\name{chebCoeff} \alias{chebCoeff} \title{Chebyshev Polynomials} \description{ Chebyshev Coefficients for Chebyshev polynomials of the first kind. } \usage{ chebCoeff(fun, a, b, n) } \arguments{ \item{fun}{function to be approximated.} \item{a, b}{endpoints of the interval.} \item{n}{an integer \code{>= 0}.} } \details{ For a function \code{fun} on on the interval \code{[a, b]} determines the coefficients of the Chebyshev polynomials up to degree \code{n} that will approximate the function (in L2 norm). } \value{ Vector of coefficients for the Chebyshev polynomials, from low to high degrees (see the example). } \references{ Weisstein, Eric W. ``Chebyshev Polynomial of the First Kind." From MathWorld --- A Wolfram Web Resource. \url{http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html} } \author{ HwB } \note{ See the ``Chebfun Project'' by Nick Trefethen. } \seealso{ \code{\link{chebPoly}}, \code{\link{chebApprox}} } \examples{ ## Chebyshev coefficients for x^2 + 1 n <- 4 f2 <- function(x) x^2 + 1 cC <- chebCoeff(f2, -1, 1, n) # 3.0 0 0.5 0 0 cC[1] <- cC[1]/2 # correcting the absolute Chebyshev term # i.e. 1.5*T_0 + 0.5*T_2 cP <- chebPoly(n) # summing up the polynomial coefficients p <- cC \%*\% cP # 0 0 1 0 1 } \keyword{ math }