Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 81a58cc
  • /
  • iterativePrincipalAxis.rd
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:bfd5f7c9d44fb4207d6372d01dba2883ae2bb6e3
directory badge Iframe embedding
swh:1:dir:81a58ccd18362c0779c20584660fd01c976e32e4
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
iterativePrincipalAxis.rd
\name{iterativePrincipalAxis}
\alias{iterativePrincipalAxis}
\title{ Iterative Principal Axis Analysis }

\description{
 The \emph{iterativePrincipalAxis} function return a principal axis analysis with
 iterated communalities estimates. Three different choices of initial communalities
 estimates are given: maximum corelation, multiple correlation or estimates based
 on the sum of the sqared principal component analysis loadings. Generally statistical
 packages initialize the the communalities at the multiple correlation value.
 Unfortunately, this strategy cannot deal with singular correlation or covariance matrices.
 If the maximum correlation or the estimated communalities based on the sum of loading
 are used insted, then a solution can be computed.
 }

\usage{
 iterativePrincipalAxis(R,
                        nFactors=2,
                        communalities="component",
                        iterations=20,
                        tolerance=0.001)
 }

\arguments{
  \item{R}{             numeric: correlation or covariance matrix}
  \item{nFactors}{      numeric: number of factors to retain}
  \item{communalities}{ character: initial values for communalities ("component", "maxr", or "multiple")}
  \item{iterations}{    numeric: maximum number of iterations to obtain a solution}
  \item{tolerance}{     numeric: minimal difference in the estimated communalities after a given iteration}
 }

\value{
  \item{values}{       numeric: variance of each component }
  \item{varExplained}{ numeric: variance explained by each component }
  \item{varExplained}{ numeric: cumulative variance explained by each component }
  \item{loadings}{     numeric: loadings of each variable on each component }
  \item{iterations}{   numeric: maximum number of iterations to obtain a solution}
  \item{tolerance}{    numeric: minimal difference in the estimated communalities after a given iteration}
 }

\seealso{
 \code{\link{componentAxis}},
 \code{\link{principalAxis}},
 \code{\link{rRecovery}}
 }

\author{ 
    Gilles Raiche, Universite du Quebec a Montreal
    \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/}
 }

\examples{
# .......................................................
# Exemple from Kim and Mueller (1978, p. 10)
# Population: upper diagonal
# Simulated sample: lower diagnonal
 R <- matrix(c( 1.000, .6008, .4984, .1920, .1959, .3466,
                .5600, 1.000, .4749, .2196, .1912, .2979,
                .4800, .4200, 1.000, .2079, .2010, .2445,
                .2240, .1960, .1680, 1.000, .4334, .3197,
                .1920, .1680, .1440, .4200, 1.000, .4207,
                .1600, .1400, .1200, .3500, .3000, 1.000),
                nrow=6, byrow=TRUE)

# Factor analysis: Principal axis factoring with iterated communalities -
# Kim and Mueller (1978, p. 23)
# Replace upper diagonal by lower diagonal
 RU         <- diagReplace(R, upper=TRUE)
 nFactors   <- 2
 fComponent <- iterativePrincipalAxis(RU, nFactors=nFactors, communalities="component")
 fComponent
 rRecovery(RU,fComponent$loadings, communalities=FALSE)

 fMaxr      <- iterativePrincipalAxis(RU, nFactors=nFactors, communalities="maxr")
 fMaxr
 rRecovery(RU,fMaxr$loadings, communalities=FALSE)

 fMultiple  <- iterativePrincipalAxis(RU, nFactors=nFactors, communalities="multiple")
 fMultiple
 rRecovery(RU,fMultiple$loadings, communalities=FALSE)
# .......................................................
 }

\keyword{ multivariate }

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top