Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/graphicalVAR
15 March 2024, 11:27:55 UTC
  • Code
  • Branches (14)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.1.1
    • refs/tags/0.1.2
    • refs/tags/0.1.3
    • refs/tags/0.1.4
    • refs/tags/0.2
    • refs/tags/0.2.1
    • refs/tags/0.2.2
    • refs/tags/0.2.3
    • refs/tags/0.2.4
    • refs/tags/0.3
    • refs/tags/0.3.1
    • refs/tags/0.3.3
    • refs/tags/0.3.4
    No releases to show
  • da56380
  • /
  • man
  • /
  • mlGraphicalVAR.Rd
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:c168f4b86c0554f6908e788b857e128567dbf71b
origin badgedirectory badge Iframe embedding
swh:1:dir:149d38017cedc97c80950fb1282388cdf3fa74c2
origin badgerevision badge
swh:1:rev:de167f1cd0ecc26c5c294ac418681dd4678e6004
origin badgesnapshot badge
swh:1:snp:9d71d524f3f98b6820bf7864b20870c1d9d25774

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: de167f1cd0ecc26c5c294ac418681dd4678e6004 authored by Sacha Epskamp on 09 April 2020, 13:00:06 UTC
version 0.2.3
Tip revision: de167f1
mlGraphicalVAR.Rd
\name{mlGraphicalVAR}
\alias{mlGraphicalVAR}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{
Pooled and individual graphical VAR estimation
}
\description{
This function fits fixed effect temporal and contemporaneous networks over multiple subjects and runs separate graphical VAR models per subject. The algorithm does: (1) pool all data, within-subject center variables and run \code{\link{graphicalVAR}} to obtain fixed effects, (2) run \code{\link[qgraph]{EBICglasso}} on subject means to obtain a between-subjects network, (3) run \code{\link{graphicalVAR}} on data of every subject to obtain individual networks.  See arxiv.org/abs/1609.04156 for more details.
}
\usage{
mlGraphicalVAR(data, vars, beepvar, dayvar, idvar, scale = TRUE, 
              centerWithin = TRUE, gamma = 0.5, verbose = TRUE, 
              subjectNetworks = TRUE, lambda_min_kappa_fixed = 0.001, 
              lambda_min_beta_fixed = 0.001, lambda_min_kappa = 0.05, 
              lambda_min_beta = lambda_min_kappa, lambda_min_glasso = 0.01, 
              ...)
}
%- maybe also 'usage' for other objects documented here.
\arguments{
  \item{data}{
Data frame
}
  \item{vars}{
Vectors of variables to include in the analysis
}
  \item{beepvar}{
String indicating assessment beep per day (if missing, is added). Adding this argument will cause non-consecutive beeps to be treated as missing!
}
  \item{dayvar}{
String indicating assessment day. Adding this argument makes sure that the first measurement of a day is not regressed on the last measurement of the previous day. IMPORTANT: only add this if the data has multiple observations per day.
}
  \item{idvar}{
String indicating the subject ID
}
\item{scale}{Logical, should variables be standardized before estimation?}
  \item{centerWithin}{
Logical, should subject data be within-person centered before estimating fixed effects?
}
  \item{gamma}{
EBIC tuning parameter.
}
  \item{verbose}{
Logical indicating if console messages and the progress bar should be shown.
}
  \item{subjectNetworks}{
\code{TRUE} to estimate all subject numbers, or a vector with IDs of which subject numbers should be estimated.
}
  \item{lambda_min_kappa_fixed}{
Multiplier of maximal tuning parameter
}
  \item{lambda_min_beta_fixed}{
Multiplier of maximal tuning parameter
}
  \item{lambda_min_kappa}{
Multiplier of maximal tuning parameter
}
  \item{lambda_min_beta}{
Multiplier of maximal tuning parameter
}
  \item{lambda_min_glasso}{
Multiplier of maximal tuning parameter
}
  \item{\dots}{
Arguments sent to \code{\link{graphicalVAR}}
}
}
\value{
A \code{"mlGraphicalVAR"} object with the following elements:
\item{fixedPCC }{Estimated fixed effects (partial contemporaneous correlations) of contemporaneous effects}
\item{fixedPDC }{Estimated fixed effects (partial directed correlations) of temporal effects}
\item{fixedResults }{Full object of pooled data estimation (fixed effects)}
\item{betweenNet }{Estimated between-subjects network (partial correlations)}
\item{ids }{Vector of subject IDs}
\item{subjectPCC }{List of estimated individual contemporaneous networks}
\item{subjectPDC }{List of estimated individual directed networks}
\item{subjecResults }{List of full results of individual estimations}
}
\references{
Epskamp, S., Waldorp, L. J., M\~{o}ttus, R., & Borsboom, D. Discovering Psychological Dynamics: The Gaussian Graphical Model in Cross-sectional and Time-series Data.
}
\author{
Sacha Epskamp <mail@sachaepskamp.com>
}
\seealso{
\code{\link{graphicalVAR}}
}
\examples{
\dontrun{
# Simulate data:
Sim <- simMLgvar(nTime = 50, nPerson = 20, nVar = 3)

# Estimate model:
Res <- mlGraphicalVAR(Sim$data, vars = Sim$vars, idvar = Sim$idvar)

layout(t(1:2))
library("qgraph")

# Temporal fixed effects
qgraph(Res$fixedPDC, title = "Estimated fixed PDC", layout = "circle")
qgraph(Sim$fixedPDC, title = "Simulated fixed PDC", layout = "circle")

# Contemporaneous fixed effects
qgraph(Res$fixedPCC, title = "Estimated fixed PCC", layout = "circle")
qgraph(Sim$fixedPCC, title = "Simulated fixed PCC", layout = "circle")
}
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API