% file sn/man/dst.Rd % This file is a component of the package 'sn' for R % copyright (C) 2002-2014 Adelchi Azzalini %--------------------- \name{dst} \alias{dst} \alias{pst} \alias{qst} \alias{rst} \title{Skew-\eqn{t} Distribution} \description{Density function, distribution function, quantiles and random number generation for the skew-\eqn{t} (ST) distribution} \usage{ dst(x, xi=0, omega=1, alpha=0, nu=Inf, dp=NULL, log=FALSE) pst(x, xi=0, omega=1, alpha=0, nu=Inf, dp=NULL, method, ...) qst(p, xi=0, omega=1, alpha=0, nu=Inf, tol=1e-08, dp=NULL, method, ...) rst(n=1, xi=0, omega=1, alpha=0, nu=Inf, dp=NULL) } \arguments{ \item{x}{vector of quantiles. Missing values (\code{NA}s) are allowed.} \item{p}{vector of probabililities.} \item{xi}{vector of location parameters.} \item{omega}{vector of scale parameters; must be positive.} \item{alpha}{vector of slant parameters. With \code{pst} and \code{qst}, it must be of length 1.} \item{nu}{a single positive value representing the degrees of freedom; it can be non-integer. Default value is \code{nu=Inf} which corresponds to the skew-normal distribution. } \item{dp}{a vector of length 4, whose elements represent location, scale (positive), slant and degrees of freedom, respectively. If \code{dp} is specified, the individual parameters cannot be set. } \item{n}{sample size} \item{log}{logical; if TRUE, densities are given as log-densities} \item{tol}{ a scalar value which regulates the accuracy of the result of \code{qsn}, measured on the probability scale. } \item{method}{an integer value between \code{0} and \code{4} which selects the computing method; see \sQuote{Details} below for the meaning of these values. If \code{method=0} (default values), an automatic choice is made among the four actual computing methods, which depends on the other arguments.} \item{...}{additional parameters passed to \code{integrate} or \code{pmst}} } \value{Density (\code{dst}), probability (\code{pst}), quantiles (\code{qst}) and random sample (\code{rst}) from the skew-\eqn{t} distribution with given \code{xi}, \code{omega}, \code{alpha} and \code{nu} parameters.} \section{Details}{ Typical usages are \preformatted{% dst(x, xi=0, omega=1, alpha=0, nu=Inf, log=FALSE) dst(x, dp=, log=FALSE) pst(x, xi=0, omega=1, alpha=0, nu=Inf, ...) pst(x, dp=, log=FALSE) qst(p, xi=0, omega=1, alpha=0, nu=Inf, tol=1e-8, ...) qst(x, dp=, log=FALSE) rst(n=1, xi=0, omega=1, alpha=0, nu=Inf) rst(x, dp=, log=FALSE) } } \section{Background}{ The family of skew-\eqn{t} distributions is an extension of the Student's \eqn{t} family, via the introduction of a \code{alpha} parameter which regulates skewness; when \code{alpha=0}, the skew-\eqn{t} distribution reduces to the usual Student's \eqn{t} distribution. When \code{nu=Inf}, it reduces to the skew-normal distribution. When \code{nu=1}, it reduces to a form of skew-Cauchy distribution. See Chapter 4 of Azzalini & Capitanio (2014) for additional information. A multivariate version of the distribution exists; see \code{dmst}. } \section{Details}{ For evaluation of \code{pst}, and so indirectly of \code{qst}, four different methods are employed. Method 1 consists in using \code{pmst} with dimension \code{d=1}. Method 2 applies \code{integrate} to the density function \code{dst}. Method 3 again uses \code{integrate} too but with a different integrand, as given in Section 4.2 of Azzalini & Capitanio (2003), full version of the paper. Method 4 consists in the recursive procedure of Jamalizadeh, Khosravi and Balakrishnan (2009), which is recalled in Complement 4.3 on Azzalini & Capitanio (2014); the recursion over \code{nu} starts from the explicit expression for \code{nu=1} given by \code{psc}. Of these, Method 1 and 4 are only suitable for integer values of \code{nu}. Method 4 becomes progressively less efficient as \code{nu} increases, because its value corresponds to the number of nested calls, but the decay of efficiency is slower for larger values of \code{length(x)}. If the default argument value \code{method=0} is retained, an automatic choice among these four methods is made, which depends on the values of \code{nu, alpha, length(x)}. The numerical accuracy of methods 1, 2 and 3 can be regulated via the \code{...} argument, while method 4 is conceptually exact, up to machine precision. } \references{ Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew-\emph{t} distribution. \emph{J.Roy. Statist. Soc. B} \bold{65}, 367--389. Full version of the paper at \url{http://arXiv.org/abs/0911.2342}. Azzalini, A. with the collaboration of Capitanio, A. (2014). \emph{The Skew-normal and Related Families}. Cambridge University Press, IMS Monographs series. Jamalizadeh, A., Khosravi, M., and Balakrishnan, N. (2009). Recurrence relations for distributions of a skew-$t$ and a linear combination of order statistics from a bivariate-$t$. \emph{Comp. Statist. Data An.} \bold{53}, 847--852. } \seealso{\code{\link{dmst}}, \code{\link{dsn}}, \code{\link{dsc}}} \examples{ pdf <- dst(seq(-4, 4, by=0.1), alpha=3, nu=5) rnd <- rst(100, 5, 2, -5, 8) q <- qst(c(0.25, 0.50, 0.75), alpha=3, nu=5) pst(q, alpha=3, nu=5) # must give back c(0.25, 0.50, 0.75) # p1 <- pst(x=seq(-3,3, by=1), dp=c(0,1,pi, 3.5)) p2 <- pst(x=seq(-3,3, by=1), dp=c(0,1,pi, 3.5), method=2, rel.tol=1e-9) } \keyword{distribution}