https://github.com/cran/rstpm2
Tip revision: 643c36ce2deda0fb6cb6da4ee9fcefa95c8bdfa1 authored by Mark Clements on 26 July 2015, 18:57:30 UTC
version 1.2.2
version 1.2.2
Tip revision: 643c36c
pm2-3.R
## extension of ns() to include different boundary derivatives,
## centering and cure
nsx <-
function (x, df = NULL, knots = NULL, intercept = FALSE,
Boundary.knots = range(x),
derivs = if (cure) c(2,1) else c(2,2),
log=FALSE, # deprecated: only used in rstpm2:::stpm2Old
centre = FALSE, cure = FALSE, stata.stpm2.compatible=FALSE)
{
nx <- names(x)
x <- as.vector(x)
nax <- is.na(x)
if (nas <- any(nax))
x <- x[!nax]
if (!missing(Boundary.knots)) {
Boundary.knots <- sort(Boundary.knots)
outside <- (ol <- x < Boundary.knots[1L]) | (or <- x >
Boundary.knots[2L])
}
else outside <- FALSE
if (!missing(df) && missing(knots)) {
nIknots <- df - 1 - intercept + 4 - sum(derivs)
if (nIknots < 0) {
nIknots <- 0
warning("'df' was too small; have used ", 1 + intercept)
}
knots <- if (nIknots > 0) {
knots <- if (!cure)
seq.int(0, 1, length.out = nIknots + 2L)[-c(1L,
nIknots + 2L)]
else c(seq.int(0, 1, length.out = nIknots + 1L)[-c(1L,
nIknots + 1L)], 0.95)
if (!stata.stpm2.compatible)
stats::quantile(x[!outside], knots)
else stats::quantile(x[!outside], round(knots,2), type=2)
}
}
else nIknots <- length(knots)
Aknots <- sort(c(rep(Boundary.knots, 4L), knots))
if (any(outside)) {
basis <- array(0, c(length(x), nIknots + 4L))
if (any(ol)) {
k.pivot <- Boundary.knots[1L]
xl <- cbind(1, x[ol] - k.pivot)
tt <- spline.des(Aknots, rep(k.pivot, 2L), 4, c(0,
1))$design
basis[ol, ] <- xl %*% tt
}
if (any(or)) {
k.pivot <- Boundary.knots[2L]
xr <- cbind(1, x[or] - k.pivot)
tt <- spline.des(Aknots, rep(k.pivot, 2L), 4, c(0,
1))$design
basis[or, ] <- xr %*% tt
}
if (any(inside <- !outside))
basis[inside, ] <- spline.des(Aknots, x[inside],
4)$design
}
else basis <- spline.des(Aknots, x, 4)$design
const <- splineDesign(Aknots, rep(Boundary.knots, 3-derivs), 4, c(derivs[1]:2, derivs[2]:2))
if (!intercept) {
const <- const[, -1, drop = FALSE]
basis <- basis[, -1, drop = FALSE]
}
qr.const <- qr(t(const))
basis <- as.matrix((t(qr.qty(qr.const, t(basis))))[, -(1L:nrow(const)), drop = FALSE])
n.col <- ncol(basis)
if (nas) {
nmat <- matrix(NA, length(nax), n.col)
nmat[!nax, ] <- basis
basis <- nmat
}
dimnames(basis) <- list(nx, 1L:n.col)
if (centre) {
centreBasis <- nsx(centre,
knots=if (is.null(knots)) numeric(0) else knots,
Boundary.knots=Boundary.knots,
intercept=intercept, derivs=derivs, centre=FALSE, log=log)
oldAttributes <- attributes(basis)
basis <- t(apply(basis,1,function(x) x-centreBasis))
attributes(basis) <- oldAttributes
}
a <- list(degree = 3, knots = if (is.null(knots)) numeric(0) else knots,
Boundary.knots = Boundary.knots, intercept = intercept, derivs=derivs,
centre=centre, log=log)
attributes(basis) <- c(attributes(basis), a)
class(basis) <- c("nsx", "basis", "matrix")
basis
}
makepredictcall.nsx <-
function (var, call)
{
if (as.character(call)[1L] != "nsx")
return(call)
at <- attributes(var)[c("knots", "Boundary.knots", "intercept",
"derivs", "centre", "log")]
xxx <- call[1L:2]
xxx[names(at)] <- at
xxx
}
predict.nsx <-
function (object, newx, ...)
{
if (missing(newx))
return(object)
a <- c(list(x = newx), attributes(object)[c("knots", "Boundary.knots",
"intercept", "derivs", "centre", "log")])
do.call("nsx", a)
}
Shat <- function(obj)
{
## predicted survival for individuals (adjusted for covariates)
newobj = survfit(obj,se.fit=FALSE)
surv = newobj$surv
rr = try(predict(obj,type="risk"),silent=TRUE)
if (inherits(rr,"try-error"))
rr <- 1
surv2 = surv[match(obj$y[,ncol(obj$y)-1],newobj$time)]
return(surv2^rr)
}
replaceCall=function(obj,old,new) {
if (is.atomic(obj) && length(obj)>1)
return(as.call(c(quote(c),lapply(as.list(obj),replaceCall,old,new))))
if (is.name(obj) || is.symbol(obj) || (is.atomic(obj) && length(obj)==1)) {
if (obj==old) return(new)
else return(obj)
}
## if (length(obj)==1 && length(obj[[1]])==1) {
## if (obj==old) return(new)
## else return(obj)
## }
as.call(lapply(obj,replaceCall,old,new))
}
replaceFormula=function(...) as.formula(replaceCall(...))
## replaceFormula(~f(a+b),quote(f),quote(g))
allCall=function(obj) {
if (is.atomic(obj) && length(obj)==1) return(obj)
if (is.atomic(obj) && length(obj)>1) return(as.call(c(quote(c),as.list(obj))))
if (is.name(obj) || is.symbol(obj)) return(obj)
as.call(lapply(obj,allCall))
}
## allCall(as.call(c(quote(ns),list(df=3,knots=c(1,2)))))[[2]]
vector2call=function(obj) {
if (is.atomic(obj) && length(obj)==1) return(obj)
if (is.atomic(obj) && length(obj)>1) return(as.call(c(quote(c),as.list(obj))))
if (is.name(obj) || is.symbol(obj)) return(obj)
lapply(obj,allCall) # is this correct?
}
## vector2call(list(df=3,knots=c(1,2)))
findSymbol <- function(obj,symbol) {
if (is.symbol(obj) && obj==symbol) TRUE else
if (is.symbol(obj)) FALSE else
if (is.atomic(obj)) FALSE else
Reduce(`|`,lapply(obj,findSymbol,symbol),FALSE)
}
rhs=function(formula)
if (length(formula)==3) formula[[3]] else formula[[2]]
lhs <- function(formula)
if (length(formula)==3) formula[[2]] else NULL
"rhs<-" = function(formula,value) {
newformula <- formula
newformula[[length(formula)]] <- value
newformula
}
"lhs<-" <- function(formula,value) {
if (length(formula)==2)
as.formula(as.call(c(formula[[1]],value,formula[[2]])))
else {
newformula <- formula
newformula[[2]] <- value
newformula
}
}
## numerically calculate the partial gradient \partial func_j \over \partial x_i
## (dim(grad(func,x)) == c(length(x),length(func(x)))
grad <- function(func,x,...) # would shadow numDeriv::grad()
{
h <- .Machine$double.eps^(1/3)*ifelse(abs(x)>1,abs(x),1)
temp <- x+h
h.hi <- temp-x
temp <- x-h
h.lo <- x-temp
twoeps <- h.hi+h.lo
nx <- length(x)
ny <- length(func(x,...))
if (ny==0L) stop("Length of function equals 0")
df <- if(ny==1L) rep(NA, nx) else matrix(NA, nrow=nx,ncol=ny)
for (i in 1L:nx) {
hi <- lo <- x
hi[i] <- x[i] + h.hi[i]
lo[i] <- x[i] - h.lo[i]
if (ny==1L)
df[i] <- (func(hi, ...) - func(lo, ...))/twoeps[i]
else df[i,] <- (func(hi, ...) - func(lo, ...))/twoeps[i]
}
return(df)
}
## numerically calculate the gradient \partial func_i \over \partial x_i
## length(grad(func,x)) == length(func(x)) == length(x)
grad1 <- function(func,x,...)
{
h <- .Machine$double.eps^(1/3)*ifelse(abs(x)>1,abs(x),1)
temp <- x+h
h.hi <- temp-x
temp <- x-h
h.lo <- x-temp
twoeps <- h.hi+h.lo
ny <- length(func(x,...))
if (ny==0L) stop("Length of function equals 0")
(func(x+h, ...) - func(x-h, ...))/twoeps
}
## predict lpmatrix for an lm object
lpmatrix.lm <-
function (object, newdata, na.action = na.pass) {
tt <- terms(object)
if (!inherits(object, "lm"))
warning("calling predict.lm(<fake-lm-object>) ...")
if (missing(newdata) || is.null(newdata)) {
X <- model.matrix(object)
}
else {
Terms <- delete.response(tt)
m <- model.frame(Terms, newdata, na.action = na.action,
xlev = object$xlevels)
if (!is.null(cl <- attr(Terms, "dataClasses")))
.checkMFClasses(cl, m)
X <- model.matrix(Terms, m, contrasts.arg = object$contrasts)
}
X
}
## fun: takes coef as its first argument
## requires: coef() and vcov() on the object
numDeltaMethod <- function(object,fun,...) {
coef <- coef(object)
est <- fun(coef,...)
Sigma <- vcov(object)
gd <- grad(fun,coef,...)
## se.est <- as.vector(sqrt(diag(t(gd) %*% Sigma %*% gd)))
se.est <- as.vector(sqrt(colSums(gd* (Sigma %*% gd))))
data.frame(Estimate = est, SE = se.est)
}
"coef<-" <- function (x, value)
UseMethod("coef<-")
predictnl <- function (object, ...)
UseMethod("predictnl")
"coef<-.default" <- function(x,value) {
x$coefficients <- value
x
}
predictnl.default <- function(object,fun,newdata=NULL,...)
{
## link=c(I,log,sqrt),invlink=NULL
## link <- match.arg(link)
## if (is.null(invlink))
## invlink <- switch(deparse(substitute(link)),I=I,log=exp,sqrt=function(x) x^2)
if (is.null(newdata) && !is.null(object$data))
newdata <- object$data
localf <- function(coef,...)
{
if ("coefficients" %in% names(object)) {
object$coefficients <- coef
} else if ("coef" %in% names(object)) {
object$coef <- coef
} else coef(object) <- coef
fun(object,...)
}
numDeltaMethod(object,localf,newdata=newdata,...)
}
setMethod("predictnl", "mle2", function(object,fun,newdata=NULL,...)
{
if (is.null(newdata) && !is.null(object@data))
newdata <- object@data
localf <- function(coef,...)
{
object@fullcoef <- coef # changed from predictnl.default()
fun(object,...)
}
numDeltaMethod(object,localf,newdata=newdata,...)
})
## setMethod("predictnl", "mle", function(object,fun,...)
## {
## localf <- function(coef,...)
## {
## object@fullcoef = coef # changed from predictnl.default()
## fun(object,...)
## }
## numDeltaMethod(object,localf,...)
## })
predict.formula <- function(formula,data,newdata,na.action,type="model.matrix")
{
mf <- match.call(expand.dots = FALSE)
type <- match.arg(type)
m <- match(c("formula", "data", "na.action"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- TRUE
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
mt <- attr(mf, "terms")
xlevels <-.getXlevels(mt, mf)
mfnew <- model.frame(mt, newdata, na.action=na.action, xlev=xlevels)
if (!is.null(cl <- attr(mt, "dataClasses"))) .checkMFClasses(cl, mfnew)
model.matrix(mt, mfnew, contrasts=contrasts)
}
`%call+%` <- function(left,right) call("+",left,right)
##
bread.stpm2 <- function (x, ...) {
rval <- vcov(x) * nrow(x@y)
dimnames(rval) <- list(names(coef(x)), names(coef(x)))
return(rval)
}
estfun.stpm2 <- function(obj, weighted=FALSE, ...) {
rr <- t(grad(obj@logli,coef(obj)))
colnames(rr) <- names(coef(obj))
if (weighted)
rr <- rr * obj@weights
rr
}
meat.stpm2 <-
function (x, adjust = FALSE, ...)
{
psi <- estfun.stpm2(x, ...)
k <- NCOL(psi)
n <- NROW(psi)
rval <- crossprod(as.matrix(psi))/n
if (adjust)
rval <- n/(n - k) * rval
rownames(rval) <- colnames(rval) <- colnames(psi)
return(rval)
}
sandwich.stpm2 <-
function (x, bread. = bread.stpm2, meat. = meat.stpm2, ...)
{
if (is.function(bread.))
bread. <- bread.(x)
if (is.function(meat.))
meat. <- meat.(x, ...)
n <- NROW(estfun.stpm2(x))
return(1/n * (bread. %*% meat. %*% bread.))
}
incrVar <- function(var,increment=1) {
##var <- deparse(substitute(var))
##function(data) "$<-"(data,var,"$"(data,var)+increment) # FAILS
n <- length(var)
if (n>1 && length(increment)==1)
increment <- rep(increment,n)
function(data) {
for (i in 1:n) {
data[[var[i]]] <- data[[var[i]]] + increment[i]
}
data
}
}
cloglog <- function(x) log(-log(x))
cexpexp <- function(x) exp(-exp(x))
setOldClass("terms")
setClassUnion("listOrNULL",c("list","NULL"))
setClassUnion("nameOrcall",c("name","call"))
setClassUnion("nameOrcallOrNULL",c("name","call","NULL"))
##setClassUnion("numericOrNULL",c("numeric","NULL"))
setOldClass("Surv")
setOldClass("lm")
expit <- function(x) {
ifelse(x==-Inf, 0, ifelse(x==Inf, 1, 1/(1+exp(-x))))
}
logit <- function(p) {
ifelse(p==0, -Inf, ifelse(p==1, Inf, log(p/(1-p))))
} # numerical safety for large values?
## check: weights
## link families
link.PH <- list(link=function(S) log(-log(S)),
ilink=function(eta) exp(-exp(eta)),
h=function(eta,etaD) etaD*exp(eta),
H=function(eta,etaD) exp(eta),
gradh=function(eta,etaD,obj) obj$XD*exp(eta)+obj$X*etaD*exp(eta),
gradH=function(eta,etaD,obj) obj$X*exp(eta))
link.PO <- list(link=function(S) -logit(S),
ilink=function(eta) expit(-eta),
H=function(eta,etaD) log(1+exp(eta)),
h=function(eta,etaD) etaD*exp(eta)*expit(-eta),
gradh=function(eta,etaD,obj) {
etaD*exp(eta)*obj$X*expit(-eta) -
exp(2*eta)*obj$X*etaD*expit(-eta)^2 +
exp(eta)*obj$XD*expit(-eta)
},
gradH=function(eta,etaD,obj) obj$X*exp(eta)*expit(-eta))
link.probit <-
list(link=function(S) -qnorm(S),
ilink=function(eta) pnorm(-eta),
H=function(eta,etaD) -log(pnorm(-eta)),
h=function(eta,etaD) dnorm(eta)/pnorm(-eta)*etaD,
gradh=function(eta,etaD,obj) {
-eta*obj$X*dnorm(eta)*etaD/pnorm(-eta) +
obj$X*dnorm(eta)^2/pnorm(-eta)^2*etaD +
dnorm(eta)/pnorm(-eta)*obj$XD
},
gradH=function(eta,etaD,obj) obj$X*dnorm(eta)/pnorm(-eta))
link.AH <- list(link=function(S) -log(S),
ilink=function(eta) exp(-eta),
h=function(eta,etaD) etaD,
H=function(eta,etaD) eta,
gradh=function(eta,etaD,obj) obj$XD,
gradH=function(eta,etaD,obj) obj$X)
## general link functions
setClass("stpm2", representation(xlevels="list",
contrasts="listOrNULL",
terms="terms",
logli="function",
## weights="numericOrNULL",
lm="lm",
timeVar="character",
time0Var="character",
timeExpr="nameOrcall",
time0Expr="nameOrcallOrNULL",
delayed="logical",
interval="logical",
model.frame="list",
call.formula="formula",
x="matrix",
xd="matrix",
termsd="terms",
Call="call",
y="Surv",
link="list"
),
contains="mle2")
stpm2 <- function(formula, data,
df = 3, cure = FALSE, logH.args = NULL, logH.formula = NULL,
tvc = NULL, tvc.formula = NULL,
control = list(parscale = 0.1, maxit = 300), init = NULL,
coxph.strata = NULL, weights = NULL, robust = FALSE, baseoff = FALSE,
bhazard = NULL, timeVar = "", time0Var = "", use.gr = TRUE, use.rcpp= TRUE,
reltol=1.0e-8, trace = 0,
type=c("PH","PO","probit","AH"),
frailty = FALSE, cluster = NULL, logtheta=0,
contrasts = NULL, subset = NULL, ...) {
type <- match.arg(type)
link <- switch(type,PH=link.PH,PO=link.PO,probit=link.probit,AH=link.AH)
## parse the event expression
eventInstance <- eval(lhs(formula),envir=data)
stopifnot(length(lhs(formula))>=2)
eventExpr <- lhs(formula)[[length(lhs(formula))]]
delayed <- length(lhs(formula))>=4
counting <- attr(eventInstance,"type") == "counting"
interval <- attr(eventInstance,"type") == "interval"
if (interval || frailty) { # early code
use.rcpp <- FALSE
use.gr <- FALSE
}
timeExpr <- lhs(formula)[[if (delayed) 3 else 2]] # expression
if (timeVar == "")
timeVar <- all.vars(timeExpr)
## set up the formulae
if (is.null(logH.formula) && is.null(logH.args)) {
logH.args$df <- df
if (cure) logH.args$cure <- cure
}
if (is.null(logH.formula))
logH.formula <- as.formula(call("~",as.call(c(quote(nsx),call("log",timeExpr),
vector2call(logH.args)))))
if (is.null(tvc.formula) && !is.null(tvc)) {
tvc.formulas <-
lapply(names(tvc), function(name)
call(":",
as.name(name),
as.call(c(quote(nsx),
call("log",timeExpr),
vector2call(if (cure) list(cure=cure,df=tvc[[name]]) else list(df=tvc[[name]])
)))))
if (length(tvc.formulas)>1)
tvc.formulas <- list(Reduce(`%call+%`, tvc.formulas))
tvc.formula <- as.formula(call("~",tvc.formulas[[1]]))
}
if (!is.null(tvc.formula)) {
rhs(logH.formula) <- rhs(logH.formula) %call+% rhs(tvc.formula)
}
if (baseoff)
rhs(logH.formula) <- rhs(tvc.formula)
full.formula <- formula
rhs(full.formula) <- rhs(formula) %call+% rhs(logH.formula)
##
## set up the data
## ensure that data is a data frame
data <- get_all_vars(full.formula, data)
## restrict to non-missing data (assumes na.action=na.omit)
.include <- Reduce(`&`,
lapply(model.frame(formula, data, na.action=na.pass),
Negate(is.na)),
TRUE)
data <- data[.include, , drop=FALSE]
##
## parse the function call
Call <- match.call()
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "contrasts", "weights"),
names(mf), 0L)
mf <- mf[c(1L, m)]
##
## get variables
time <- eval(timeExpr, data)
time0Expr <- NULL # initialise
if (delayed) {
time0Expr <- lhs(formula)[[2]]
if (time0Var == "")
time0Var <- all.vars(time0Expr)
time0 <- eval(time0Expr, data)
}
event <- eval(eventExpr,data)
event <- event > min(event)
##
if (!interval) {
## Cox regression
coxph.call <- mf
coxph.call[[1L]] <- as.name("coxph")
coxph.strata <- substitute(coxph.strata)
if (!is.null(coxph.strata)) {
coxph.formula <- formula
rhs(coxph.formula) <- rhs(formula) %call+% call("strata",coxph.strata)
coxph.call$formula <- coxph.formula
}
coxph.call$model <- TRUE
coxph.obj <- eval(coxph.call, envir=parent.frame())
y <- model.extract(model.frame(coxph.obj),"response")
data$logHhat <- pmax(-18,link$link(Shat(coxph.obj)))
}
if (interval) {
## survref regression
survreg.call <- mf
survreg.call[[1L]] <- as.name("survreg")
survreg.obj <- eval(survreg.call, envir=parent.frame())
weibullShape <- 1/survreg.obj$scale
weibullScale <- predict(survreg.obj)
y <- model.extract(model.frame(survreg.obj),"response")
data$logHhat <- pmax(-18,link$link(pweibull(time,weibullShape,weibullScale,lower.tail=FALSE)))
}
##
## initial values and object for lpmatrix predictions
lm.call <- mf
lm.call[[1L]] <- as.name("lm")
lm.formula <- full.formula
lhs(lm.formula) <- quote(logHhat) # new response
lm.call$formula <- lm.formula
dataEvents <- data[event,]
if (interval)
dataEvents <- data
lm.call$data <- quote(dataEvents) # events only
lm.obj <- eval(lm.call)
if (is.null(init)) {
init <- coef(lm.obj)
}
##
## set up X, mf and wt
X <- lpmatrix.lm(lm.obj,data)
mt <- terms(lm.obj)
mf <- model.frame(lm.obj)
wt <- model.weights(lm.obj$model)
if (is.null(wt)) wt <- rep(1,nrow(X))
##
## XD matrix
lpfunc <- function(delta,fit,dataset,var) {
dataset[[var]] <- dataset[[var]]+delta
lpmatrix.lm(fit,dataset)
}
XD <- grad(lpfunc,0,lm.obj,data,timeVar)
XD <- matrix(XD,nrow=nrow(X))
##
bhazard <- substitute(bhazard)
bhazard <- if (is.null(bhazard)) rep(0,nrow(X)) else eval(bhazard,data,parent.frame())
if (delayed && all(time0==0)) delayed <- FALSE
if (delayed) {
ind <- time0>0
data0 <- data[ind,,drop=FALSE] # data for delayed entry times
.timeVar <- data0[[timeVar]] <- data0[[time0Var]]
X0 <- lpmatrix.lm(lm.obj, data0)
wt0 <- wt[ind]
XD0 <- grad(lpfunc,0,lm.obj,data0,timeVar)
XD0 <- matrix(XD0,nrow=nrow(X0))
data0[[timeVar]] <- .timeVar
} else {
XD0 <- X0 <- wt0 <- matrix(0,1,1)
}
if (interval) {
ttime <- eventInstance[,1]
ttime2 <- eventInstance[,2]
ttype <- eventInstance[,3]
data0 <- data
.timeVar <- data0[[timeVar]] <- data0[[time0Var]]
X0 <- lpmatrix.lm(lm.obj, data0)
wt0 <- wt
XD0 <- grad(lpfunc,0,lm.obj,data0,timeVar)
XD0 <- matrix(XD0,nrow=nrow(X0))
data0[[timeVar]] <- .timeVar
}
pars <- list(event=event,time=time,X=X,XD=XD,wt=wt,bhazard=bhazard,delayed=delayed)
pars0 <- list(event=event,X=X0,XD=XD0,wt=wt0,bhazard=bhazard,delayed=delayed)
negll <- function(beta,kappa=1) {
if (frailty) {
theta <- exp(beta[length(beta)])
beta <- beta[-length(beta)]
}
eta <- as.vector(pars$X %*% beta)
etaD <- as.vector(pars$XD %*% beta)
H <- link$H(eta,etaD)
h <- link$h(eta,etaD) + bhazard
constraint <- kappa*sum(((pars$wt*h)[h<0])^2)
h[h<0] <- 1e-16
ll <- sum(pars$wt[pars$event]*log(h[pars$event])) - sum(pars$wt*H) - constraint/2
if (delayed) { # includes counting and interval types
eta0 <- as.vector(pars0$X %*% beta)
etaD0 <- as.vector(pars0$XD %*% beta)
H0 <- link$H(eta0,etaD0)
ll <- ll + sum(pars0$wt*H0)
}
if (interval) {
## initial values will be a problem
h0 <- link$h(eta0,etaD0)
ll <- 0
i <- ttype==0 # right censoring
ll <- ll - sum((H0*wt0)[i])
i <- ttype==1 # exact
ll <- ll - sum((H0*wt0)[i]) + sum(log(h0*wt0)[i])
i <- ttype==2 # left censoring
ll <- ll + sum((log(1-exp(-H0))*wt0)[i])
i <- ttype==3 # interval censoring
ll <- ll + sum((log(exp(-H0)-exp(-H))*wt)[i])
}
if (frailty) {
ll <- .Call("llgammafrailty",theta=theta,h=h,H=H,d=as.integer(pars$event),
cluster=as.integer(cluster),package="rstpm2")
}
return(-ll)
}
gradnegll <- function(beta,kappa=1) {
eta <- as.vector(pars$X %*% beta)
etaD <- as.vector(pars$XD %*% beta)
h <- link$h(eta,etaD)
gradh <- link$gradh(eta,etaD,pars)
gradH <- link$gradH(eta,etaD,pars)
gconstraint <- colSums((kappa*h*pars$wt*gradh)[h<0,])
h[h<0] <- 1e-16
g <- colSums(pars$wt*(-gradH + ifelse(pars$event,1/h,0)*gradh)) - gconstraint
if (delayed) {
eta <- as.vector(pars0$X %*% beta)
etaD <- as.vector(pars0$XD %*% beta)
gradH <- link$gradH(eta,etaD,pars0)
g <- g + colSums(gradH*pars0$wt)
}
return(-g)
}
logli <- function(beta) {
stop("logli for logit link not implemented")
## eta <- X %*% beta
## h <- (XD %*% beta)*exp(eta) + bhazard
## ## h[h<0] <- 1e-100
## out <- - exp(eta)
## out[event] <- out[event]+log(h[event])
## if (delayed) {
## eta0 <- X0 %*% beta
## out[ind] <- out[ind] + exp(eta0)
## }
## out <- out*wt
## return(out)
}
if (frailty)
init <- c(init,logtheta=logtheta)
if (!is.null(control) && "parscale" %in% names(control)) {
if (length(control$parscale)==1)
control$parscale <- rep(control$parscale,length(init))
if (is.null(names(control$parscale)))
names(control$parscale) <- names(init)
}
parnames(negll) <- parnames(gradnegll) <- names(init)
rcpp_stpm2 <- function() {
parscale <- if (!is.null(control$parscale)) control$parscale else rep(1,length(init))
names(parscale) <- names(init)
program <- switch(type,PH="optim_stpm2_ph",PO="optim_stpm2_po",probit="optim_stpm2_probit",
AH="optim_stpm2_ah")
.Call(program,list(init=init,X=X,XD=XD,bhazard=bhazard,wt=wt,event=ifelse(event,1,0),time=time,
delayed=if (delayed) 1 else 0, X0=X0, XD0=XD0, wt0=wt0, parscale=parscale, reltol=reltol,
kappa=1, trace = trace),
package="rstpm2")
}
## MLE
if (use.rcpp) {
fit <- rcpp_stpm2()
coef <- as.vector(fit$coef)
hessian <- fit$hessian
names(coef) <- rownames(hessian) <- colnames(hessian) <- names(init)
mle2 <- mle2(negll, coef, vecpar=TRUE, control=control, gr=gradnegll, ..., eval.only=TRUE)
mle2@vcov <- if (!inherits(vcov <- try(solve(hessian)), "try-error")) vcov else matrix(NA,length(coef), length(coef))
mle2@details$convergence <- fit$fail # fit$itrmcd
} else {
mle2 <- if (use.gr)
mle2(negll,init,vecpar=TRUE, control=control, gr=gradnegll, ...)
else mle2(negll,init,vecpar=TRUE, control=control, ...)
}
out <- new("stpm2",
call = mle2@call,
call.orig = mle2@call,
coef = mle2@coef,
fullcoef = mle2@fullcoef,
vcov = mle2@vcov,
min = mle2@min,
details = mle2@details,
minuslogl = mle2@minuslogl,
method = mle2@method,
data = data,
formula = mle2@formula,
optimizer = "optim",
xlevels = .getXlevels(mt, mf),
##contrasts = attr(X, "contrasts"),
contrasts = contrasts,
logli = logli,
##weights = weights,
Call = Call,
terms = mt,
model.frame = mf,
lm = lm.obj,
timeVar = timeVar,
time0Var = time0Var,
timeExpr = timeExpr,
time0Expr = time0Expr,
delayed = delayed,
interval = interval,
call.formula = formula,
x = X,
xd = XD,
termsd = mt, # wrong!
y = y,
link=link)
if (robust) # kludge
out@vcov <- sandwich.stpm2(out)
return(out)
}
setMethod("predictnl", "stpm2",
function(object,fun,newdata=NULL,link=c("I","log","cloglog","logit"),...)
{
link <- match.arg(link)
invlinkf <- switch(link,I=I,log=exp,cloglog=cexpexp,logit=expit)
linkf <- eval(parse(text=link))
if (is.null(newdata) && !is.null(object@data))
newdata <- object@data
localf <- function(coef,...)
{
object@fullcoef = coef
linkf(fun(object,...))
}
dm <- numDeltaMethod(object,localf,newdata=newdata,...)
out <- invlinkf(data.frame(Estimate=dm$Estimate,
lower=dm$Estimate-1.96*dm$SE,
upper=dm$Estimate+1.96*dm$SE))
## cloglog switches the bounds
if (link=="cloglog")
out <- data.frame(Estimate=out$Estimate,lower=out$upper,upper=out$lower)
return(out)
})
##
setMethod("predict", "stpm2",
function(object,newdata=NULL,
type=c("surv","cumhaz","hazard","density","hr","sdiff","hdiff","loghazard","link","meansurv","meansurvdiff"),
grid=FALSE,seqLength=300,
se.fit=FALSE,link=NULL,exposed=incrVar(var),var,...)
{
## exposed is a function that takes newdata and returns the revised newdata
## var is a string for a variable that defines a unit change in exposure
local <- function (object, newdata=NULL, type="surv", exposed)
{
tt <- object@terms
link <- object@link
if (is.null(newdata)) {
##mm <- X <- model.matrix(object) # fails (missing timevar)
X <- object@x
XD <- object@xd
##y <- model.response(object@model.frame)
y <- object@y
time <- as.vector(y[,ncol(y)-1])
}
else {
lpfunc <- function(delta,fit,data,var) {
data[[var]] <- data[[var]]+delta
lpmatrix.lm(fit,data)
}
X <- lpmatrix.lm(object@lm, newdata)
XD <- grad(lpfunc,0,object@lm,newdata,object@timeVar)
XD <- matrix(XD,nrow=nrow(X))
## resp <- attr(Terms, "variables")[attr(Terms, "response")]
## similarly for the derivatives
if (type %in% c("hazard","hr","sdiff","hdiff","loghazard")) {
## how to elegantly extract the time variable?
## timeExpr <-
## lhs(object@call.formula)[[length(lhs(object@call.formula))-1]]
time <- eval(object@timeExpr,newdata)
##
}
if (object@delayed && !object@interval) {
newdata0 <- newdata
newdata0[[object@timeVar]] <- newdata[[object@time0Var]]
X0 <- lpmatrix.lm(object@lm, newdata0)
XD0 <- grad(lpfunc,0,object@lm,newdata,object@timeVar)
XD0 <- matrix(XD0,nrow=nrow(X0))
}
if (type %in% c("hr","sdiff","hdiff","meansurvdiff")) {
if (missing(exposed))
stop("exposed needs to be specified for type in ('hr','sdiff','hdiff','meansurvdiff')")
newdata2 <- exposed(newdata)
X2 <- lpmatrix.lm(object@lm, newdata2)
XD2 <- grad(lpfunc,0,object@lm,newdata2,object@timeVar)
XD2 <- matrix(XD,nrow=nrow(X))
}
}
beta <- coef(object)
eta <- as.vector(X %*% beta)
etaD <- as.vector(XD %*% beta)
S <- link$ilink(eta)
h <- link$h(eta,etaD)
if (any(h<0)) warning(sprintf("Predicted hazards less than zero (n=%i).",sum(h<0)))
H = link$H(eta,etaD)
Sigma = vcov(object)
if (type=="link") {
return(eta)
}
if (type=="cumhaz") {
## if (object@delayed) {
## eta0 <- as.vector(X0 %*% beta)
## etaD0 <- as.vector(XD0 %*% beta)
## H0 <- link$H(eta0, etaD0)
## return(H - H0)
## }
## else
return(H)
}
if (type=="density")
return (S*h)
if (type=="surv") {
return(S)
}
if (type=="sdiff")
return(link$ilink(as.vector(X2 %*% beta)) - S)
if (type=="hazard") {
return(h)
}
if (type=="loghazard") {
return(log(h))
}
if (type=="hdiff") {
eta2 <- as.vector(X2 %*% beta)
etaD2 <- as.vector(XD2 %*% beta)
h2 <- link$h(eta2,etaD2)
return(h2 - h)
}
if (type=="hr") {
eta2 <- as.vector(X2 %*% beta)
etaD2 <- as.vector(XD2 %*% beta)
h2 <- link$h(eta2,etaD2)
return(h2/h)
}
if (type=="meansurv") {
return(mean(S))
}
if (type=="meansurvdiff") {
eta2 <- as.vector(X2 %*% beta)
S2 <- link$ilink(eta2)
return(mean(S2-S))
}
}
##debug(local)
type <- match.arg(type)
if (is.null(newdata) && type %in% c("hr","sdiff","hdiff"))
stop("Prediction using type in ('hr','sdiff','hdiff') requires newdata to be specified.")
if (grid) {
Y <- object@y
event <- Y[,ncol(Y)]==1 | object@interval
time <- object@data[[object@timeVar]]
eventTimes <- time[event]
X <- seq(min(eventTimes),max(eventTimes),length=seqLength)[-1]
data.x <- data.frame(X)
names(data.x) <- object@timeVar
newdata <- merge(newdata,data.x)
}
pred <- if (!se.fit) {
local(object,newdata,type=type,exposed=exposed,
...)
}
else {
if (is.null(link))
link <- switch(type,surv="cloglog",cumhaz="log",hazard="log",hr="log",sdiff="I",
hdiff="I",loghazard="I",link="I")
predictnl(object,local,link=link,newdata=newdata,type=type,
exposed=exposed,...)
}
attr(pred,"newdata") <- newdata
##if (grid) cbind(newdata,as.data.frame(pred)) else pred
return(pred)
})
##`%c%` <- function(f,g) function(...) g(f(...)) # function composition
setMethod("plot", signature(x="stpm2", y="missing"),
function(x,y,newdata,type="surv",
xlab=NULL,ylab=NULL,line.col=1,ci.col="grey",lty=par("lty"),
add=FALSE,ci=!add,rug=!add,
var=NULL,...) {
y <- predict(x,newdata,type=type,var=var,grid=TRUE,se.fit=TRUE)
if (is.null(xlab)) xlab <- deparse(x@timeExpr)
if (is.null(ylab))
ylab <- switch(type,hr="Hazard ratio",hazard="Hazard",surv="Survival",density="Density",
sdiff="Survival difference",hdiff="Hazard difference",cumhaz="Cumulative hazard")
xx <- attr(y,"newdata")
xx <- eval(x@timeExpr,xx) # xx[,ncol(xx)]
if (!add) matplot(xx, y, type="n", xlab=xlab, ylab=ylab, ...)
if (ci) polygon(c(xx,rev(xx)), c(y[,2],rev(y[,3])), col=ci.col, border=ci.col)
lines(xx,y[,1],col=line.col,lty=lty)
if (rug) {
Y <- x@y
eventTimes <- Y[Y[,ncol(Y)]==1,ncol(Y)-1]
rug(eventTimes,col=line.col)
}
return(invisible(y))
})
if (FALSE) {
lpfunc <- function(delta,fit,dataset,var) {
dataset[[var]] <- dataset[[var]]+delta
lpmatrix.lm(fit,dataset)
}
XD <- grad(lpfunc,0,lm.obj,data,timeVar)
XD <- matrix(XD,nrow=nrow(X))
#
XD <- grad1(lpfunc,data[[timeVar]])
}
derivativeDesign <-
function (functn, lower = -1, upper = 1, rule = NULL,
...)
{
pred <- if (length(list(...)) && length(formals(functn)) >
1)
function(x) functn(x, ...)
else functn
if (is.null(rule))
rule <- ## gaussquad::legendre.quadrature.rules(20)[[20]]
data.frame(x = c(0.993128599185095, 0.963971927277914, 0.912234428251326,
0.839116971822219, 0.746331906460151, 0.636053680726515, 0.510867001950827,
0.37370608871542, 0.227785851141646, 0.0765265211334977, -0.0765265211334974,
-0.227785851141645, -0.373706088715418, -0.510867001950827, -0.636053680726516,
-0.746331906460151, -0.839116971822219, -0.912234428251326, -0.963971927277913,
-0.993128599185094),
w = c(0.0176140071391522, 0.040601429800387,
0.0626720483341092, 0.0832767415767053, 0.101930119817241, 0.11819453196152,
0.131688638449176, 0.14209610931838, 0.149172986472603, 0.152753387130726,
0.152753387130726, 0.149172986472603, 0.142096109318381, 0.131688638449175,
0.11819453196152, 0.10193011981724, 0.0832767415767068, 0.0626720483341075,
0.0406014298003876, 0.0176140071391522))
lambda <- (upper - lower)/(2)
mu <- (lower + upper)/(2)
x <- lambda * rule$x + mu
w <- rule$w
eps <- .Machine$double.eps^(1/8)
X0 <- pred(x)
X1 <- (-pred(x+2*eps)+8*pred(x+eps)-8*pred(x-eps)+pred(x-2*eps))/12/eps
X2 <- (-pred(x+2*eps)/12+4/3*pred(x+eps)-5/2*pred(x)+4/3*pred(x-eps)-pred(x-2*eps)/12)/eps/eps
X3 <- (-pred(x+3*eps)/8+pred(x+2*eps)-13/8*pred(x+eps)+
13/8*pred(x-eps)-pred(x-2*eps)+pred(x-3*eps)/8)/eps/eps/eps
return(list(x=x,w=w,lambda=lambda,X0=X0,X1=X1,X2=X2,X3=X3))
}
smootherDesign <- function(gamobj,data,parameters = NULL) {
d <- data[1,,drop=FALSE] ## how to get mean prediction values, particularly for factors?
makepred <- function(var,inverse) {
function(value) {
d <- d[rep(1,length(value)),]
d[[var]] <- inverse(value)
predict(gamobj,newdata=d,type="lpmatrix")
}
}
smoother.names <- sapply(gamobj$smooth, function(obj) obj$term)
lapply(1:length(gamobj$smooth), function(i) {
smoother <- gamobj$smooth[[i]]
if (is.null(parameters)) {
var <- smoother$term
stopifnot(var %in% names(data))
transform <- I
inverse <- I
} else {
j <- match(smoother$term,names(parameters))
stopifnot(!is.na(j))
var <- parameters[[j]]$var
transform <- parameters[[j]]$transform
inverse <- parameters[[j]]$inverse
}
pred <- makepred(var,inverse)
derivativeDesign(pred,
lower=transform(min(data[[var]])),
upper=transform(max(data[[var]])))
})
}
## TODO: If we transform a smoother (e.g. log(time)), we can use information on
## (i) the variable name, (ii) the transform and (iii) the inverse transform.
## penalised stpm2
setOldClass("gam")
setClass("pstpm2", representation(xlevels="list",
contrasts="listOrNULL",
terms="terms",
logli="function",
gam="gam",
timeVar="character",
time0Var="character",
timeExpr="nameOrcall",
like="function",
model.frame="list",
fullformula="formula",
delayed="logical",
x="matrix",
xd="matrix",
termsd="terms",
Call="call",
y="Surv",
sp="numeric",
nevent="numeric",
link="list",
edf="numeric", df="numeric"
),
contains="mle2")
pstpm2 <- function(formula, data, smooth.formula = NULL,
logH.args = NULL,
tvc = NULL,
control = list(parscale = 0.1, maxit = 300), init = NULL,
coxph.strata = NULL, coxph.formula = NULL,
weights = NULL, robust = FALSE,
bhazard = NULL, timeVar = "", time0Var = "",
sp=NULL, use.gr = TRUE, use.rcpp = TRUE,
criterion=c("GCV","BIC"), penalty = c("logH","h"), smoother.parameters = NULL,
alpha=if (is.null(sp)) switch(criterion,GCV=1,BIC=1) else 1, sp.init=NULL, trace = 0,
type=c("PH","PO","probit","AH"),
reltol = list(search = 1.0e-6, final = 1.0e-8),
contrasts = NULL, subset = NULL, ...)
{
type <- match.arg(type)
link <- switch(type,PH=link.PH,PO=link.PO,probit=link.probit,AH=link.AH)
## set up the data
## ensure that data is a data frame
temp.formula <- formula
if (!is.null(smooth.formula)) rhs(temp.formula) <-rhs(temp.formula) %call+% rhs(smooth.formula)
raw.data <- data
data <- get_all_vars(temp.formula, raw.data)
criterion <- match.arg(criterion)
penalty <- match.arg(penalty)
## restrict to non-missing data (assumes na.action=na.omit)
.include <- Reduce(`&`,
lapply(model.frame(formula, data, na.action=na.pass),
Negate(is.na)),
TRUE)
data <- data[.include, , drop=FALSE] ### REPLACEMENT ###
##
## parse the function call
Call <- match.call()
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "contrasts", "weights"),
names(mf), 0L)
mf <- mf[c(1L, m)]
##
## parse the event expression
stopifnot(length(lhs(formula))>=2)
eventExpr <- lhs(formula)[[length(lhs(formula))]]
delayed <- length(lhs(formula))==4
timeExpr <- lhs(formula)[[if (delayed) 3 else 2]] # expression
if (timeVar == "")
timeVar <- all.vars(timeExpr)
time <- eval(timeExpr, data)
if (delayed) {
time0Expr <- lhs(formula)[[2]]
if (time0Var == "")
time0Var <- all.vars(time0Expr)
time0 <- eval(time0Expr, data)
}
event <- eval(eventExpr,data)
event <- event > min(event)
nevent <- sum(event)
##
## set up the formulae
if (is.null(smooth.formula) && is.null(logH.args)) {
logH.args$k <- -1
}
if (is.null(smooth.formula))
smooth.formula <- as.formula(call("~",as.call(c(quote(s),call("log",timeExpr),
vector2call(logH.args)))))
if (!is.null(tvc)) {
tvc.formulas <-
lapply(names(tvc), function(name)
call(":",
as.name(name),
as.call(c(quote(s),
call("log",timeExpr),
vector2call(list(k=tvc[[name]]))))))
if (length(tvc.formulas)>1)
tvc.formulas <- list(Reduce(`%call+%`, tvc.formulas))
tvc.formula <- as.formula(call("~",tvc.formulas[[1]]))
rhs(smooth.formula) <- rhs(smooth.formula) %call+% rhs(tvc.formula)
}
full.formula <- formula
if(type=="AH"){
rhs(full.formula) <- rhs(smooth.formula)
}
else{
rhs(full.formula) <- rhs(formula) %call+% rhs(smooth.formula)
}
##
left <- deparse(substitute(formula))
tf <- terms.formula(smooth.formula, specials = c("s", "te"))
terms <- attr(tf, "term.labels")
right <- paste0(terms, collapse = "+")
fullformula <- as.formula(paste0(left, "+", right), env = parent.frame())
## Cox regression
coxph.call <- mf
coxph.call[[1L]] <- as.name("coxph")
coxph.strata <- substitute(coxph.strata)
coxph.call$data <- quote(coxph.data)
coxph.data <- data
if (!is.null(coxph.formula)) {
coxph.formula2 <- coxph.call$formula
rhs(coxph.formula2) <- rhs(formula) %call+% rhs(coxph.formula)
coxph.call$formula <- coxph.formula2
}
if (!is.null(coxph.strata)) {
coxph.formula2 <- coxph.call$formula
rhs(coxph.formula2) <- rhs(formula) %call+% call("strata",coxph.strata)
coxph.call$formula <- coxph.formula2
}
coxph.call$model <- TRUE
## coxph.obj <- eval(coxph.call, envir=parent.frame())
coxph.obj <- eval(coxph.call, coxph.data)
y <- model.extract(model.frame(coxph.obj),"response")
data$logHhat <- pmax(-18,link$link(Shat(coxph.obj)))
##
## initial values and object for lpmatrix predictions
gam.call <- mf
gam.call[[1L]] <- as.name("gam")
gam.formula <- full.formula
lhs(gam.formula) <- quote(logHhat) # new response
gam.call$formula <- gam.formula
gam.call$sp <- sp
if (is.null(sp) && !is.null(sp.init))
gam.call$sp <- sp.init
dataEvents <- data[event,]
gam.call$data <- quote(dataEvents) # events only
gam.obj <- eval(gam.call)
##
## set up X, mf and wt
X <- predict(gam.obj,data,type="lpmatrix")
mt <- terms(gam.obj)
mf <- model.frame(gam.obj)
wt <- model.weights(gam.obj$model)
if (is.null(wt)) wt <- rep(1,nrow(X))
##
## XD matrix
## lpfunc <- function(delta,fit,data,var) {
## data[[var]] <- data[[var]]+delta
## predict(fit,data,type="lpmatrix")
## }
## XD2 <- grad(lpfunc,0,gam.obj,data,timeVar)
## XD2 <- matrix(XD,nrow=nrow(X))
lpfunc <- function(x,...) {
newdata <- data
newdata[[timeVar]] <- x
predict(gam.obj,newdata,type="lpmatrix")
}
XD <- grad1(lpfunc,data[[timeVar]])
##
bhazard <- substitute(bhazard)
bhazard <- if (is.null(bhazard)) rep(0,nrow(X)) else eval(bhazard,data,parent.frame())
if (delayed && all(time0==0)) delayed <- FALSE
if (delayed) {
ind <- time0>0
data0 <- data[ind,,drop=FALSE] # data for delayed entry times
.timeVar <- data0[[timeVar]] <- data0[[time0Var]]
X0 <- predict(gam.obj,data0,type="lpmatrix")
wt0 <- wt[ind]
lpfunc <- function(x,...) {
newdata <- data0
newdata[[timeVar]] <- x
predict(gam.obj,newdata,type="lpmatrix")
}
XD0 <- grad1(lpfunc,data0[[timeVar]])
data0[[timeVar]] <- .timeVar
## XD0 <- grad(lpfunc,0,lm.obj,data0,timeVar)
## XD0 <- matrix(XD0,nrow=nrow(X))
} else {
XD0 <- X0 <- wt0 <- matrix(0,1,1)
}
pars <- list(event=event,X=X,XD=XD,wt=wt,bhazard=bhazard,delayed=delayed)
pars0 <- list(event=event,X=X0,XD=XD0,wt=wt0,bhazard=bhazard,delayed=delayed)
## smoothing parameters
if (no.sp <- is.null(sp)) {
sp <- if(is.null(gam.obj$full.sp)) gam.obj$sp else gam.obj$full.sp
if (!is.null(sp.init)) sp <- sp.init
}
## penalty function
pfun <- function(beta,sp){
if(type=="AH"){
return(0)
}
else{
sum(sapply(1:length(gam.obj$smooth),
function(i) {
smoother <- gam.obj$smooth[[i]]
betai <- beta[smoother$first.para:smoother$last.para]
sp[i]/2 * betai %*% smoother$S[[1]] %*% betai
}))
}
}
negllsp <- function(beta,sp,gamma=10) {
eta <- as.vector(X %*% beta)
etaD <- as.vector(XD %*% beta)
H <- link$H(eta,etaD)
h <- link$h(eta,etaD) + bhazard
constraint <- gamma*sum((wt*h)[h<0]^2) + gamma*sum((wt*H)[H<0]^2)
h <- pmax(h,1e-16)
ll <- sum(wt[event]*log(h[event])) - sum(wt*H) - pfun(beta,sp) - constraint
if (delayed) {
eta0 <- as.vector(X0 %*% beta)
etaD0 <- as.vector(XD0 %*% beta)
ll <- ll + sum(wt0*link$H(eta0,etaD0))
}
attr(ll,"infeasible") <- constraint > 0
return(-ll)
}
dpfun <- function(beta,sp) {
if(type=="AH"){
return(0)
}
else{
deriv <- beta*0
for (i in 1:length(gam.obj$smooth))
{
smoother <- gam.obj$smooth[[i]]
ind <- smoother$first.para:smoother$last.para
deriv[ind] <- sp[i] * smoother$S[[1]] %*% beta[ind]
}
return(deriv)
}
}
if (penalty == "h") {
## a current limitation is that the hazard penalty needs to extract the variable names from the smoother objects (e.g. log(time) will not work)
stopifnot(sapply(gam.obj$smooth,function(obj) obj$term) %in% names(data) ||
!is.null(smoother.parameters))
## new penalty using the second derivative of the hazard
design <- smootherDesign(gam.obj,data,smoother.parameters)
pfun <- function(beta,sp) {
sum(sapply(1:length(design), function(i) {
obj <- design[[i]]
s0 <- as.vector(obj$X0 %*% beta)
s1 <- as.vector(obj$X1 %*% beta)
s2 <- as.vector(obj$X2 %*% beta)
s3 <- as.vector(obj$X3 %*% beta)
h2 <- (s3+3*s1*s2+s1^3)*exp(s0)
sp[i]/2*obj$lambda*sum(obj$w*h2^2)
}))
}
dpfun <- function(beta,sp) {
deriv <- beta*0
for (i in 1:length(design)) {
obj <- design[[i]]
s0 <- as.vector(obj$X0 %*% beta)
s1 <- as.vector(obj$X1 %*% beta)
s2 <- as.vector(obj$X2 %*% beta)
s3 <- as.vector(obj$X3 %*% beta)
h2 <- (s3+3*s1*s2+s1^3)*exp(s0)
dh2sq.dbeta <- 2*h2*(exp(s0)*(obj$X3+3*(obj$X1*s2+obj$X2*s1)+3*s1^2*obj$X1)+h2*obj$X0)
deriv <- deriv + sp[i]*obj$lambda*colSums(obj$w*dh2sq.dbeta)
}
deriv
}
}
gradnegllsp <- function(beta,sp,gamma=10) {
eta <- as.vector(X %*% beta)
etaD <- as.vector(XD %*% beta)
h <- link$h(eta,etaD) + bhazard
H <- link$H(eta,etaD)
gradh <- link$gradh(eta,etaD,pars)
gradH <- link$gradH(eta,etaD,pars)
dconstraint <- gamma*colSums(ifelse(h<0,h,0)*gradh)
g <- colSums(wt*(-gradH + ifelse(event,1/h,0)*gradh)) - dpfun(beta,sp) - dconstraint
# g <- colSums(wt*(-gradH + ifelse(event,1/h,0)*gradh)) - dconstraint ## for regression spline
if (delayed) {
eta0 <- as.vector(X0 %*% beta)
etaD0 <- as.vector(XD0 %*% beta)
g <- g + colSums(wt0*link$gradH(eta0,etaD0,pars0))
}
return(-g)
}
logli <- function(beta) {
eta <- as.vector(X %*% beta)
etaD <- as.vector(XD %*% beta)
h <- link$h(eta,etaD) + bhazard
H <- link$H(eta,etaD) + bhazard
out <- - H
out[event] <- out[event]+log(h[event])
if (delayed) {
eta0 <- as.vector(X0 %*% beta)
etaD0 <- as.vector(XD0 %*% beta)
out[ind] <- out[ind] + link$H(eta0,etaD0)
}
out <- out*wt
return(out)
}
like <- function(beta) {
eta <- as.vector(X %*% beta)
etaD <- as.vector(XD %*% beta)
h <- link$h(eta,etaD) + bhazard
H <- link$H(eta,etaD)
ll <- sum(wt[event]*log(h[event])) - sum(wt*H)
if (delayed) {
eta0 <- as.vector(X0 %*% beta)
etaD0 <- as.vector(XD0 %*% beta)
ll <- ll + sum(wt0*link$H(eta0,etaD0))
}
return(ll)
}
## initial values
if (is.null(init)) {
init <- coef(gam.obj)
}
if(!is.null(gam.obj$full.sp)) gam.obj$sp <- gam.obj$full.sp
while(is.na(value <- negllsp(init,gam.obj$sp)) || attr(value,"infeasible")) {
gam.call$sp <- gam.obj$sp * 5
if (no.sp) sp <- gam.call$sp
## Unresolved: should we change sp.init if the initial values are not feasible?
gam.obj <- eval(gam.call)
if(!is.null(gam.obj$full.sp)) gam.obj$sp <- gam.obj$full.sp
init <- coef(gam.obj)
if (all(gam.obj$sp > 1e5)) break
## stop("Initial values not valid and revised sp>1e5")
}
# ### Using exterior penalty method for nonlinear constraints: h(t)>=0 or increasing logH(t)
# ### Some initial values should be outside the feasible region
# while(all(XD%*%init>=0)){
# init <- init+0.001
# }
# ### Check initial value
# if(any(XD%*%init<=0)) {
# cat("Some initial values are exactly outside the feasible region of this problem","\n")
# }
## MLE
if (!is.null(control) && "parscale" %in% names(control)) {
if (length(control$parscale)==1)
control$parscale <- rep(control$parscale,length(init))
if (is.null(names(control$parscale)))
names(control$parscale) <- names(init)
} else {
if(is.null(control))
control <- list()
control$parscale <- rep(1,length(init))
names(control$parscale) <- names(init)
}
rcpp_optim <- function() {
## stopifnot(!delayed)
suffix <- switch(type,PH="ph",PO="po",probit="probit",AH="ah")
pen <- if(penalty=="logH") "LogH" else "Haz"
args <- list(init=init,X=X,XD=XD,bhazard=bhazard,wt=wt,event=ifelse(event,1,0),time=time,
delayed=if (delayed) 1 else 0, X0=X0, XD0=XD0, wt0=wt0, parscale=control$parscale,
smooth=if(penalty == "logH") gam.obj$smooth else design,
sp=sp, reltol_search=reltol$search, reltol=reltol$final, trace=trace,
kappa=1.0,
alpha=alpha,criterion=switch(criterion,GCV=1,BIC=2))
if (!no.sp) { # fixed sp as specified
program <- sprintf("optim_pstpm2%s_fixedsp_%s",pen,suffix)
.Call(program, args, package = "rstpm2")
}
else if (length(sp)>1) {
program <- sprintf("optim_pstpm2%s_multivariate_%s",pen,suffix)
.Call(program, args, package = "rstpm2")
} else {
program <- sprintf("optim_pstpm2%s_first_%s",pen,suffix)
.Call(program, args, package = "rstpm2")
}
}
if (use.rcpp) {
fit <- rcpp_optim()
fit$coef <- as.vector(fit$coef)
names(fit$coef) <- names(init)
init <- fit$coef
if (!no.sp) sp <- fit$sp
edf <- fit$edf
} else {
edf <- -1
}
negll <- function(beta) negllsp(beta,sp)
gradnegll <- function(beta) gradnegllsp(beta,sp)
parnames(negll) <- parnames(gradnegll) <- names(init)
if (use.rcpp) {
mle2 <- if (use.gr) {
mle2(negll,init,vecpar=TRUE, control=control, gr=gradnegll, eval.only=TRUE, ...)
} else mle2(negll,init,vecpar=TRUE, control=control, eval.only=TRUE, ...)
mle2@details$hessian <- fit$hessian
## mle2@vcov <- solve(optimHess(coef(mle2),negll,gradnegll))
mle2@vcov <- solve(fit$hessian)
mle2@details$convergence <- 0
} else {
mle2 <- if (use.gr) {
mle2(negll,init,vecpar=TRUE, control=control, gr=gradnegll, ...)
} else mle2(negll,init,vecpar=TRUE, control=control, ...)
if (any(is.na(mle2@vcov)))
mle2@vcov <- solve(optimHess(coef(mle2),negll,gradnegll))
}
out <- new("pstpm2",
call = mle2@call,
call.orig = mle2@call,
coef = mle2@coef,
fullcoef = mle2@fullcoef,
vcov = mle2@vcov,
min = mle2@min,
details = mle2@details,
minuslogl = mle2@minuslogl,
method = mle2@method,
optimizer = "optim", # mle2@optimizer
data = data, # mle2@data, which uses as.list()
formula = mle2@formula,
xlevels = .getXlevels(mt, mf),
##contrasts = attr(X, "contrasts"),
contrasts = NULL, # wrong!
logli = logli,
##weights = weights,
Call = Call,
terms = mt,
model.frame = mf,
gam = gam.obj,
timeVar = timeVar,
time0Var = time0Var,
timeExpr = timeExpr,
like = like,
fullformula = fullformula,
delayed=delayed,
x = X,
xd = XD,
termsd = mt, # wrong!
y = y,
sp = sp,
nevent=nevent,
link=link,
edf=edf, df=edf)
if (robust) # kludge
out@vcov <- sandwich.stpm2(out)
return(out)
}
########GCV##############
##require(numDeriv)
## now fit a penalised stpm2 model
##pstpm2.fit <- pstpm2(formula,data)
## log likelihood and penalized log likelihood
##
##GCV###
gcv<-function(pstpm2.fit){
like<-pstpm2.fit@like
Hl<-numDeriv::hessian(like,coef(pstpm2.fit))
if (any(is.na(Hl)))
Hl <- optimHess(coef(pstpm2.fit), like)
Hinv<- -vcov(pstpm2.fit)
trace<-sum(diag(Hinv%*%Hl))
l<-like(coef(pstpm2.fit))
structure(-l+trace,negll=-l,trace=trace)
}
###AICC
aicc<-function(pstpm2.fit,nn){
like<-pstpm2.fit@like
Hl<-numDeriv::hessian(like,coef(pstpm2.fit))
Hinv<--vcov(pstpm2.fit)
trace<-sum(diag(Hinv%*%Hl))
ll<-like(coef(pstpm2.fit))
return(-2*ll+2*trace*nn/(nn-trace-1))
}
###BIC
bic<-function(pstpm2.fit,nn){
like<-pstpm2.fit@like
Hl<-numDeriv::hessian(like,coef(pstpm2.fit))
Hinv<--vcov(pstpm2.fit)
trace<-sum(diag(Hinv%*% Hl))
ll<-like(coef(pstpm2.fit))
return(-2*ll+trace*log(nn))
}
###GCVC
gcvc<-function(pstpm2.fit,nn){
like<-pstpm2.fit@like
Hl<-numDeriv::hessian(like,coef(pstpm2.fit))
Hinv<--vcov(pstpm2.fit)
trace<-sum(diag(Hinv %*% Hl))
ll<-like(coef(pstpm2.fit))
return(-2*ll-2*nn*log(1-trace/nn))
}
setMethod("predictnl", "pstpm2",
function(object,fun,newdata=NULL,link=c("I","log","cloglog","logit"),...)
{
link <- match.arg(link)
invlinkf <- switch(link,I=I,log=exp,cloglog=cexpexp,logit=expit)
linkf <- eval(parse(text=link))
if (is.null(newdata) && !is.null(object@data))
newdata <- object@data
localf <- function(coef,...)
{
object@fullcoef = coef
linkf(fun(object,...))
}
dm <- numDeltaMethod(object,localf,newdata=newdata,...)
out <- invlinkf(data.frame(Estimate=dm$Estimate,
lower=dm$Estimate-1.96*dm$SE,
upper=dm$Estimate+1.96*dm$SE))
## cloglog switches the bounds
if (link=="cloglog")
out <- data.frame(Estimate=out$Estimate,lower=out$upper,upper=out$lower)
return(out)
})
##
setMethod("predict", "pstpm2",
function(object,newdata=NULL,
type=c("surv","cumhaz","hazard","density","hr","sdiff","hdiff","loghazard","link","meansurv","meansurvdiff"),
grid=FALSE,seqLength=300,
se.fit=FALSE,link=NULL,exposed=incrVar(var),var,...)
{
## exposed is a function that takes newdata and returns the revised newdata
## var is a string for a variable that defines a unit change in exposure
local <- function (object, newdata=NULL, type="surv", exposed)
{
tt <- object@terms
link <- object@link
if (is.null(newdata)) {
##mm <- X <- model.matrix(object) # fails (missing timevar)
X <- object@x
XD <- object@xd
##y <- model.response(object@model.frame)
y <- object@y
time <- as.vector(y[,ncol(y)-1])
}
else {
X <- predict(object@gam, newdata, type="lpmatrix")
## lpfunc <- function(delta,fit,data,var) {
## data[[var]] <- data[[var]]+delta
## predict(fit,data,type="lpmatrix")
## }
## XD <- grad(lpfunc,0,object@gam,newdata,object@timeVar)
## XD <- matrix(XD,nrow=nrow(X))
lpfunc <- function(x,...) {
newdata2 <- newdata
newdata2[[object@timeVar]] <- x
predict(object@gam,newdata2,type="lpmatrix")
}
XD <- grad1(lpfunc,newdata[[object@timeVar]])
## resp <- attr(Terms, "variables")[attr(Terms, "response")]
## similarly for the derivatives
if (object@delayed) {
newdata0 <- newdata
newdata0[[object@timeVar]] <- newdata[[object@time0Var]]
X0 <- lpmatrix.lm(object@lm, newdata0)
XD0 <- grad(lpfunc,0,object@lm,newdata,object@timeVar)
XD0 <- matrix(XD0,nrow=nrow(X0))
}
if (type %in% c("hazard","hr","sdiff","hdiff","loghazard","meansurvdiff")) {
time <- eval(object@timeExpr,newdata)
##
}
if (type %in% c("hr","sdiff","hdiff","meansurvdiff")) {
if (missing(exposed))
stop("exposed needs to be specified for type in ('hr','sdiff','hdiff','meansurvdiff')")
newdata2 <- exposed(newdata)
X2 <- predict(object@gam, newdata2, type="lpmatrix")
XD2 <- grad(lpfunc,0,object@gam,newdata2,object@timeVar)
XD2 <- matrix(XD,nrow=nrow(X))
}
}
beta <- coef(object)
eta <- as.vector(X %*% beta)
etaD <- as.vector(XD %*% beta)
S <- link$ilink(eta)
h <- link$h(eta,etaD)
if (any(h<0)) warning(sprintf("Predicted hazards less than zero (n=%i).",sum(h<0)))
H = link$H(eta,etaD)
Sigma = vcov(object)
if (type=="link") { # delayed entry?
return(eta)
}
if (type=="density")
return (S*h)
if (type=="cumhaz") { # delayed entry?
return(H)
}
if (type=="surv") { # delayed entry?
return(exp(-H))
}
if (type=="sdiff")
return(link$ilink(as.vector(X2 %*% beta)) - S)
if (type=="hazard") {
return(h)
}
if (type=="loghazard") {
return(log(h))
}
if (type=="hdiff") {
eta2 <- as.vector(X2 %*% beta)
etaD2 <- as.vector(XD2 %*% beta)
h2 <- link$h(eta2,etaD2)
return(h2 - h)
}
if (type=="hr") {
eta2 <- as.vector(X2 %*% beta)
etaD2 <- as.vector(XD2 %*% beta)
h2 <- link$h(eta2,etaD2)
return(h2/h)
}
if (type=="meansurv") {
return(mean(S))
}
if (type=="meansurvdiff") {
eta2 <- as.vector(X2 %*% beta)
S2 <- link$ilink(eta2)
return(mean(S2-S))
}
}
##debug(local)
type <- match.arg(type)
if (is.null(newdata) && type %in% c("hr","sdiff","hdiff","meansurvdiff"))
stop("Prediction using type in ('hr','sdiff','hdiff','meansurvdiff') requires newdata to be specified.")
if (grid) {
Y <- object@y
event <- Y[,ncol(Y)]==1
time <- object@data[[object@timeVar]]
eventTimes <- time[event]
X <- seq(min(eventTimes),max(eventTimes),length=seqLength)[-1]
data.x <- data.frame(X)
names(data.x) <- object@timeVar
newdata <- merge(newdata,data.x)
}
pred <- if (!se.fit) {
local(object,newdata,type=type,exposed=exposed,
...)
}
else {
if (is.null(link))
link <- switch(type,surv="cloglog",density="log",cumhaz="log",hazard="log",hr="log",sdiff="I",
hdiff="I",loghazard="I",link="I")
predictnl(object,local,link=link,newdata=newdata,type=type,
exposed=exposed,...)
}
attr(pred,"newdata") <- newdata
##if (grid) cbind(newdata,as.data.frame(pred)) else pred
return(pred)
})
##`%c%` <- function(f,g) function(...) g(f(...)) # function composition
## to do:
## (*) Stata-compatible knots
setMethod("plot", signature(x="pstpm2", y="missing"),
function(x,y,newdata,type="surv",
xlab=NULL,ylab=NULL,line.col=1,ci.col="grey",lty=par("lty"),
lwd=par("lwd"),
add=FALSE,ci=!add,rug=!add,
var=NULL,...) {
y <- predict(x,newdata,type=type,var=var,grid=TRUE,se.fit=TRUE)
if (is.null(xlab)) xlab <- deparse(x@timeExpr)
if (is.null(ylab))
ylab <- switch(type,hr="Hazard ratio",hazard="Hazard",surv="Survival",density="Density",
sdiff="Survival difference",hdiff="Hazard difference",cumhaz="Cumulative hazard")
xx <- attr(y,"newdata")
xx <- eval(x@timeExpr,xx) # xx[,ncol(xx)]
if (!add) matplot(xx, y, type="n", xlab=xlab, ylab=ylab, ...)
if (ci) polygon(c(xx,rev(xx)), c(y[,2],rev(y[,3])), col=ci.col, border=ci.col)
lines(xx,y[,1],col=line.col,lty=lty,lwd=lwd)
if (rug) {
Y <- x@y
eventTimes <- Y[Y[,ncol(Y)]==1,ncol(Y)-1]
rug(eventTimes,col=line.col)
}
return(invisible(y))
})
#######Optimal fitting#######
###GCV,AICC,BIC or GCVC to choose smoothing parameters###
opt.val<-function(pstpm2.fit,nn){
like<-pstpm2.fit@like
Hl<-numDeriv::hessian(like,coef(pstpm2.fit))
Hinv<-vcov(pstpm2.fit)
trace<-sum(diag(Hinv%*%Hl))
loglike<-(like(coef(pstpm2.fit)))/nn
gcv<-(trace-loglike)/nn
aicc<-(-2*loglike+2*trace*nn/(nn-trace-1))/nn
bic<-(-2*loglike+trace*log(nn))/nn
gcvc<-(-2*loglike-2*nn*log(1-trace/nn))/nn
out<-c(loglike,gcv,aicc,bic,gcvc)
return(out)
}
###############################
###############################
# setClass("opt.fit", representation(
# num.ind = "numeric",
# cr = "numeric",
# tops = "data.frame",
# sp.opt = "numeric",
# fun.min = "numeric"
# ),
# contains="pstpm2")
# #########################
# opt.fit<-function(formula,data,smooth.formula,sp.low,sp.upp,num.sp,timeVar = NULL){
# ###number of individual
# num.ind <- nrow(data)
# #####Censoring rate####
# ## set up the data
# ## ensure that data is a data frame
# data <- get_all_vars(formula, data)
# # ## parse the function call
# # Call <- match.call()
# # mf <- match.call(expand.dots = FALSE)
# # m <- match(c("formula", "data", "subset", "contrasts", "weights"),
# # names(mf), 0L)
# # mf <- mf[c(1L, m)]
# stopifnot(length(lhs(formula))>=2)
# eventExpr <- lhs(formula)[[length(lhs(formula))]]
# delayed <- length(lhs(formula))==4
# timeExpr <- lhs(formula)[[if (delayed) 3 else 2]] # expression
# if (is.null(timeVar))
# timeVar <- all.vars(timeExpr)
# time <- eval(timeExpr, data)
# if (delayed) {
# time0Expr <- lhs(formula)[[2]]
# time0 <- eval(time0Expr, data)
# }
# event <- eval(eventExpr,data)
# cr <- sum(event > min(event))/num.ind
# #
# # cr=table(lhs(formula)[[if (delayed) 4 else 3]][2])/nn
# ##nn<-length(brcancer$recyear)
# # system.time(pfit1 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
# # smooth.formula=~s(recyear,k=30), sp=1e-1))
# # plot(pfit1,newdata=data.frame(hormon=1))
#
# #sps <- 10^(seq(-4,4,by=0.5))
# # sp.low=10^-4
# # sp.upp=4000
# # num.sp=30
# sps <- 10^(seq(log10(sp.low),log10(sp.upp),length=num.sp))
# optvals <- sapply(sps, function(sp) {
# opt.val(pstpm2(formula,data,smooth.formula=NULL, sp=sp),num.ind)
# })
# tops<-t(optvals)
# colnames(tops) <- c("loglike","gcv","aicc","bic","gcvc")
# rownames(tops) <- rownames(tops, do.NULL = FALSE, prefix = "Obs.")
# # tops<-as.data.frame(tops)
# tops<-as.data.frame(tops)
# ####Plot#########
# #par(mfrow=c(1,2))
# ###to choose optimal smoothing parameter ###
# ind.min <- sapply(2:5,function(x) order(tops[,x])[1])
# sp.opt <- sps[ind.min]
# obj<-pstpm2(formula,data,smooth.formula=NULL, sp=sp.opt[1])
# fun.min <- sapply(2:5,function(x) min(tops[,x]))
# # if(ind.min[1]==1)
# # stop("Hit left boundary, make sp.low smaller.")
# # if(ind.min[1]==num.sp)
# # stop("Hit right boundary, make sp.upp bigger.")
# # with(tops,matplot(sps,tops[,-1],type="l",col=1:4,lty=1:4,xlab="x",ylab="y"))
# # points(sp.opt,fun.min,pch=4,lwd=2,cex=1.2)
# # lines(sp.opt,fun.min,err=-1,col=1:4,lty=1:4)
#
# ###Estimate final model with optimal value of sp###
#
# #
# # summary(pfit.obj)
# #########################################
# out <- as(obj,"opt.fit")
# out <- new("opt.fit",
# coef = pstpm2@coef,
# fullcoef = pstpm2@fullcoef,
# vcov = pstpm2@vcov,
# min = pstpm2@min,
# details = pstpm2@details,
# minuslogl = pstpm2@minuslogl,
# method = pstpm2@method,
# data = data,
# formula = pstpm2@formula,
# optimizer = "optim",
# xlevels = .getXlevels(pstpm2@terms,pstpm2@model.frame),
# ##contrasts = attr(X, "contrasts"),
# contrasts = NULL, # wrong!
# logli = pstpm2@logli,
# ##weights = weights,
# Call = pstpm2@Call,
# terms = pstpm2@terms,
# model.frame = pstpm2@model.frame,
# gam = pstpm2@gam,
# timeVar = pstpm2@timeVar,
# timeExpr = pstpm2@timeExpr,
# like = pstpm2@like,
# negll<-pstpm2@negll,
# call.formula = pstpm2@call.formula,
# x = pstpm2@x,
# xd = pstpm2@xd,
# termsd = pstpm2@termsd, # wrong!
# y = pstpm2@y,
# num.ind = num.ind,
# cr = cr,
# tops = tops,
# sp.opt = sp.opt,
# fun.min = fun.min)
#
# return(out)
# }
## if (FALSE) {
## #####load data####
## load("brcancer.rda")
## data(brcancer)
## brcancer$recyear <- brcancer$rectime/365
## ####model fit###
## opt.fit(Surv(recyear,censrec==1)~hormon,data=brcancer,
## smooth.formula=~s(recyear), sp.low=10^-4,sp.upp=4000,
## num.sp=30,timeVar = NULL)
## }
# ###methods for Plot ###
# setMethod(
# f= "plot",
# signature(x="opt.fit", y="missing"),
# definition=function (x,y,...){
# matplot(x@sps,x@tops[,-1],type="l",col=1:4,lty=1:4,xlab="",ylab="")
# points(x@sp.opt,x@fun.min,pch=4,lwd=2,cex=1.2)
# lines(x@sp.opt,x@fun.min,err=-1,col=1:4,lty=1:4)
# }
# )
# ####methods for print####
# setMethod ("print",signature(x="opt.fit", y="missing"),
# function(x,...){
# cat("*** Class opt.fit, method Print *** \n")
# cat("* Optimal SP ="); print (x@sp.opt)
# cat("* GCV = \n"); print (x@fun.min[1])
# cat("******* End Print (opt.fit) ******* \n")
# }
# )
##########################
## sandwich variance estimator (from the sandwich package)
## coeftest.stpm2 <-
## function (x, vcov. = NULL, df = NULL, ...)
## {
## est <- coef(x)
## if (is.null(vcov.))
## se <- vcov(x)
## else {
## if (is.function(vcov.))
## se <- vcov.(x)
## else se <- vcov.
## }
## se <- sqrt(diag(se))
## if (!is.null(names(est)) && !is.null(names(se))) {
## anames <- names(est)[names(est) %in% names(se)]
## est <- est[anames]
## se <- se[anames]
## }
## tval <- as.vector(est)/se
## pval <- 2 * pnorm(abs(tval), lower.tail = FALSE)
## cnames <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)")
## mthd <- "z"
## rval <- cbind(est, se, tval, pval)
## colnames(rval) <- cnames
## class(rval) <- "coeftest"
## attr(rval, "method") <- paste(mthd, "test of coefficients")
## return(rval)
## }
## weights.stpm2 <-
## function (object, ...)
## {
## wts <- object@weights
## if (is.null(wts))
## wts
## else napredict(object@na.action, wts)
## }