```@meta CurrentModule = DataEnvelopmentAnalysis ``` # Radial Models ## Radial Input Oriented Model Based on the data matrix $(X,Y)$, we calculate the input oriented efficiency of each observation *o* by solving $n$ times the following linear programming problem -- known as the Charnes, Cooper, and Rhodes (1978), **CCR**, model: ```math \begin{aligned} & \underset{\theta ,\mathbf{\lambda }}{\mathop{\min }}\,\quad \quad \quad \;\ \theta \\ & \text{subject}\ \text{to} \\ & \quad \quad \quad \quad \quad \ X\mathbf{\lambda } \le \theta {{\mathbf{x}}_{o}} \\ & \quad \quad \quad \quad \quad \;Y\mathbf{\lambda }\ \ge {{\mathbf{y}}_{o}} \\ & \quad \quad \quad \quad \quad \ \mathbf{\lambda }\ge \mathbf{0}. \end{aligned} ``` The measurement of technical efficiency assuming variable returns to scale, **VRS**, as introduced by *Banker, Charnes and Cooper (1984)* -- known as the Banker, Charnes and Cooper, **BCC**, model -- adds the following condition: ```math \sum\nolimits_{j=1}^{n}\lambda_j=1 ``` In this example we compute the radial input oriented DEA model under constant returns to scale: ```@example radial using DataEnvelopmentAnalysis X = [5 13; 16 12; 16 26; 17 15; 18 14; 23 6; 25 10; 27 22; 37 14; 42 25; 5 17]; Y = [12; 14; 25; 26; 8; 9; 27; 30; 31; 26; 12]; dea(X, Y, orient = :Input, rts = :CRS) ``` To compute the variable returns to scale model, we simply set the `rts` parameter to `:VRS`: ```@example radial dea(X, Y, orient = :Input, rts = :VRS) ``` Estimated efficiency scores are returned with the `efficiency` function: ```@example radial deaiovrs = dea(X, Y, orient = :Input, rts = :VRS); nothing # hide ``` ```@example radial efficiency(deaiovrs) ``` The optimal peers, ``λ``, are returned with the `peers` function and are returned as a `DEAPeers` object: ```@example radial peers(deaiovrs) ``` Input and output slacks are returned with the `slacks` function: ```@example radial slacks(deaiovrs, :X) ``` ```@example radial slacks(deaiovrs, :Y) ``` Input and output optimal targets are returned with the `targets` function: ```@example radial targets(deaiovrs, :X) ``` ```@example radial targets(deaiovrs, :Y) ``` ## Radial Output Oriented Model It is possible to calculate the output oriented technical efficiency of each observation by solving the following linear program: ```math \begin{aligned} & \underset{\phi ,\mathbf{\lambda }}{\mathop{\max }}\,\quad \quad \quad \quad \phi \\ & \text{subject}\ \text{to} \\ & \quad \quad \quad \quad \quad \ X\lambda\le {{\mathbf{x}}_{o}} \\ & \quad \quad \quad \quad \quad \ Y\mathbf{\lambda }\ \ge \phi {{\mathbf{y}}_{o}} \\ & \quad \quad \quad \quad \quad \ \mathbf{\lambda }\ge \mathbf{0}.\ & \quad \end{aligned} ``` with the following condition when assuming variable returns to scale: ```math \sum\nolimits_{j=1}^{n}\lambda_j=1 ``` In this example we compute the radial output oriented DEA model under variable returns to scale: ```@example radial dea(X, Y, orient = :Output, rts = :VRS) ``` ## Radial Model in Multiplier Form The dual to the input oriented and output oriented radial DEA models in envelopment form presented above is the multiplier form. This example computes the radial input-oriented DEA model in multiplier form under constant returns to scale: ```@example radial deaiovrsm = deam(X, Y, rts = :VRS) ``` Input and output virtual multipliers (shadow prices) are returned with the `multipliers` function: ```@example radial multipliers(deaiovrsm, :X) ``` ```@example radial multipliers(deaiovrsm, :Y) ``` The value measuring the returns to scale is returned with the `rts` function: ```@example radial rts(deaiovrsm) ``` ### dea Function Documentation ```@docs dea deam ```