# This file is a part of Julia. License is MIT: https://julialang.org/license module GMP export BigInt import .Base: *, +, -, /, <, <<, >>, >>>, <=, ==, >, >=, ^, (~), (&), (|), xor, nand, nor, binomial, cmp, convert, div, divrem, factorial, cld, fld, gcd, gcdx, lcm, mod, ndigits, promote_rule, rem, show, isqrt, string, powermod, sum, prod, trailing_zeros, trailing_ones, count_ones, count_zeros, tryparse_internal, bin, oct, dec, hex, isequal, invmod, _prevpow2, _nextpow2, ndigits0zpb, widen, signed, unsafe_trunc, trunc, iszero, isone, big, flipsign, signbit, sign, hastypemax, isodd, iseven, digits!, hash, hash_integer, top_set_bit if Clong == Int32 const ClongMax = Union{Int8, Int16, Int32} const CulongMax = Union{UInt8, UInt16, UInt32} else const ClongMax = Union{Int8, Int16, Int32, Int64} const CulongMax = Union{UInt8, UInt16, UInt32, UInt64} end const CdoubleMax = Union{Float16, Float32, Float64} if Sys.iswindows() const libgmp = "libgmp-10.dll" elseif Sys.isapple() const libgmp = "@rpath/libgmp.10.dylib" else const libgmp = "libgmp.so.10" end version() = VersionNumber(unsafe_string(unsafe_load(cglobal((:__gmp_version, libgmp), Ptr{Cchar})))) bits_per_limb() = Int(unsafe_load(cglobal((:__gmp_bits_per_limb, libgmp), Cint))) const VERSION = version() const BITS_PER_LIMB = bits_per_limb() # GMP's mp_limb_t is by default a typedef of `unsigned long`, but can also be configured to be either # `unsigned int` or `unsigned long long int`. The correct unsigned type is here named Limb, and must # be used whenever mp_limb_t is in the signature of ccall'ed GMP functions. if BITS_PER_LIMB == 32 const Limb = UInt32 const SLimbMax = Union{Int8, Int16, Int32} const ULimbMax = Union{UInt8, UInt16, UInt32} elseif BITS_PER_LIMB == 64 const Limb = UInt64 const SLimbMax = Union{Int8, Int16, Int32, Int64} const ULimbMax = Union{UInt8, UInt16, UInt32, UInt64} else error("GMP: cannot determine the type mp_limb_t (__gmp_bits_per_limb == $BITS_PER_LIMB)") end """ BigInt <: Signed Arbitrary precision integer type. """ mutable struct BigInt <: Signed alloc::Cint size::Cint d::Ptr{Limb} function BigInt(; nbits::Integer=0) b = MPZ.init2!(new(), nbits) finalizer(cglobal((:__gmpz_clear, libgmp)), b) return b end end """ BigInt(x) Create an arbitrary precision integer. `x` may be an `Int` (or anything that can be converted to an `Int`). The usual mathematical operators are defined for this type, and results are promoted to a [`BigInt`](@ref). Instances can be constructed from strings via [`parse`](@ref), or using the `big` string literal. # Examples ```jldoctest julia> parse(BigInt, "42") 42 julia> big"313" 313 julia> BigInt(10)^19 10000000000000000000 ``` """ BigInt(x) """ ALLOC_OVERFLOW_FUNCTION A reference that holds a boolean, if true, indicating julia is linked with a patched GMP that does not abort on huge allocation and throws OutOfMemoryError instead. """ const ALLOC_OVERFLOW_FUNCTION = Ref(false) function __init__() try if version().major != VERSION.major || bits_per_limb() != BITS_PER_LIMB msg = """The dynamically loaded GMP library (v\"$(version())\" with __gmp_bits_per_limb == $(bits_per_limb())) does not correspond to the compile time version (v\"$VERSION\" with __gmp_bits_per_limb == $BITS_PER_LIMB). Please rebuild Julia.""" bits_per_limb() != BITS_PER_LIMB ? @error(msg) : @warn(msg) end ccall((:__gmp_set_memory_functions, libgmp), Cvoid, (Ptr{Cvoid},Ptr{Cvoid},Ptr{Cvoid}), cglobal(:jl_gc_counted_malloc), cglobal(:jl_gc_counted_realloc_with_old_size), cglobal(:jl_gc_counted_free_with_size)) ZERO.alloc, ZERO.size, ZERO.d = 0, 0, C_NULL ONE.alloc, ONE.size, ONE.d = 1, 1, pointer(_ONE) catch ex Base.showerror_nostdio(ex, "WARNING: Error during initialization of module GMP") end # This only works with a patched version of GMP, ignore otherwise try ccall((:__gmp_set_alloc_overflow_function, libgmp), Cvoid, (Ptr{Cvoid},), cglobal(:jl_throw_out_of_memory_error)) ALLOC_OVERFLOW_FUNCTION[] = true catch ex # ErrorException("ccall: could not find function...") if typeof(ex) != ErrorException rethrow() end end end module MPZ # wrapping of libgmp functions # - "output parameters" are labeled x, y, z, and are returned when appropriate # - constant input parameters are labeled a, b, c # - a method modifying its input has a "!" appended to its name, according to Julia's conventions # - some convenient methods are added (in addition to the pure MPZ ones), e.g. `add(a, b) = add!(BigInt(), a, b)` # and `add!(x, a) = add!(x, x, a)`. using ..GMP: BigInt, Limb, BITS_PER_LIMB, libgmp const mpz_t = Ref{BigInt} const bitcnt_t = Culong gmpz(op::Symbol) = (Symbol(:__gmpz_, op), libgmp) init!(x::BigInt) = (ccall((:__gmpz_init, libgmp), Cvoid, (mpz_t,), x); x) init2!(x::BigInt, a) = (ccall((:__gmpz_init2, libgmp), Cvoid, (mpz_t, bitcnt_t), x, a); x) realloc2!(x, a) = (ccall((:__gmpz_realloc2, libgmp), Cvoid, (mpz_t, bitcnt_t), x, a); x) realloc2(a) = realloc2!(BigInt(), a) sizeinbase(a::BigInt, b) = Int(ccall((:__gmpz_sizeinbase, libgmp), Csize_t, (mpz_t, Cint), a, b)) for (op, nbits) in (:add => :(BITS_PER_LIMB*(1 + max(abs(a.size), abs(b.size)))), :sub => :(BITS_PER_LIMB*(1 + max(abs(a.size), abs(b.size)))), :mul => 0, :fdiv_q => 0, :tdiv_q => 0, :cdiv_q => 0, :fdiv_r => 0, :tdiv_r => 0, :cdiv_r => 0, :gcd => 0, :lcm => 0, :and => 0, :ior => 0, :xor => 0) op! = Symbol(op, :!) @eval begin $op!(x::BigInt, a::BigInt, b::BigInt) = (ccall($(gmpz(op)), Cvoid, (mpz_t, mpz_t, mpz_t), x, a, b); x) $op(a::BigInt, b::BigInt) = $op!(BigInt(nbits=$nbits), a, b) $op!(x::BigInt, b::BigInt) = $op!(x, x, b) end end invert!(x::BigInt, a::BigInt, b::BigInt) = ccall((:__gmpz_invert, libgmp), Cint, (mpz_t, mpz_t, mpz_t), x, a, b) invert(a::BigInt, b::BigInt) = invert!(BigInt(), a, b) invert!(x::BigInt, b::BigInt) = invert!(x, x, b) for op in (:add_ui, :sub_ui, :mul_ui, :mul_2exp, :fdiv_q_2exp, :pow_ui, :bin_ui) op! = Symbol(op, :!) @eval begin $op!(x::BigInt, a::BigInt, b) = (ccall($(gmpz(op)), Cvoid, (mpz_t, mpz_t, Culong), x, a, b); x) $op(a::BigInt, b) = $op!(BigInt(), a, b) $op!(x::BigInt, b) = $op!(x, x, b) end end ui_sub!(x::BigInt, a, b::BigInt) = (ccall((:__gmpz_ui_sub, libgmp), Cvoid, (mpz_t, Culong, mpz_t), x, a, b); x) ui_sub(a, b::BigInt) = ui_sub!(BigInt(), a, b) for op in (:scan1, :scan0) # when there is no meaningful answer, ccall returns typemax(Culong), where Culong can # be UInt32 (Windows) or UInt64; we return -1 in this case for all architectures @eval $op(a::BigInt, b) = Int(signed(ccall($(gmpz(op)), Culong, (mpz_t, Culong), a, b))) end mul_si!(x::BigInt, a::BigInt, b) = (ccall((:__gmpz_mul_si, libgmp), Cvoid, (mpz_t, mpz_t, Clong), x, a, b); x) mul_si(a::BigInt, b) = mul_si!(BigInt(), a, b) mul_si!(x::BigInt, b) = mul_si!(x, x, b) for op in (:neg, :com, :sqrt, :set) op! = Symbol(op, :!) @eval begin $op!(x::BigInt, a::BigInt) = (ccall($(gmpz(op)), Cvoid, (mpz_t, mpz_t), x, a); x) $op(a::BigInt) = $op!(BigInt(), a) end op === :set && continue # MPZ.set!(x) would make no sense @eval $op!(x::BigInt) = $op!(x, x) end for (op, T) in ((:fac_ui, Culong), (:set_ui, Culong), (:set_si, Clong), (:set_d, Cdouble)) op! = Symbol(op, :!) @eval begin $op!(x::BigInt, a) = (ccall($(gmpz(op)), Cvoid, (mpz_t, $T), x, a); x) $op(a) = $op!(BigInt(), a) end end popcount(a::BigInt) = Int(signed(ccall((:__gmpz_popcount, libgmp), Culong, (mpz_t,), a))) mpn_popcount(d::Ptr{Limb}, s::Integer) = Int(ccall((:__gmpn_popcount, libgmp), Culong, (Ptr{Limb}, Csize_t), d, s)) mpn_popcount(a::BigInt) = mpn_popcount(a.d, abs(a.size)) function tdiv_qr!(x::BigInt, y::BigInt, a::BigInt, b::BigInt) ccall((:__gmpz_tdiv_qr, libgmp), Cvoid, (mpz_t, mpz_t, mpz_t, mpz_t), x, y, a, b) x, y end tdiv_qr(a::BigInt, b::BigInt) = tdiv_qr!(BigInt(), BigInt(), a, b) powm!(x::BigInt, a::BigInt, b::BigInt, c::BigInt) = (ccall((:__gmpz_powm, libgmp), Cvoid, (mpz_t, mpz_t, mpz_t, mpz_t), x, a, b, c); x) powm(a::BigInt, b::BigInt, c::BigInt) = powm!(BigInt(), a, b, c) powm!(x::BigInt, b::BigInt, c::BigInt) = powm!(x, x, b, c) function gcdext!(x::BigInt, y::BigInt, z::BigInt, a::BigInt, b::BigInt) ccall((:__gmpz_gcdext, libgmp), Cvoid, (mpz_t, mpz_t, mpz_t, mpz_t, mpz_t), x, y, z, a, b) x, y, z end gcdext(a::BigInt, b::BigInt) = gcdext!(BigInt(), BigInt(), BigInt(), a, b) cmp(a::BigInt, b::BigInt) = Int(ccall((:__gmpz_cmp, libgmp), Cint, (mpz_t, mpz_t), a, b)) cmp_si(a::BigInt, b) = Int(ccall((:__gmpz_cmp_si, libgmp), Cint, (mpz_t, Clong), a, b)) cmp_ui(a::BigInt, b) = Int(ccall((:__gmpz_cmp_ui, libgmp), Cint, (mpz_t, Culong), a, b)) cmp_d(a::BigInt, b) = Int(ccall((:__gmpz_cmp_d, libgmp), Cint, (mpz_t, Cdouble), a, b)) mpn_cmp(a::Ptr{Limb}, b::Ptr{Limb}, c) = ccall((:__gmpn_cmp, libgmp), Cint, (Ptr{Limb}, Ptr{Limb}, Clong), a, b, c) mpn_cmp(a::BigInt, b::BigInt, c) = mpn_cmp(a.d, b.d, c) get_str!(x, a, b::BigInt) = (ccall((:__gmpz_get_str,libgmp), Ptr{Cchar}, (Ptr{Cchar}, Cint, mpz_t), x, a, b); x) set_str!(x::BigInt, a, b) = Int(ccall((:__gmpz_set_str, libgmp), Cint, (mpz_t, Ptr{UInt8}, Cint), x, a, b)) get_d(a::BigInt) = ccall((:__gmpz_get_d, libgmp), Cdouble, (mpz_t,), a) function export!(a::AbstractVector{T}, n::BigInt; order::Integer=-1, nails::Integer=0, endian::Integer=0) where {T<:Base.BitInteger} stride(a, 1) == 1 || throw(ArgumentError("a must have stride 1")) ndigits = cld(sizeinbase(n, 2), 8*sizeof(T) - nails) length(a) < ndigits && resize!(a, ndigits) count = Ref{Csize_t}() ccall((:__gmpz_export, libgmp), Ptr{T}, (Ptr{T}, Ref{Csize_t}, Cint, Csize_t, Cint, Csize_t, mpz_t), a, count, order, sizeof(T), endian, nails, n) @assert count[] ≤ length(a) return a, Int(count[]) end limbs_write!(x::BigInt, a) = ccall((:__gmpz_limbs_write, libgmp), Ptr{Limb}, (mpz_t, Clong), x, a) limbs_finish!(x::BigInt, a) = ccall((:__gmpz_limbs_finish, libgmp), Cvoid, (mpz_t, Clong), x, a) import!(x::BigInt, a, b, c, d, e, f) = ccall((:__gmpz_import, libgmp), Cvoid, (mpz_t, Csize_t, Cint, Csize_t, Cint, Csize_t, Ptr{Cvoid}), x, a, b, c, d, e, f) setbit!(x, a) = (ccall((:__gmpz_setbit, libgmp), Cvoid, (mpz_t, bitcnt_t), x, a); x) tstbit(a::BigInt, b) = ccall((:__gmpz_tstbit, libgmp), Cint, (mpz_t, bitcnt_t), a, b) % Bool end # module MPZ const ZERO = BigInt() const ONE = BigInt() const _ONE = Limb[1] widen(::Type{Int128}) = BigInt widen(::Type{UInt128}) = BigInt widen(::Type{BigInt}) = BigInt signed(x::BigInt) = x BigInt(x::BigInt) = x Signed(x::BigInt) = x hastypemax(::Type{BigInt}) = false function tryparse_internal(::Type{BigInt}, s::AbstractString, startpos::Int, endpos::Int, base_::Integer, raise::Bool) # don't make a copy in the common case where we are parsing a whole String bstr = startpos == firstindex(s) && endpos == lastindex(s) ? String(s) : String(SubString(s,startpos,endpos)) sgn, base, i = Base.parseint_preamble(true,Int(base_),bstr,firstindex(bstr),lastindex(bstr)) if !(2 <= base <= 62) raise && throw(ArgumentError("invalid base: base must be 2 ≤ base ≤ 62, got $base")) return nothing end if i == 0 raise && throw(ArgumentError("premature end of integer: $(repr(bstr))")) return nothing end z = BigInt() if Base.containsnul(bstr) err = -1 # embedded NUL char (not handled correctly by GMP) else err = GC.@preserve bstr MPZ.set_str!(z, pointer(bstr)+(i-firstindex(bstr)), base) end if err != 0 raise && throw(ArgumentError("invalid BigInt: $(repr(bstr))")) return nothing end flipsign!(z, sgn) end BigInt(x::Union{Clong,Int32}) = MPZ.set_si(x) BigInt(x::Union{Culong,UInt32}) = MPZ.set_ui(x) BigInt(x::Bool) = BigInt(UInt(x)) unsafe_trunc(::Type{BigInt}, x::Union{Float16,Float32,Float64}) = MPZ.set_d(x) function BigInt(x::Float64) isinteger(x) || throw(InexactError(:BigInt, BigInt, x)) unsafe_trunc(BigInt,x) end BigInt(x::Float16) = BigInt(Float64(x)) BigInt(x::Float32) = BigInt(Float64(x)) function BigInt(x::Integer) # On 64-bit Windows, `Clong` is `Int32`, not `Int64`, so construction of # `Int64` constants, e.g. `BigInt(3)`, uses this method. isbits(x) && typemin(Clong) <= x <= typemax(Clong) && return BigInt((x % Clong)::Clong) nd = ndigits(x, base=2) z = MPZ.realloc2(nd) ux = unsigned(x < 0 ? -x : x) size = 0 limbnbits = sizeof(Limb) << 3 while nd > 0 size += 1 unsafe_store!(z.d, ux % Limb, size) ux >>= limbnbits nd -= limbnbits end z.size = x < 0 ? -size : size z end rem(x::BigInt, ::Type{Bool}) = !iszero(x) & unsafe_load(x.d) % Bool # never unsafe here rem(x::BigInt, ::Type{T}) where T<:Union{SLimbMax,ULimbMax} = iszero(x) ? zero(T) : flipsign(unsafe_load(x.d) % T, x.size) function rem(x::BigInt, ::Type{T}) where T<:Union{Base.BitUnsigned,Base.BitSigned} u = zero(T) for l = 1:min(abs(x.size), cld(sizeof(T), sizeof(Limb))) u += (unsafe_load(x.d, l) % T) << ((sizeof(Limb)<<3)*(l-1)) end flipsign(u, x.size) end rem(x::Integer, ::Type{BigInt}) = BigInt(x) isodd(x::BigInt) = MPZ.tstbit(x, 0) iseven(x::BigInt) = !isodd(x) function (::Type{T})(x::BigInt) where T<:Base.BitUnsigned if sizeof(T) < sizeof(Limb) convert(T, convert(Limb,x)) else 0 <= x.size <= cld(sizeof(T),sizeof(Limb)) || throw(InexactError(nameof(T), T, x)) x % T end end function (::Type{T})(x::BigInt) where T<:Base.BitSigned n = abs(x.size) if sizeof(T) < sizeof(Limb) SLimb = typeof(Signed(one(Limb))) convert(T, convert(SLimb, x)) else 0 <= n <= cld(sizeof(T),sizeof(Limb)) || throw(InexactError(nameof(T), T, x)) y = x % T ispos(x) ⊻ (y > 0) && throw(InexactError(nameof(T), T, x)) # catch overflow y end end Float64(n::BigInt, ::RoundingMode{:ToZero}) = MPZ.get_d(n) function (::Type{T})(n::BigInt, ::RoundingMode{:ToZero}) where T<:Union{Float16,Float32} T(Float64(n,RoundToZero),RoundToZero) end function (::Type{T})(n::BigInt, ::RoundingMode{:Down}) where T<:CdoubleMax x = T(n,RoundToZero) x > n ? prevfloat(x) : x end function (::Type{T})(n::BigInt, ::RoundingMode{:Up}) where T<:CdoubleMax x = T(n,RoundToZero) x < n ? nextfloat(x) : x end function Float64(x::BigInt, ::RoundingMode{:Nearest}) x == 0 && return 0.0 xsize = abs(x.size) if xsize*BITS_PER_LIMB > 1024 z = Inf64 elseif xsize == 1 z = Float64(unsafe_load(x.d)) elseif Limb == UInt32 && xsize == 2 z = Float64((unsafe_load(x.d, 2) % UInt64) << BITS_PER_LIMB + unsafe_load(x.d)) else y1 = unsafe_load(x.d, xsize) % UInt64 n = top_set_bit(y1) # load first 54(1 + 52 bits of fraction + 1 for rounding) y = y1 >> (n - (precision(Float64)+1)) if Limb == UInt64 y += n > precision(Float64) ? 0 : (unsafe_load(x.d, xsize-1) >> (10+n)) else y += (unsafe_load(x.d, xsize-1) % UInt64) >> (n-22) y += n > (precision(Float64) - 32) ? 0 : (unsafe_load(x.d, xsize-2) >> (10+n)) end y = (y + 1) >> 1 # round, ties up y &= ~UInt64(trailing_zeros(x) == (n-54 + (xsize-1)*BITS_PER_LIMB)) # fix last bit to round to even d = ((n+1021) % UInt64) << 52 z = reinterpret(Float64, d+y) z = ldexp(z, (xsize-1)*BITS_PER_LIMB) end return flipsign(z, x.size) end function Float32(x::BigInt, ::RoundingMode{:Nearest}) x == 0 && return 0f0 xsize = abs(x.size) if xsize*BITS_PER_LIMB > 128 z = Inf32 elseif xsize == 1 z = Float32(unsafe_load(x.d)) else y1 = unsafe_load(x.d, xsize) n = BITS_PER_LIMB - leading_zeros(y1) # load first 25(1 + 23 bits of fraction + 1 for rounding) y = (y1 >> (n - (precision(Float32)+1))) % UInt32 y += (n > precision(Float32) ? 0 : unsafe_load(x.d, xsize-1) >> (BITS_PER_LIMB - (25-n))) % UInt32 y = (y + one(UInt32)) >> 1 # round, ties up y &= ~UInt32(trailing_zeros(x) == (n-25 + (xsize-1)*BITS_PER_LIMB)) # fix last bit to round to even d = ((n+125) % UInt32) << 23 z = reinterpret(Float32, d+y) z = ldexp(z, (xsize-1)*BITS_PER_LIMB) end return flipsign(z, x.size) end function Float16(x::BigInt, ::RoundingMode{:Nearest}) x == 0 && return Float16(0.0) y1 = unsafe_load(x.d) n = BITS_PER_LIMB - leading_zeros(y1) if n > 16 || abs(x.size) > 1 z = Inf16 else # load first 12(1 + 10 bits for fraction + 1 for rounding) y = (y1 >> (n - (precision(Float16)+1))) % UInt16 y = (y + one(UInt16)) >> 1 # round, ties up y &= ~UInt16(trailing_zeros(x) == (n-12)) # fix last bit to round to even d = ((n+13) % UInt16) << 10 z = reinterpret(Float16, d+y) end return flipsign(z, x.size) end Float64(n::BigInt) = Float64(n, RoundNearest) Float32(n::BigInt) = Float32(n, RoundNearest) Float16(n::BigInt) = Float16(n, RoundNearest) promote_rule(::Type{BigInt}, ::Type{<:Integer}) = BigInt """ big(x) Convert a number to a maximum precision representation (typically [`BigInt`](@ref) or `BigFloat`). See [`BigFloat`](@ref BigFloat(::Any, rounding::RoundingMode)) for information about some pitfalls with floating-point numbers. """ function big end big(::Type{<:Integer}) = BigInt big(::Type{<:Rational}) = Rational{BigInt} big(n::Integer) = convert(BigInt, n) # Binary ops for (fJ, fC) in ((:+, :add), (:-,:sub), (:*, :mul), (:mod, :fdiv_r), (:rem, :tdiv_r), (:gcd, :gcd), (:lcm, :lcm), (:&, :and), (:|, :ior), (:xor, :xor)) @eval begin ($fJ)(x::BigInt, y::BigInt) = MPZ.$fC(x, y) end end for (r, f) in ((RoundToZero, :tdiv_q), (RoundDown, :fdiv_q), (RoundUp, :cdiv_q)) @eval div(x::BigInt, y::BigInt, ::typeof($r)) = MPZ.$f(x, y) end # For compat only. Remove in 2.0. div(x::BigInt, y::BigInt) = div(x, y, RoundToZero) fld(x::BigInt, y::BigInt) = div(x, y, RoundDown) cld(x::BigInt, y::BigInt) = div(x, y, RoundUp) /(x::BigInt, y::BigInt) = float(x)/float(y) function invmod(x::BigInt, y::BigInt) z = zero(BigInt) ya = abs(y) if ya == 1 return z end if (y==0 || MPZ.invert!(z, x, ya) == 0) throw(DomainError(y)) end # GMP always returns a positive inverse; we instead want to # normalize such that div(z, y) == 0, i.e. we want a negative z # when y is negative. if y < 0 MPZ.add!(z, y) end # The postcondition is: mod(z * x, y) == mod(big(1), m) && div(z, y) == 0 return z end # More efficient commutative operations for (fJ, fC) in ((:+, :add), (:*, :mul), (:&, :and), (:|, :ior), (:xor, :xor)) fC! = Symbol(fC, :!) @eval begin ($fJ)(a::BigInt, b::BigInt, c::BigInt) = MPZ.$fC!(MPZ.$fC(a, b), c) ($fJ)(a::BigInt, b::BigInt, c::BigInt, d::BigInt) = MPZ.$fC!(MPZ.$fC!(MPZ.$fC(a, b), c), d) ($fJ)(a::BigInt, b::BigInt, c::BigInt, d::BigInt, e::BigInt) = MPZ.$fC!(MPZ.$fC!(MPZ.$fC!(MPZ.$fC(a, b), c), d), e) end end # Basic arithmetic without promotion +(x::BigInt, c::CulongMax) = MPZ.add_ui(x, c) +(c::CulongMax, x::BigInt) = x + c -(x::BigInt, c::CulongMax) = MPZ.sub_ui(x, c) -(c::CulongMax, x::BigInt) = MPZ.ui_sub(c, x) +(x::BigInt, c::ClongMax) = c < 0 ? -(x, -(c % Culong)) : x + convert(Culong, c) +(c::ClongMax, x::BigInt) = c < 0 ? -(x, -(c % Culong)) : x + convert(Culong, c) -(x::BigInt, c::ClongMax) = c < 0 ? +(x, -(c % Culong)) : -(x, convert(Culong, c)) -(c::ClongMax, x::BigInt) = c < 0 ? -(x + -(c % Culong)) : -(convert(Culong, c), x) *(x::BigInt, c::CulongMax) = MPZ.mul_ui(x, c) *(c::CulongMax, x::BigInt) = x * c *(x::BigInt, c::ClongMax) = MPZ.mul_si(x, c) *(c::ClongMax, x::BigInt) = x * c /(x::BigInt, y::Union{ClongMax,CulongMax}) = float(x)/y /(x::Union{ClongMax,CulongMax}, y::BigInt) = x/float(y) # unary ops (-)(x::BigInt) = MPZ.neg(x) (~)(x::BigInt) = MPZ.com(x) <<(x::BigInt, c::UInt) = c == 0 ? x : MPZ.mul_2exp(x, c) >>(x::BigInt, c::UInt) = c == 0 ? x : MPZ.fdiv_q_2exp(x, c) >>>(x::BigInt, c::UInt) = x >> c function trailing_zeros(x::BigInt) c = MPZ.scan1(x, 0) c == -1 && throw(DomainError(x, "`x` must be non-zero")) c end function trailing_ones(x::BigInt) c = MPZ.scan0(x, 0) c == -1 && throw(DomainError(x, "`x` must not be equal to -1")) c end function count_ones(x::BigInt) c = MPZ.popcount(x) c == -1 && throw(DomainError(x, "`x` cannot be negative")) c end # generic definition is not used to provide a better error message function count_zeros(x::BigInt) c = MPZ.popcount(~x) c == -1 && throw(DomainError(x, "`x` must be negative")) c end """ count_ones_abs(x::BigInt) Number of ones in the binary representation of abs(x). """ count_ones_abs(x::BigInt) = iszero(x) ? 0 : MPZ.mpn_popcount(x) function top_set_bit(x::BigInt) isneg(x) && throw(DomainError(x, "top_set_bit only supports negative arguments when they have type BitSigned.")) iszero(x) && return 0 x.size * sizeof(Limb) << 3 - leading_zeros(GC.@preserve x unsafe_load(x.d, x.size)) end divrem(x::BigInt, y::BigInt, ::typeof(RoundToZero) = RoundToZero) = MPZ.tdiv_qr(x, y) divrem(x::BigInt, y::Integer, ::typeof(RoundToZero) = RoundToZero) = MPZ.tdiv_qr(x, BigInt(y)) cmp(x::BigInt, y::BigInt) = sign(MPZ.cmp(x, y)) cmp(x::BigInt, y::ClongMax) = sign(MPZ.cmp_si(x, y)) cmp(x::BigInt, y::CulongMax) = sign(MPZ.cmp_ui(x, y)) cmp(x::BigInt, y::Integer) = cmp(x, big(y)) cmp(x::Integer, y::BigInt) = -cmp(y, x) cmp(x::BigInt, y::CdoubleMax) = isnan(y) ? -1 : sign(MPZ.cmp_d(x, y)) cmp(x::CdoubleMax, y::BigInt) = -cmp(y, x) isqrt(x::BigInt) = MPZ.sqrt(x) ^(x::BigInt, y::Culong) = MPZ.pow_ui(x, y) function bigint_pow(x::BigInt, y::Integer) x == 1 && return x x == -1 && return isodd(y) ? x : -x if y<0; throw(DomainError(y, "`y` cannot be negative.")); end @noinline throw1(y) = throw(OverflowError("exponent $y is too large and computation will overflow")) if y>typemax(Culong) x==0 && return x #At this point, x is not 1, 0 or -1 and it is not possible to use #gmpz_pow_ui to compute the answer. Note that the magnitude of the #answer is: #- at least 2^(2^32-1) ≈ 10^(1.3e9) (if Culong === UInt32). #- at least 2^(2^64-1) ≈ 10^(5.5e18) (if Culong === UInt64). # #Assume that the answer will definitely overflow. throw1(y) end return x^convert(Culong, y) end ^(x::BigInt , y::BigInt ) = bigint_pow(x, y) ^(x::BigInt , y::Bool ) = y ? x : one(x) ^(x::BigInt , y::Integer) = bigint_pow(x, y) ^(x::Integer, y::BigInt ) = bigint_pow(BigInt(x), y) ^(x::Bool , y::BigInt ) = Base.power_by_squaring(x, y) function powermod(x::BigInt, p::BigInt, m::BigInt) r = MPZ.powm(x, p, m) return m < 0 && r > 0 ? MPZ.add!(r, m) : r # choose sign consistent with mod(x^p, m) end powermod(x::Integer, p::Integer, m::BigInt) = powermod(big(x), big(p), m) function gcdx(a::BigInt, b::BigInt) if iszero(b) # shortcut this to ensure consistent results with gcdx(a,b) return a < 0 ? (-a,-ONE,b) : (a,one(BigInt),b) # we don't return the globals ONE and ZERO in case the user wants to # mutate the result end g, s, t = MPZ.gcdext(a, b) if t == 0 # work around a difference in some versions of GMP if a == b return g, t, s elseif abs(a)==abs(b) return g, t, -s end end g, s, t end +(x::BigInt, y::BigInt, rest::BigInt...) = sum(tuple(x, y, rest...)) sum(arr::Union{AbstractArray{BigInt}, Tuple{BigInt, Vararg{BigInt}}}) = foldl(MPZ.add!, arr; init=BigInt(0)) function prod(arr::AbstractArray{BigInt}) # compute first the needed number of bits for the result, # to avoid re-allocations; # GMP will always request n+m limbs for the result in MPZ.mul!, # if the arguments have n and m limbs; so we add all the bits # taken by the array elements, and add BITS_PER_LIMB to that, # to account for the rounding to limbs in MPZ.mul! # (BITS_PER_LIMB-1 would typically be enough, to which we add # 1 for the initial multiplication by init=1 in foldl) nbits = BITS_PER_LIMB for x in arr iszero(x) && return zero(BigInt) xsize = abs(x.size) lz = GC.@preserve x leading_zeros(unsafe_load(x.d, xsize)) nbits += xsize * BITS_PER_LIMB - lz end init = BigInt(; nbits) MPZ.set_si!(init, 1) foldl(MPZ.mul!, arr; init) end factorial(n::BigInt) = !isneg(n) ? MPZ.fac_ui(n) : throw(DomainError(n, "`n` must not be negative.")) function binomial(n::BigInt, k::Integer) k < 0 && return BigInt(0) k <= typemax(Culong) && return binomial(n, Culong(k)) n < 0 && return isodd(k) ? -binomial(k - n - 1, k) : binomial(k - n - 1, k) κ = n - k κ < 0 && return BigInt(0) κ <= typemax(Culong) && return binomial(n, Culong(κ)) throw(OverflowError("Computation would exceed memory")) end binomial(n::BigInt, k::Culong) = MPZ.bin_ui(n, k) ==(x::BigInt, y::BigInt) = cmp(x,y) == 0 ==(x::BigInt, i::Integer) = cmp(x,i) == 0 ==(i::Integer, x::BigInt) = cmp(x,i) == 0 ==(x::BigInt, f::CdoubleMax) = isnan(f) ? false : cmp(x,f) == 0 ==(f::CdoubleMax, x::BigInt) = isnan(f) ? false : cmp(x,f) == 0 iszero(x::BigInt) = x.size == 0 isone(x::BigInt) = x == Culong(1) <=(x::BigInt, y::BigInt) = cmp(x,y) <= 0 <=(x::BigInt, i::Integer) = cmp(x,i) <= 0 <=(i::Integer, x::BigInt) = cmp(x,i) >= 0 <=(x::BigInt, f::CdoubleMax) = isnan(f) ? false : cmp(x,f) <= 0 <=(f::CdoubleMax, x::BigInt) = isnan(f) ? false : cmp(x,f) >= 0 <(x::BigInt, y::BigInt) = cmp(x,y) < 0 <(x::BigInt, i::Integer) = cmp(x,i) < 0 <(i::Integer, x::BigInt) = cmp(x,i) > 0 <(x::BigInt, f::CdoubleMax) = isnan(f) ? false : cmp(x,f) < 0 <(f::CdoubleMax, x::BigInt) = isnan(f) ? false : cmp(x,f) > 0 isneg(x::BigInt) = x.size < 0 ispos(x::BigInt) = x.size > 0 signbit(x::BigInt) = isneg(x) flipsign!(x::BigInt, y::Integer) = (signbit(y) && (x.size = -x.size); x) flipsign( x::BigInt, y::Integer) = signbit(y) ? -x : x flipsign( x::BigInt, y::BigInt) = signbit(y) ? -x : x # above method to resolving ambiguities with flipsign(::T, ::T) where T<:Signed function sign(x::BigInt) isneg(x) && return -one(x) ispos(x) && return one(x) return x end show(io::IO, x::BigInt) = print(io, string(x)) function string(n::BigInt; base::Integer = 10, pad::Integer = 1) base < 0 && return Base._base(Int(base), n, pad, (base>0) & (n.size<0)) 2 <= base <= 62 || throw(ArgumentError("base must be 2 ≤ base ≤ 62, got $base")) iszero(n) && pad < 1 && return "" nd1 = ndigits(n, base=base) nd = max(nd1, pad) sv = Base.StringVector(nd + isneg(n)) GC.@preserve sv MPZ.get_str!(pointer(sv) + nd - nd1, base, n) @inbounds for i = (1:nd-nd1) .+ isneg(n) sv[i] = '0' % UInt8 end isneg(n) && (sv[1] = '-' % UInt8) String(sv) end function digits!(a::AbstractVector{T}, n::BigInt; base::Integer = 10) where {T<:Integer} if base ≥ 2 if base ≤ 62 # fast path using mpz_get_str via string(n; base) s = codeunits(string(n; base)) i, j = firstindex(a)-1, length(s)+1 lasti = min(lastindex(a), firstindex(a) + length(s)-1 - isneg(n)) while i < lasti # base ≤ 36: 0-9, plus a-z for 10-35 # base > 36: 0-9, plus A-Z for 10-35 and a-z for 36..61 x = s[j -= 1] a[i += 1] = base ≤ 36 ? (x>0x39 ? x-0x57 : x-0x30) : (x>0x39 ? (x>0x60 ? x-0x3d : x-0x37) : x-0x30) end lasti = lastindex(a) while i < lasti; a[i+=1] = zero(T); end return isneg(n) ? map!(-,a,a) : a elseif a isa StridedVector{<:Base.BitInteger} && stride(a,1) == 1 && ispow2(base) && base-1 ≤ typemax(T) # fast path using mpz_export origlen = length(a) _, writelen = MPZ.export!(a, n; nails = 8sizeof(T) - trailing_zeros(base)) length(a) != origlen && resize!(a, origlen) # truncate to least-significant digits a[begin+writelen:end] .= zero(T) return isneg(n) ? map!(-,a,a) : a end end return invoke(digits!, Tuple{typeof(a), Integer}, a, n; base) # slow generic fallback end function ndigits0zpb(x::BigInt, b::Integer) b < 2 && throw(DomainError(b, "`b` cannot be less than 2.")) x.size == 0 && return 0 # for consistency with other ndigits0z methods if ispow2(b) && 2 <= b <= 62 # GMP assumes b is in this range MPZ.sizeinbase(x, b) else # non-base 2 mpz_sizeinbase might return an answer 1 too big # use property that log(b, x) < ndigits(x, base=b) <= log(b, x) + 1 n = MPZ.sizeinbase(x, 2) lb = log2(b) # assumed accurate to <1ulp (true for openlibm) q,r = divrem(n,lb) iq = Int(q) maxerr = q*eps(lb) # maximum error in remainder if r-1.0 < maxerr abs(x) >= big(b)^iq ? iq+1 : iq elseif lb-r < maxerr abs(x) >= big(b)^(iq+1) ? iq+2 : iq+1 else iq+1 end end end # Fast paths for nextpow(2, x::BigInt) # below, ONE is always left-shifted by at least one digit, so a new BigInt is # allocated, which can be safely mutated _prevpow2(x::BigInt) = -2 <= x <= 2 ? x : flipsign!(ONE << (ndigits(x, base=2) - 1), x) _nextpow2(x::BigInt) = count_ones_abs(x) <= 1 ? x : flipsign!(ONE << ndigits(x, base=2), x) Base.checked_abs(x::BigInt) = abs(x) Base.checked_neg(x::BigInt) = -x Base.checked_add(a::BigInt, b::BigInt) = a + b Base.checked_sub(a::BigInt, b::BigInt) = a - b Base.checked_mul(a::BigInt, b::BigInt) = a * b Base.checked_div(a::BigInt, b::BigInt) = div(a, b) Base.checked_rem(a::BigInt, b::BigInt) = rem(a, b) Base.checked_fld(a::BigInt, b::BigInt) = fld(a, b) Base.checked_mod(a::BigInt, b::BigInt) = mod(a, b) Base.checked_cld(a::BigInt, b::BigInt) = cld(a, b) Base.add_with_overflow(a::BigInt, b::BigInt) = a + b, false Base.sub_with_overflow(a::BigInt, b::BigInt) = a - b, false Base.mul_with_overflow(a::BigInt, b::BigInt) = a * b, false Base.deepcopy_internal(x::BigInt, stackdict::IdDict) = get!(() -> MPZ.set(x), stackdict, x) ## streamlined hashing for BigInt, by avoiding allocation from shifts ## if Limb === UInt64 === UInt # On 64 bit systems we can define # an optimized version for BigInt of hash_integer (used e.g. for Rational{BigInt}), # and of hash using .Base: hash_uint function hash_integer(n::BigInt, h::UInt) GC.@preserve n begin s = n.size s == 0 && return hash_integer(0, h) p = convert(Ptr{UInt64}, n.d) b = unsafe_load(p) h ⊻= hash_uint(ifelse(s < 0, -b, b) ⊻ h) for k = 2:abs(s) h ⊻= hash_uint(unsafe_load(p, k) ⊻ h) end return h end end function hash(x::BigInt, h::UInt) GC.@preserve x begin sz = x.size sz == 0 && return hash(0, h) ptr = Ptr{UInt64}(x.d) if sz == 1 return hash(unsafe_load(ptr), h) elseif sz == -1 limb = unsafe_load(ptr) limb <= typemin(Int) % UInt && return hash(-(limb % Int), h) end pow = trailing_zeros(x) nd = Base.ndigits0z(x, 2) idx = (pow >>> 6) + 1 shift = (pow & 63) % UInt upshift = BITS_PER_LIMB - shift asz = abs(sz) if shift == 0 limb = unsafe_load(ptr, idx) else limb1 = unsafe_load(ptr, idx) limb2 = idx < asz ? unsafe_load(ptr, idx+1) : UInt(0) limb = limb2 << upshift | limb1 >> shift end if nd <= 1024 && nd - pow <= 53 return hash(ldexp(flipsign(Float64(limb), sz), pow), h) end h = hash_integer(pow, h) h ⊻= hash_uint(flipsign(limb, sz) ⊻ h) for idx = idx+1:asz if shift == 0 limb = unsafe_load(ptr, idx) else limb1 = limb2 if idx == asz limb = limb1 >> shift limb == 0 && break # don't hash leading zeros else limb2 = unsafe_load(ptr, idx+1) limb = limb2 << upshift | limb1 >> shift end end h ⊻= hash_uint(limb ⊻ h) end return h end end end module MPQ # Rational{BigInt} import .Base: unsafe_rational, __throw_rational_argerror_zero import ..GMP: BigInt, MPZ, Limb, isneg, libgmp gmpq(op::Symbol) = (Symbol(:__gmpq_, op), libgmp) mutable struct _MPQ num_alloc::Cint num_size::Cint num_d::Ptr{Limb} den_alloc::Cint den_size::Cint den_d::Ptr{Limb} # to prevent GC rat::Rational{BigInt} end const mpq_t = Ref{_MPQ} _MPQ(x::BigInt,y::BigInt) = _MPQ(x.alloc, x.size, x.d, y.alloc, y.size, y.d, unsafe_rational(BigInt, x, y)) _MPQ() = _MPQ(BigInt(), BigInt()) _MPQ(x::Rational{BigInt}) = _MPQ(x.num, x.den) function sync_rational!(xq::_MPQ) xq.rat.num.alloc = xq.num_alloc xq.rat.num.size = xq.num_size xq.rat.num.d = xq.num_d xq.rat.den.alloc = xq.den_alloc xq.rat.den.size = xq.den_size xq.rat.den.d = xq.den_d return xq.rat end function Rational{BigInt}(num::BigInt, den::BigInt) if iszero(den) iszero(num) && __throw_rational_argerror_zero(BigInt) return set_si(flipsign(1, num), 0) end xq = _MPQ(MPZ.set(num), MPZ.set(den)) ccall((:__gmpq_canonicalize, libgmp), Cvoid, (mpq_t,), xq) return sync_rational!(xq) end # define set, set_ui, set_si, set_z, and their inplace versions function set!(z::Rational{BigInt}, x::Rational{BigInt}) zq = _MPQ(z) ccall((:__gmpq_set, libgmp), Cvoid, (mpq_t, mpq_t), zq, _MPQ(x)) return sync_rational!(zq) end function set_z!(z::Rational{BigInt}, x::BigInt) zq = _MPQ(z) ccall((:__gmpq_set_z, libgmp), Cvoid, (mpq_t, MPZ.mpz_t), zq, x) return sync_rational!(zq) end for (op, T) in ((:set, Rational{BigInt}), (:set_z, BigInt)) op! = Symbol(op, :!) @eval $op(a::$T) = $op!(unsafe_rational(BigInt(), BigInt()), a) end # note that rationals returned from set_ui and set_si are not checked, # set_ui(0, 0) will return 0//0 without errors, just like unsafe_rational for (op, T1, T2) in ((:set_ui, Culong, Culong), (:set_si, Clong, Culong)) op! = Symbol(op, :!) @eval begin function $op!(z::Rational{BigInt}, a, b) zq = _MPQ(z) ccall($(gmpq(op)), Cvoid, (mpq_t, $T1, $T2), zq, a, b) return sync_rational!(zq) end $op(a, b) = $op!(unsafe_rational(BigInt(), BigInt()), a, b) end end # define add, sub, mul, div, and their inplace versions function add!(z::Rational{BigInt}, x::Rational{BigInt}, y::Rational{BigInt}) if iszero(x.den) || iszero(y.den) if iszero(x.den) && iszero(y.den) && isneg(x.num) != isneg(y.num) throw(DivideError()) end return set!(z, iszero(x.den) ? x : y) end zq = _MPQ(z) ccall((:__gmpq_add, libgmp), Cvoid, (mpq_t,mpq_t,mpq_t), zq, _MPQ(x), _MPQ(y)) return sync_rational!(zq) end function sub!(z::Rational{BigInt}, x::Rational{BigInt}, y::Rational{BigInt}) if iszero(x.den) || iszero(y.den) if iszero(x.den) && iszero(y.den) && isneg(x.num) == isneg(y.num) throw(DivideError()) end iszero(x.den) && return set!(z, x) return set_si!(z, flipsign(-1, y.num), 0) end zq = _MPQ(z) ccall((:__gmpq_sub, libgmp), Cvoid, (mpq_t,mpq_t,mpq_t), zq, _MPQ(x), _MPQ(y)) return sync_rational!(zq) end function mul!(z::Rational{BigInt}, x::Rational{BigInt}, y::Rational{BigInt}) if iszero(x.den) || iszero(y.den) if iszero(x.num) || iszero(y.num) throw(DivideError()) end return set_si!(z, ifelse(xor(isneg(x.num), isneg(y.num)), -1, 1), 0) end zq = _MPQ(z) ccall((:__gmpq_mul, libgmp), Cvoid, (mpq_t,mpq_t,mpq_t), zq, _MPQ(x), _MPQ(y)) return sync_rational!(zq) end function div!(z::Rational{BigInt}, x::Rational{BigInt}, y::Rational{BigInt}) if iszero(x.den) if iszero(y.den) throw(DivideError()) end isneg(y.num) || return set!(z, x) return set_si!(z, flipsign(-1, x.num), 0) elseif iszero(y.den) return set_si!(z, 0, 1) elseif iszero(y.num) if iszero(x.num) throw(DivideError()) end return set_si!(z, flipsign(1, x.num), 0) end zq = _MPQ(z) ccall((:__gmpq_div, libgmp), Cvoid, (mpq_t,mpq_t,mpq_t), zq, _MPQ(x), _MPQ(y)) return sync_rational!(zq) end for (fJ, fC) in ((:+, :add), (:-, :sub), (:*, :mul), (://, :div)) fC! = Symbol(fC, :!) @eval begin ($fC!)(x::Rational{BigInt}, y::Rational{BigInt}) = $fC!(x, x, y) (Base.$fJ)(x::Rational{BigInt}, y::Rational{BigInt}) = $fC!(unsafe_rational(BigInt(), BigInt()), x, y) end end function Base.cmp(x::Rational{BigInt}, y::Rational{BigInt}) Int(ccall((:__gmpq_cmp, libgmp), Cint, (mpq_t, mpq_t), _MPQ(x), _MPQ(y))) end end # MPQ module end # module