https://github.com/AvantiShri/shap
Tip revision: 5fdad0651176cdbf1acd6c697604a71529695211 authored by Av Shrikumar on 20 October 2021, 09:20:58 UTC
Updated to work with current Colab default env
Updated to work with current Colab default env
Tip revision: 5fdad06
setup.py
from setuptools import setup, Extension
from setuptools.command.build_ext import build_ext as _build_ext
import os
import re
import codecs
import platform
from distutils.sysconfig import get_config_var
from distutils.version import LooseVersion
import sys
# to publish use:
# > python setup.py sdist bdist_wheel upload
# which depends on ~/.pypirc
# This is copied from @robbuckley's fix for Panda's
# For mac, ensure extensions are built for macos 10.9 when compiling on a
# 10.9 system or above, overriding distuitls behavior which is to target
# the version that python was built for. This may be overridden by setting
# MACOSX_DEPLOYMENT_TARGET before calling setup.py
if sys.platform == 'darwin':
if 'MACOSX_DEPLOYMENT_TARGET' not in os.environ:
current_system = LooseVersion(platform.mac_ver()[0])
python_target = LooseVersion(get_config_var('MACOSX_DEPLOYMENT_TARGET'))
if python_target < '10.9' and current_system >= '10.9':
os.environ['MACOSX_DEPLOYMENT_TARGET'] = '10.9'
here = os.path.abspath(os.path.dirname(__file__))
def read(*parts):
with codecs.open(os.path.join(here, *parts), 'r') as fp:
return fp.read()
def find_version(*file_paths):
version_file = read(*file_paths)
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M)
if version_match:
return version_match.group(1)
raise RuntimeError("Unable to find version string.")
# Extend the default build_ext class to bootstrap numpy installation
# that are needed to build C extensions.
# see https://stackoverflow.com/questions/19919905/how-to-bootstrap-numpy-installation-in-setup-py
class build_ext(_build_ext):
def finalize_options(self):
_build_ext.finalize_options(self)
if isinstance(__builtins__, dict):
__builtins__["__NUMPY_SETUP__"] = False
else:
setattr(__builtins__, "__NUMPY_SETUP__", False)
import numpy
print("numpy.get_include()", numpy.get_include())
self.include_dirs.append(numpy.get_include())
def run_setup(with_binary=True, test_xgboost=True, test_lightgbm=True):
ext_modules = []
if with_binary:
ext_modules.append(
Extension('shap._cext', sources=['shap/_cext.cc'])
)
if test_xgboost and test_lightgbm:
tests_require = ['nose', 'xgboost', 'lightgbm']
elif test_xgboost:
tests_require = ['nose', 'xgboost']
elif test_lightgbm:
tests_require = ['nose', 'lightgbm']
else:
tests_require = ['nose']
setup(
name='shap',
version=find_version("shap", "__init__.py"),
description='A unified approach to explain the output of any machine learning model.',
long_description="SHAP (SHapley Additive exPlanations) is a unified approach to explain the output of " + \
"any machine learning model. SHAP connects game theory with local explanations, uniting " + \
"several previous methods and representing the only possible consistent and locally accurate " + \
"additive feature attribution method based on expectations.",
long_description_content_type="text/markdown",
url='http://github.com/slundberg/shap',
author='Scott Lundberg',
author_email='slund1@cs.washington.edu',
license='MIT',
packages=[
'shap', 'shap.explainers', 'shap.explainers.other', 'shap.explainers.deep',
'shap.plots', 'shap.benchmark'
],
package_data={'shap': ['plots/resources/*', 'tree_shap.h']},
cmdclass={'build_ext': build_ext},
setup_requires=['numpy'],
install_requires=['numpy', 'scipy', 'scikit-learn', 'matplotlib', 'pandas', 'tqdm>4.25.0', 'ipython', 'scikit-image'],
test_suite='nose.collector',
tests_require=tests_require,
ext_modules=ext_modules,
zip_safe=False
# python_requires='>3.0' we will add this at some point
)
def try_run_setup(**kwargs):
""" Fails gracefully when various install steps don't work.
"""
try:
run_setup(**kwargs)
except Exception as e:
print(str(e))
if "xgboost" in str(e).lower():
kwargs["test_xgboost"] = False
print("Couldn't install XGBoost for testing!")
try_run_setup(**kwargs)
elif "lightgbm" in str(e).lower():
kwargs["test_lightgbm"] = False
print("Couldn't install LightGBM for testing!")
try_run_setup(**kwargs)
elif kwargs["with_binary"]:
kwargs["with_binary"] = False
print("WARNING: The C extension could not be compiled, sklearn tree models not supported.")
try_run_setup(**kwargs)
else:
print("ERROR: Failed to build!")
# we seem to need this import guard for appveyor
if __name__ == "__main__":
try_run_setup(with_binary=True, test_xgboost=True, test_lightgbm=True)