.infoUv(cp=c(0,1,0.8), y=rsn(50, dp=c(0,1,5))) # data(wines) X <- model.matrix(~ pH + wine, data=wines) fit <- sn.mple(x=X, y=wines$alcohol) infoE <- sn.infoUv(cp=fit$cp, x=X) infoO <- sn.infoUv(cp=fit$cp, x=X, y=wines$alcohol) } \keyword{distribution}