calculate_epsilon.cc
/*******************************************************************************
* This file is part of KaHyPar.
*
* Copyright (C) 2020 Nikolai Maas <nikolai.maas@student.kit.edu>
*
* KaHyPar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* KaHyPar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with KaHyPar. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#include <fstream>
#include <iostream>
#include <map>
#include <queue>
#include <sstream>
#include <string>
#include "kahypar/definitions.h"
#include "kahypar/io/hypergraph_io.h"
#include "kahypar/macros.h"
using namespace kahypar;
using BinQueue = std::priority_queue<HypernodeWeight, std::vector<HypernodeWeight>,
std::greater<HypernodeWeight>>;
HypernodeWeight maxPartByLPT(const Hypergraph& hypergraph, HypernodeID k) {
// init priority queue of bins with zeros
BinQueue bins{std::greater<HypernodeWeight>(),
std::vector<HypernodeWeight>(k)};
std::map<HypernodeWeight, size_t, std::greater<HypernodeID>>
weight_distribution;
for (const auto hn : hypergraph.nodes()) {
++weight_distribution[hypergraph.nodeWeight(hn)];
}
for (const std::pair<HypernodeWeight, size_t> &weight_entry :
weight_distribution) {
HypernodeWeight node_weight = weight_entry.first;
size_t num_nodes = weight_entry.second;
ASSERT(bins.size() == k);
ASSERT(num_nodes > 0);
if (node_weight == 0) {
continue;
}
for (size_t i = 0; i < num_nodes; ++i) {
// for every node, insert the node to the smallest bin and update the queue
HypernodeWeight bin_weight = bins.top();
bins.pop();
bins.push(bin_weight + node_weight);
}
}
// the result is the biggest bin, i.e. the last element in the queue
while (bins.size() > 1) {
bins.pop();
}
return bins.top();
}
int main(int argc, char *argv[]) {
if (argc != 3 && argc != 4) {
std::cout << "Wrong number of arguments" << std::endl;
std::cout << "Usage: BalanceConstraint <.hgr> <k> [optional: <epsilon>]" << std::endl;
exit(0);
}
std::string hgr_filename(argv[1]);
HypernodeID k = std::stoul(argv[2]);
Hypergraph hypergraph(io::createHypergraphFromFile(hgr_filename, k));
HypernodeWeight weight_per_block = (hypergraph.totalWeight() + k - 1) / k;
HypernodeWeight max_part = maxPartByLPT(hypergraph, k);
double factor = static_cast<double>(max_part) / static_cast<double>(weight_per_block);
std::cout << "max_part=" << max_part << std::endl;
std::cout << "factor=" << factor << std::endl;
if (argc == 4) {
double base_epsilon = std::stod(argv[3]);
double epsilon = (1.0 + base_epsilon) * factor - 1;
std::cout << "epsilon=" << epsilon << std::endl;
}
return 0;
}