(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. *) (* Copyright (c) 2020 Metastate AG *) (* Copyright (c) 2021 Nomadic Labs, *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (* This module implements an interpreter for Michelson. It takes the form of a [step] function that interprets script instructions in a dedicated abstract machine. The interpreter is written in a small-step style: an execution [step] only interprets a single instruction by updating the configuration of a dedicated abstract machine. This abstract machine has two components: - a stack to control which instructions must be executed ; and - a stack of values where instructions get their inputs and put their outputs. In addition, the machine has access to effectful primitives to interact with the execution environment (e.g. the Tezos node). These primitives live in the [Lwt+State+Error] monad. Hence, this interpreter produces a computation in the [Lwt+State+Error] monad. This interpreter enjoys the following properties: - The interpreter is tail-recursive, hence it is robust to stack overflow. This property is checked by the compiler thanks to the [@ocaml.tailcall] annotation of each recursive call. - The interpreter is type-preserving. Thanks to GADTs, the typing rules of Michelson are statically checked by the OCaml typechecker: a Michelson program cannot go wrong. - The interpreter is tagless. Thanks to GADTs, the exact shape of the stack is known statically so the interpreter does not have to check that the input stack has the shape expected by the instruction to be executed. Outline ======= This file is organized as follows: 1. Definition of runtime errors. 2. Interpretation loop: This is the main functionality of this module, aka the [step] function. 3. Interface functions: This part of the module builds high-level functions on top of the more basic [step] function. Auxiliary definitions can be found in {!Script_interpreter_defs}. Implementation details are explained along the file. *) open Alpha_context open Script open Script_typed_ir open Script_ir_translator open Script_interpreter_defs module S = Saturation_repr type step_constants = Script_interpreter_defs.step_constants = { source : Contract.t; payer : Contract.t; self : Contract.t; amount : Tez.t; chain_id : Chain_id.t; } (* ---- Run-time errors -----------------------------------------------------*) type error += | Reject of Script.location * Script.expr * execution_trace option type error += Overflow of Script.location * execution_trace option type error += Runtime_contract_error : Contract.t * Script.expr -> error type error += Bad_contract_parameter of Contract.t (* `Permanent *) type error += Cannot_serialize_failure type error += Cannot_serialize_storage type error += Michelson_too_many_recursive_calls let () = let open Data_encoding in let trace_encoding = list @@ obj3 (req "location" Script.location_encoding) (req "gas" Gas.encoding) (req "stack" (list (obj2 (req "item" Script.expr_encoding) (opt "annot" string)))) in (* Reject *) register_error_kind `Temporary ~id:"michelson_v1.script_rejected" ~title:"Script failed" ~description:"A FAILWITH instruction was reached" (obj3 (req "location" Script.location_encoding) (req "with" Script.expr_encoding) (opt "trace" trace_encoding)) (function Reject (loc, v, trace) -> Some (loc, v, trace) | _ -> None) (fun (loc, v, trace) -> Reject (loc, v, trace)) ; (* Overflow *) register_error_kind `Temporary ~id:"michelson_v1.script_overflow" ~title:"Script failed (overflow error)" ~description: "A FAIL instruction was reached due to the detection of an overflow" (obj2 (req "location" Script.location_encoding) (opt "trace" trace_encoding)) (function Overflow (loc, trace) -> Some (loc, trace) | _ -> None) (fun (loc, trace) -> Overflow (loc, trace)) ; (* Runtime contract error *) register_error_kind `Temporary ~id:"michelson_v1.runtime_error" ~title:"Script runtime error" ~description:"Toplevel error for all runtime script errors" (obj2 (req "contract_handle" Contract.encoding) (req "contract_code" Script.expr_encoding)) (function | Runtime_contract_error (contract, expr) -> Some (contract, expr) | _ -> None) (fun (contract, expr) -> Runtime_contract_error (contract, expr)) ; (* Bad contract parameter *) register_error_kind `Permanent ~id:"michelson_v1.bad_contract_parameter" ~title:"Contract supplied an invalid parameter" ~description: "Either no parameter was supplied to a contract with a non-unit \ parameter type, a non-unit parameter was passed to an account, or a \ parameter was supplied of the wrong type" Data_encoding.(obj1 (req "contract" Contract.encoding)) (function Bad_contract_parameter c -> Some c | _ -> None) (fun c -> Bad_contract_parameter c) ; (* Cannot serialize failure *) register_error_kind `Temporary ~id:"michelson_v1.cannot_serialize_failure" ~title:"Not enough gas to serialize argument of FAILWITH" ~description: "Argument of FAILWITH was too big to be serialized with the provided gas" Data_encoding.empty (function Cannot_serialize_failure -> Some () | _ -> None) (fun () -> Cannot_serialize_failure) ; (* Cannot serialize storage *) register_error_kind `Temporary ~id:"michelson_v1.cannot_serialize_storage" ~title:"Not enough gas to serialize execution storage" ~description: "The returned storage was too big to be serialized with the provided gas" Data_encoding.empty (function Cannot_serialize_storage -> Some () | _ -> None) (fun () -> Cannot_serialize_storage) (* Interpretation loop =================== *) (* As announced earlier, the [step] function produces a computation in the [Lwt+State+Error] monad. The [State] monad is implemented by having the [context] passed as input and returned updated as output. The [Error] monad is represented by the [tzresult] type constructor. The [step] function is actually defined as an internal tail-recursive routine of the toplevel [step]. It monitors the gas level before executing the instruction under focus, once this is done, it recursively calls itself on the continuation held by the current instruction. For each pure instruction (i.e. that is not monadic), the interpretation simply updates the input arguments of the [step] function. Since these arguments are (most likely) stored in hardware registers and since the tail-recursive calls are compiled into direct jumps, this interpretation technique offers good performances while saving safety thanks to a rich typing. For each impure instruction, the interpreter makes use of monadic bindings to compose monadic primitives with the [step] function. Again, we make sure that the recursive calls to [step] are tail calls by annotating them with [@ocaml.tailcall]. The [step] function is actually based on several mutually recursive functions that can be separated in two groups: the first group focuses on the evaluation of continuations while the second group is about evaluating the instructions. *) (* Evaluation of continuations =========================== As explained in [Script_typed_ir], there are several kinds of continuations, each having a specific evaluation rules. The following group of functions starts with a list of evaluation rules for continuations that generate fresh continuations. This group ends with the definition of [next], which dispatches evaluation rules depending on the continuation at stake. *) let rec kmap_exit : type a b c d e f g h m n o. (a, b, c, d, e, f, g, h, m, n, o) kmap_exit_type = fun mk g gas (body, xs, ys, yk) ks accu stack -> let ys = map_update yk (Some accu) ys in let ks = mk (KMap_enter_body (body, xs, ys, ks)) in let (accu, stack) = stack in (next [@ocaml.tailcall]) g gas ks accu stack [@@inline] and kmap_enter : type a b c d i j k. (a, b, c, d, i, j, k) kmap_enter_type = fun mk g gas (body, xs, ys) ks accu stack -> match xs with | [] -> (next [@ocaml.tailcall]) g gas ks ys (accu, stack) | (xk, xv) :: xs -> let ks = mk (KMap_exit_body (body, xs, ys, xk, ks)) in let res = (xk, xv) in let stack = (accu, stack) in (step [@ocaml.tailcall]) g gas body ks res stack [@@inline] and klist_exit : type a b c d i j. (a, b, c, d, i, j) klist_exit_type = fun mk g gas (body, xs, ys, len) ks accu stack -> let ks = mk (KList_enter_body (body, xs, accu :: ys, len, ks)) in let (accu, stack) = stack in (next [@ocaml.tailcall]) g gas ks accu stack [@@inline] and klist_enter : type a b c d e j. (a, b, c, d, e, j) klist_enter_type = fun mk g gas (body, xs, ys, len) ks' accu stack -> match xs with | [] -> let ys = {elements = List.rev ys; length = len} in (next [@ocaml.tailcall]) g gas ks' ys (accu, stack) | x :: xs -> let ks = mk (KList_exit_body (body, xs, ys, len, ks')) in (step [@ocaml.tailcall]) g gas body ks x (accu, stack) [@@inline] and kloop_in_left : type a b c d e f g. (a, b, c, d, e, f, g) kloop_in_left_type = fun g gas ks0 ki ks' accu stack -> match accu with | L v -> (step [@ocaml.tailcall]) g gas ki ks0 v stack | R v -> (next [@ocaml.tailcall]) g gas ks' v stack [@@inline] and kloop_in : type a b c r f s. (a, b, c, r, f, s) kloop_in_type = fun g gas ks0 ki ks' accu stack -> let (accu', stack') = stack in if accu then (step [@ocaml.tailcall]) g gas ki ks0 accu' stack' else (next [@ocaml.tailcall]) g gas ks' accu' stack' [@@inline] and kiter : type a b s r f. (a, b, s, r, f) kiter_type = fun mk g gas (body, xs) ks accu stack -> match xs with | [] -> (next [@ocaml.tailcall]) g gas ks accu stack | x :: xs -> let ks = mk (KIter (body, xs, ks)) in (step [@ocaml.tailcall]) g gas body ks x (accu, stack) [@@inline] and next : type a s r f. outdated_context * step_constants -> local_gas_counter -> (a, s, r, f) continuation -> a -> s -> (r * f * outdated_context * local_gas_counter) tzresult Lwt.t = fun ((ctxt, _) as g) gas ks0 accu stack -> match consume_control gas ks0 with | None -> Lwt.return (Gas.gas_exhausted_error (update_context gas ctxt)) | Some gas -> ( match ks0 with | KLog (ks, logger) -> (klog [@ocaml.tailcall]) logger g gas ks0 ks accu stack | KNil -> Lwt.return (Ok (accu, stack, ctxt, gas)) | KCons (k, ks) -> (step [@ocaml.tailcall]) g gas k ks accu stack | KLoop_in (ki, ks') -> (kloop_in [@ocaml.tailcall]) g gas ks0 ki ks' accu stack | KReturn (stack', ks) -> (next [@ocaml.tailcall]) g gas ks accu stack' | KLoop_in_left (ki, ks') -> (kloop_in_left [@ocaml.tailcall]) g gas ks0 ki ks' accu stack | KUndip (x, ks) -> (next [@ocaml.tailcall]) g gas ks x (accu, stack) | KIter (body, xs, ks) -> let extra = (body, xs) in (kiter [@ocaml.tailcall]) id g gas extra ks accu stack | KList_enter_body (body, xs, ys, len, ks) -> let extra = (body, xs, ys, len) in (klist_enter [@ocaml.tailcall]) id g gas extra ks accu stack | KList_exit_body (body, xs, ys, len, ks) -> let extra = (body, xs, ys, len) in (klist_exit [@ocaml.tailcall]) id g gas extra ks accu stack | KMap_enter_body (body, xs, ys, ks) -> let extra = (body, xs, ys) in (kmap_enter [@ocaml.tailcall]) id g gas extra ks accu stack | KMap_exit_body (body, xs, ys, yk, ks) -> let extra = (body, xs, ys, yk) in (kmap_exit [@ocaml.tailcall]) id g gas extra ks accu stack ) (* Evaluation of instructions ========================== The following functions define evaluation rules for instructions that generate fresh continuations. As such, they expect a constructor [log_if_needed] which inserts a [KLog] if the evaluation is logged. The [step] function is taking care of the evaluation of the other instructions. *) and ilist_map : type a b c d e f g h. (a, b, c, d, e, f, g, h) ilist_map_type = fun log_if_needed g gas (body, k) ks accu stack -> let xs = accu.elements in let ys = [] in let len = accu.length in let ks = log_if_needed (KList_enter_body (body, xs, ys, len, KCons (k, ks))) in let (accu, stack) = stack in (next [@ocaml.tailcall]) g gas ks accu stack [@@inline] and ilist_iter : type a b c d e f g. (a, b, c, d, e, f, g) ilist_iter_type = fun log_if_needed g gas (body, k) ks accu stack -> let xs = accu.elements in let ks = log_if_needed (KIter (body, xs, KCons (k, ks))) in let (accu, stack) = stack in (next [@ocaml.tailcall]) g gas ks accu stack [@@inline] and iset_iter : type a b c d e f g. (a, b, c, d, e, f, g) iset_iter_type = fun log_if_needed g gas (body, k) ks accu stack -> let set = accu in let l = List.rev (set_fold (fun e acc -> e :: acc) set []) in let ks = log_if_needed (KIter (body, l, KCons (k, ks))) in let (accu, stack) = stack in (next [@ocaml.tailcall]) g gas ks accu stack [@@inline] and imap_map : type a b c d e f g h i. (a, b, c, d, e, f, g, h, i) imap_map_type = fun log_if_needed g gas (body, k) ks accu stack -> let map = accu in let xs = List.rev (map_fold (fun k v a -> (k, v) :: a) map []) in let ys = empty_map (map_key_ty map) in let ks = log_if_needed (KMap_enter_body (body, xs, ys, KCons (k, ks))) in let (accu, stack) = stack in (next [@ocaml.tailcall]) g gas ks accu stack [@@inline] and imap_iter : type a b c d e f g h. (a, b, c, d, e, f, g, h) imap_iter_type = fun log_if_needed g gas (body, k) ks accu stack -> let map = accu in let l = List.rev (map_fold (fun k v a -> (k, v) :: a) map []) in let ks = log_if_needed (KIter (body, l, KCons (k, ks))) in let (accu, stack) = stack in (next [@ocaml.tailcall]) g gas ks accu stack [@@inline] and imul_teznat : type a b c d e f. (a, b, c, d, e, f) imul_teznat_type = fun logger g gas (kinfo, k) ks accu stack -> let x = accu in let (y, stack) = stack in match Script_int.to_int64 y with | None -> get_log logger >>=? fun log -> fail (Overflow (kinfo.iloc, log)) | Some y -> Tez.(x *? y) >>?= fun res -> (step [@ocaml.tailcall]) g gas k ks res stack and imul_nattez : type a b c d e f. (a, b, c, d, e, f) imul_nattez_type = fun logger g gas (kinfo, k) ks accu stack -> let y = accu in let (x, stack) = stack in match Script_int.to_int64 y with | None -> get_log logger >>=? fun log -> fail (Overflow (kinfo.iloc, log)) | Some y -> Tez.(x *? y) >>?= fun res -> (step [@ocaml.tailcall]) g gas k ks res stack and ilsl_nat : type a b c d e f. (a, b, c, d, e, f) ilsl_nat_type = fun logger g gas (kinfo, k) ks accu stack -> let x = accu and (y, stack) = stack in match Script_int.shift_left_n x y with | None -> get_log logger >>=? fun log -> fail (Overflow (kinfo.iloc, log)) | Some x -> (step [@ocaml.tailcall]) g gas k ks x stack and ilsr_nat : type a b c d e f. (a, b, c, d, e, f) ilsr_nat_type = fun logger g gas (kinfo, k) ks accu stack -> let x = accu and (y, stack) = stack in match Script_int.shift_right_n x y with | None -> get_log logger >>=? fun log -> fail (Overflow (kinfo.iloc, log)) | Some r -> (step [@ocaml.tailcall]) g gas k ks r stack and ifailwith : type a b. (a, b) ifailwith_type = fun logger (ctxt, _) gas kloc tv accu -> let v = accu in let ctxt = update_context gas ctxt in trace Cannot_serialize_failure (unparse_data ctxt Optimized tv v) >>=? fun (v, _ctxt) -> let v = Micheline.strip_locations v in get_log logger >>=? fun log -> fail (Reject (kloc, v, log)) and iexec : type a b c d e f g. (a, b, c, d, e, f, g) iexec_type = fun logger g gas k ks accu stack -> let arg = accu and (code, stack) = stack in let (Lam (code, _)) = code in let code = match logger with | None -> code.kinstr | Some logger -> log_kinstr logger code.kinstr in let ks = KReturn (stack, KCons (k, ks)) in (step [@ocaml.tailcall]) g gas code ks arg (EmptyCell, EmptyCell) and step : type a s b t r f. (a, s, b, t, r, f) step_type = fun ((ctxt, sc) as g) gas i ks accu stack -> match consume gas i accu stack with | None -> Lwt.return (Gas.gas_exhausted_error (update_context gas ctxt)) | Some gas -> ( match i with | ILog (_, event, logger, k) -> (log [@ocaml.tailcall]) (logger, event) g gas k ks accu stack | IHalt _ -> (next [@ocaml.tailcall]) g gas ks accu stack (* stack ops *) | IDrop (_, k) -> let (accu, stack) = stack in (step [@ocaml.tailcall]) g gas k ks accu stack | IDup (_, k) -> (step [@ocaml.tailcall]) g gas k ks accu (accu, stack) | ISwap (_, k) -> let (top, stack) = stack in (step [@ocaml.tailcall]) g gas k ks top (accu, stack) | IConst (_, v, k) -> (step [@ocaml.tailcall]) g gas k ks v (accu, stack) (* options *) | ICons_some (_, k) -> (step [@ocaml.tailcall]) g gas k ks (Some accu) stack | ICons_none (_, _, k) -> (step [@ocaml.tailcall]) g gas k ks None (accu, stack) | IIf_none {branch_if_none; branch_if_some} -> ( match accu with | None -> let (accu, stack) = stack in (step [@ocaml.tailcall]) g gas branch_if_none ks accu stack | Some v -> (step [@ocaml.tailcall]) g gas branch_if_some ks v stack ) (* pairs *) | ICons_pair (_, k) -> let (b, stack) = stack in (step [@ocaml.tailcall]) g gas k ks (accu, b) stack | IUnpair (_, k) -> let (a, b) = accu in (step [@ocaml.tailcall]) g gas k ks a (b, stack) | ICar (_, k) -> let (a, _) = accu in (step [@ocaml.tailcall]) g gas k ks a stack | ICdr (_, k) -> let (_, b) = accu in (step [@ocaml.tailcall]) g gas k ks b stack (* unions *) | ICons_left (_, k) -> (step [@ocaml.tailcall]) g gas k ks (L accu) stack | ICons_right (_, k) -> (step [@ocaml.tailcall]) g gas k ks (R accu) stack | IIf_left {branch_if_left; branch_if_right} -> ( match accu with | L v -> (step [@ocaml.tailcall]) g gas branch_if_left ks v stack | R v -> (step [@ocaml.tailcall]) g gas branch_if_right ks v stack ) (* lists *) | ICons_list (_, k) -> let (tl, stack) = stack in let accu = list_cons accu tl in (step [@ocaml.tailcall]) g gas k ks accu stack | INil (_, k) -> let stack = (accu, stack) in let accu = list_empty in (step [@ocaml.tailcall]) g gas k ks accu stack | IIf_cons {branch_if_cons; branch_if_nil} -> ( match accu.elements with | [] -> let (accu, stack) = stack in (step [@ocaml.tailcall]) g gas branch_if_nil ks accu stack | hd :: tl -> let tl = {elements = tl; length = accu.length - 1} in (step [@ocaml.tailcall]) g gas branch_if_cons ks hd (tl, stack) ) | IList_map (_, body, k) -> (ilist_map [@ocaml.tailcall]) id g gas (body, k) ks accu stack | IList_size (_, k) -> let list = accu in let len = Script_int.(abs (of_int list.length)) in (step [@ocaml.tailcall]) g gas k ks len stack | IList_iter (_, body, k) -> (ilist_iter [@ocaml.tailcall]) id g gas (body, k) ks accu stack (* sets *) | IEmpty_set (_, ty, k) -> let res = empty_set ty in let stack = (accu, stack) in (step [@ocaml.tailcall]) g gas k ks res stack | ISet_iter (_, body, k) -> (iset_iter [@ocaml.tailcall]) id g gas (body, k) ks accu stack | ISet_mem (_, k) -> let (set, stack) = stack in let res = set_mem accu set in (step [@ocaml.tailcall]) g gas k ks res stack | ISet_update (_, k) -> let (presence, (set, stack)) = stack in let res = set_update accu presence set in (step [@ocaml.tailcall]) g gas k ks res stack | ISet_size (_, k) -> let res = set_size accu in (step [@ocaml.tailcall]) g gas k ks res stack (* maps *) | IEmpty_map (_, ty, _, k) -> let res = empty_map ty and stack = (accu, stack) in (step [@ocaml.tailcall]) g gas k ks res stack | IMap_map (_, body, k) -> (imap_map [@ocaml.tailcall]) id g gas (body, k) ks accu stack | IMap_iter (_, body, k) -> (imap_iter [@ocaml.tailcall]) id g gas (body, k) ks accu stack | IMap_mem (_, k) -> let (map, stack) = stack in let res = map_mem accu map in (step [@ocaml.tailcall]) g gas k ks res stack | IMap_get (_, k) -> let (map, stack) = stack in let res = map_get accu map in (step [@ocaml.tailcall]) g gas k ks res stack | IMap_update (_, k) -> let (v, (map, stack)) = stack in let key = accu in let res = map_update key v map in (step [@ocaml.tailcall]) g gas k ks res stack | IMap_get_and_update (_, k) -> let key = accu in let (v, (map, rest)) = stack in let map' = map_update key v map in let v' = map_get key map in (step [@ocaml.tailcall]) g gas k ks v' (map', rest) | IMap_size (_, k) -> let res = map_size accu in (step [@ocaml.tailcall]) g gas k ks res stack (* Big map operations *) | IEmpty_big_map (_, tk, tv, k) -> let ebm = Script_ir_translator.empty_big_map tk tv in (step [@ocaml.tailcall]) g gas k ks ebm (accu, stack) | IBig_map_mem (_, k) -> let (map, stack) = stack in let key = accu in ( use_gas_counter_in_ctxt ctxt gas @@ fun ctxt -> Script_ir_translator.big_map_mem ctxt key map ) >>=? fun (res, ctxt, gas) -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks res stack | IBig_map_get (_, k) -> let (map, stack) = stack in let key = accu in ( use_gas_counter_in_ctxt ctxt gas @@ fun ctxt -> Script_ir_translator.big_map_get ctxt key map ) >>=? fun (res, ctxt, gas) -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks res stack | IBig_map_update (_, k) -> let key = accu in let (maybe_value, (map, stack)) = stack in ( use_gas_counter_in_ctxt ctxt gas @@ fun ctxt -> Script_ir_translator.big_map_update ctxt key maybe_value map ) >>=? fun (big_map, ctxt, gas) -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks big_map stack | IBig_map_get_and_update (_, k) -> let key = accu in let (v, (map, stack)) = stack in ( use_gas_counter_in_ctxt ctxt gas @@ fun ctxt -> Script_ir_translator.big_map_get_and_update ctxt key v map ) >>=? fun ((v', map'), ctxt, gas) -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks v' (map', stack) (* timestamp operations *) | IAdd_seconds_to_timestamp (_, k) -> let n = accu in let (t, stack) = stack in let result = Script_timestamp.add_delta t n in (step [@ocaml.tailcall]) g gas k ks result stack | IAdd_timestamp_to_seconds (_, k) -> let t = accu in let (n, stack) = stack in let result = Script_timestamp.add_delta t n in (step [@ocaml.tailcall]) g gas k ks result stack | ISub_timestamp_seconds (_, k) -> let t = accu in let (s, stack) = stack in let result = Script_timestamp.sub_delta t s in (step [@ocaml.tailcall]) g gas k ks result stack | IDiff_timestamps (_, k) -> let t1 = accu in let (t2, stack) = stack in let result = Script_timestamp.diff t1 t2 in (step [@ocaml.tailcall]) g gas k ks result stack (* string operations *) | IConcat_string_pair (_, k) -> let x = accu in let (y, stack) = stack in let s = String.concat "" [x; y] in (step [@ocaml.tailcall]) g gas k ks s stack | IConcat_string (_, k) -> let ss = accu in (* The cost for this fold_left has been paid upfront *) let total_length = List.fold_left (fun acc s -> S.add acc (S.safe_int (String.length s))) S.zero ss.elements in consume' ctxt gas (Interp_costs.concat_string total_length) >>?= fun gas -> let s = String.concat "" ss.elements in (step [@ocaml.tailcall]) g gas k ks s stack | ISlice_string (_, k) -> let offset = accu and (length, (s, stack)) = stack in let s_length = Z.of_int (String.length s) in let offset = Script_int.to_zint offset in let length = Script_int.to_zint length in if Compare.Z.(offset < s_length && Z.add offset length <= s_length) then let s = String.sub s (Z.to_int offset) (Z.to_int length) in (step [@ocaml.tailcall]) g gas k ks (Some s) stack else (step [@ocaml.tailcall]) g gas k ks None stack | IString_size (_, k) -> let s = accu in let result = Script_int.(abs (of_int (String.length s))) in (step [@ocaml.tailcall]) g gas k ks result stack (* bytes operations *) | IConcat_bytes_pair (_, k) -> let x = accu in let (y, stack) = stack in let s = Bytes.cat x y in (step [@ocaml.tailcall]) g gas k ks s stack | IConcat_bytes (_, k) -> let ss = accu in (* The cost for this fold_left has been paid upfront *) let total_length = List.fold_left (fun acc s -> S.add acc (S.safe_int (Bytes.length s))) S.zero ss.elements in consume' ctxt gas (Interp_costs.concat_string total_length) >>?= fun gas -> let s = Bytes.concat Bytes.empty ss.elements in (step [@ocaml.tailcall]) g gas k ks s stack | ISlice_bytes (_, k) -> let offset = accu and (length, (s, stack)) = stack in let s_length = Z.of_int (Bytes.length s) in let offset = Script_int.to_zint offset in let length = Script_int.to_zint length in if Compare.Z.(offset < s_length && Z.add offset length <= s_length) then let s = Bytes.sub s (Z.to_int offset) (Z.to_int length) in (step [@ocaml.tailcall]) g gas k ks (Some s) stack else (step [@ocaml.tailcall]) g gas k ks None stack | IBytes_size (_, k) -> let s = accu in let result = Script_int.(abs (of_int (Bytes.length s))) in (step [@ocaml.tailcall]) g gas k ks result stack (* currency operations *) | IAdd_tez (_, k) -> let x = accu in let (y, stack) = stack in Tez.(x +? y) >>?= fun res -> (step [@ocaml.tailcall]) g gas k ks res stack | ISub_tez (_, k) -> let x = accu in let (y, stack) = stack in Tez.(x -? y) >>?= fun res -> (step [@ocaml.tailcall]) g gas k ks res stack | IMul_teznat (kinfo, k) -> imul_teznat None g gas (kinfo, k) ks accu stack | IMul_nattez (kinfo, k) -> imul_nattez None g gas (kinfo, k) ks accu stack (* boolean operations *) | IOr (_, k) -> let x = accu in let (y, stack) = stack in (step [@ocaml.tailcall]) g gas k ks (x || y) stack | IAnd (_, k) -> let x = accu in let (y, stack) = stack in (step [@ocaml.tailcall]) g gas k ks (x && y) stack | IXor (_, k) -> let x = accu in let (y, stack) = stack in let res = Compare.Bool.(x <> y) in (step [@ocaml.tailcall]) g gas k ks res stack | INot (_, k) -> let x = accu in (step [@ocaml.tailcall]) g gas k ks (not x) stack (* integer operations *) | IIs_nat (_, k) -> let x = accu in let res = Script_int.is_nat x in (step [@ocaml.tailcall]) g gas k ks res stack | IAbs_int (_, k) -> let x = accu in let res = Script_int.abs x in (step [@ocaml.tailcall]) g gas k ks res stack | IInt_nat (_, k) -> let x = accu in let res = Script_int.int x in (step [@ocaml.tailcall]) g gas k ks res stack | INeg_int (_, k) -> let x = accu in let res = Script_int.neg x in (step [@ocaml.tailcall]) g gas k ks res stack | INeg_nat (_, k) -> let x = accu in let res = Script_int.neg x in (step [@ocaml.tailcall]) g gas k ks res stack | IAdd_intint (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.add x y in (step [@ocaml.tailcall]) g gas k ks res stack | IAdd_intnat (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.add x y in (step [@ocaml.tailcall]) g gas k ks res stack | IAdd_natint (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.add x y in (step [@ocaml.tailcall]) g gas k ks res stack | IAdd_natnat (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.add_n x y in (step [@ocaml.tailcall]) g gas k ks res stack | ISub_int (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.sub x y in (step [@ocaml.tailcall]) g gas k ks res stack | IMul_intint (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.mul x y in (step [@ocaml.tailcall]) g gas k ks res stack | IMul_intnat (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.mul x y in (step [@ocaml.tailcall]) g gas k ks res stack | IMul_natint (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.mul x y in (step [@ocaml.tailcall]) g gas k ks res stack | IMul_natnat (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.mul_n x y in (step [@ocaml.tailcall]) g gas k ks res stack | IEdiv_teznat (_, k) -> let x = accu and (y, stack) = stack in let x = Script_int.of_int64 (Tez.to_mutez x) in let result = match Script_int.ediv x y with | None -> None | Some (q, r) -> ( match (Script_int.to_int64 q, Script_int.to_int64 r) with | (Some q, Some r) -> ( match (Tez.of_mutez q, Tez.of_mutez r) with | (Some q, Some r) -> Some (q, r) (* Cannot overflow *) | _ -> assert false ) (* Cannot overflow *) | _ -> assert false ) in (step [@ocaml.tailcall]) g gas k ks result stack | IEdiv_tez (_, k) -> let x = accu and (y, stack) = stack in let x = Script_int.abs (Script_int.of_int64 (Tez.to_mutez x)) in let y = Script_int.abs (Script_int.of_int64 (Tez.to_mutez y)) in let result = match Script_int.ediv_n x y with | None -> None | Some (q, r) -> ( match Script_int.to_int64 r with | None -> assert false (* Cannot overflow *) | Some r -> ( match Tez.of_mutez r with | None -> assert false (* Cannot overflow *) | Some r -> Some (q, r) ) ) in (step [@ocaml.tailcall]) g gas k ks result stack | IEdiv_intint (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.ediv x y in (step [@ocaml.tailcall]) g gas k ks res stack | IEdiv_intnat (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.ediv x y in (step [@ocaml.tailcall]) g gas k ks res stack | IEdiv_natint (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.ediv x y in (step [@ocaml.tailcall]) g gas k ks res stack | IEdiv_natnat (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.ediv_n x y in (step [@ocaml.tailcall]) g gas k ks res stack | ILsl_nat (kinfo, k) -> ilsl_nat None g gas (kinfo, k) ks accu stack | ILsr_nat (kinfo, k) -> ilsr_nat None g gas (kinfo, k) ks accu stack | IOr_nat (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.logor x y in (step [@ocaml.tailcall]) g gas k ks res stack | IAnd_nat (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.logand x y in (step [@ocaml.tailcall]) g gas k ks res stack | IAnd_int_nat (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.logand x y in (step [@ocaml.tailcall]) g gas k ks res stack | IXor_nat (_, k) -> let x = accu and (y, stack) = stack in let res = Script_int.logxor x y in (step [@ocaml.tailcall]) g gas k ks res stack | INot_int (_, k) -> let x = accu in let res = Script_int.lognot x in (step [@ocaml.tailcall]) g gas k ks res stack | INot_nat (_, k) -> let x = accu in let res = Script_int.lognot x in (step [@ocaml.tailcall]) g gas k ks res stack (* control *) | IIf {branch_if_true; branch_if_false} -> let (res, stack) = stack in if accu then (step [@ocaml.tailcall]) g gas branch_if_true ks res stack else (step [@ocaml.tailcall]) g gas branch_if_false ks res stack | ILoop (_, body, k) -> let ks = KLoop_in (body, KCons (k, ks)) in (next [@ocaml.tailcall]) g gas ks accu stack | ILoop_left (_, bl, br) -> let ks = KLoop_in_left (bl, KCons (br, ks)) in (next [@ocaml.tailcall]) g gas ks accu stack | IDip (_, b, k) -> let ign = accu in let ks = KUndip (ign, KCons (k, ks)) in let (accu, stack) = stack in (step [@ocaml.tailcall]) g gas b ks accu stack | IExec (_, k) -> iexec None g gas k ks accu stack | IApply (_, capture_ty, k) -> let capture = accu in let (lam, stack) = stack in apply ctxt gas capture_ty capture lam >>=? fun (lam', ctxt, gas) -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks lam' stack | ILambda (_, lam, k) -> (step [@ocaml.tailcall]) g gas k ks lam (accu, stack) | IFailwith (_, kloc, tv, _) -> ifailwith None g gas kloc tv accu (* comparison *) | ICompare (_, ty, k) -> let a = accu in let (b, stack) = stack in let r = Script_int.of_int @@ Script_ir_translator.compare_comparable ty a b in (step [@ocaml.tailcall]) g gas k ks r stack (* comparators *) | IEq (_, k) -> let a = accu in let a = Script_int.compare a Script_int.zero in let a = Compare.Int.(a = 0) in (step [@ocaml.tailcall]) g gas k ks a stack | INeq (_, k) -> let a = accu in let a = Script_int.compare a Script_int.zero in let a = Compare.Int.(a <> 0) in (step [@ocaml.tailcall]) g gas k ks a stack | ILt (_, k) -> let a = accu in let a = Script_int.compare a Script_int.zero in let a = Compare.Int.(a < 0) in (step [@ocaml.tailcall]) g gas k ks a stack | ILe (_, k) -> let a = accu in let a = Script_int.compare a Script_int.zero in let a = Compare.Int.(a <= 0) in (step [@ocaml.tailcall]) g gas k ks a stack | IGt (_, k) -> let a = accu in let a = Script_int.compare a Script_int.zero in let a = Compare.Int.(a > 0) in (step [@ocaml.tailcall]) g gas k ks a stack | IGe (_, k) -> let a = accu in let a = Script_int.compare a Script_int.zero in let a = Compare.Int.(a >= 0) in (step [@ocaml.tailcall]) g gas k ks a stack (* packing *) | IPack (_, ty, k) -> let value = accu in ( use_gas_counter_in_ctxt ctxt gas @@ fun ctxt -> Script_ir_translator.pack_data ctxt ty value ) >>=? fun (bytes, ctxt, gas) -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks bytes stack | IUnpack (_, ty, k) -> let bytes = accu in (use_gas_counter_in_ctxt ctxt gas @@ fun ctxt -> unpack ctxt ~ty ~bytes) >>=? fun (opt, ctxt, gas) -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks opt stack | IAddress (_, k) -> let (_, address) = accu in (step [@ocaml.tailcall]) g gas k ks address stack | IContract (kinfo, t, entrypoint, k) -> ( let contract = accu in match (contract, entrypoint) with | ((contract, "default"), entrypoint) | ((contract, entrypoint), "default") -> let ctxt = update_context gas ctxt in Script_ir_translator.parse_contract_for_script ctxt kinfo.iloc t contract ~entrypoint >>=? fun (ctxt, maybe_contract) -> let gas = update_local_gas_counter ctxt in let ctxt = outdated ctxt in let accu = maybe_contract in (step [@ocaml.tailcall]) (ctxt, sc) gas k ks accu stack | _ -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks None stack ) | ITransfer_tokens (_, k) -> let p = accu in let (amount, ((tp, (destination, entrypoint)), stack)) = stack in transfer (ctxt, sc) gas amount tp p destination entrypoint >>=? fun (accu, ctxt, gas) -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks accu stack | IImplicit_account (_, k) -> let key = accu in let contract = Contract.implicit_contract key in let res = (Unit_t None, (contract, "default")) in (step [@ocaml.tailcall]) g gas k ks res stack | ICreate_contract {storage_type; arg_type; lambda = Lam (_, code); root_name; k} -> (* Removed the instruction's arguments manager, spendable and delegatable *) let delegate = accu in let (credit, (init, stack)) = stack in create_contract g gas storage_type arg_type code root_name delegate credit init >>=? fun (res, contract, ctxt, gas) -> let stack = ((contract, "default"), stack) in (step [@ocaml.tailcall]) (ctxt, sc) gas k ks res stack | ISet_delegate (_, k) -> let delegate = accu in let operation = Delegation delegate in let ctxt = update_context gas ctxt in fresh_internal_nonce ctxt >>?= fun (ctxt, nonce) -> let res = (Internal_operation {source = sc.self; operation; nonce}, None) in let gas = update_local_gas_counter ctxt in let ctxt = outdated ctxt in (step [@ocaml.tailcall]) (ctxt, sc) gas k ks res stack | IBalance (_, k) -> let ctxt = update_context gas ctxt in Contract.get_balance_carbonated ctxt sc.self >>=? fun (ctxt, balance) -> let gas = update_local_gas_counter ctxt in let ctxt = outdated ctxt in let g = (ctxt, sc) in (step [@ocaml.tailcall]) g gas k ks balance (accu, stack) | ILevel (_, k) -> let level = (Level.current (context_from_outdated_context ctxt)).level |> Raw_level.to_int32 |> Script_int.of_int32 |> Script_int.abs in (step [@ocaml.tailcall]) g gas k ks level (accu, stack) | INow (_, k) -> let now = Script_timestamp.now (context_from_outdated_context ctxt) in (step [@ocaml.tailcall]) g gas k ks now (accu, stack) | ICheck_signature (_, k) -> let key = accu and (signature, (message, stack)) = stack in let res = Signature.check key signature message in (step [@ocaml.tailcall]) g gas k ks res stack | IHash_key (_, k) -> let key = accu in let res = Signature.Public_key.hash key in (step [@ocaml.tailcall]) g gas k ks res stack | IBlake2b (_, k) -> let bytes = accu in let hash = Raw_hashes.blake2b bytes in (step [@ocaml.tailcall]) g gas k ks hash stack | ISha256 (_, k) -> let bytes = accu in let hash = Raw_hashes.sha256 bytes in (step [@ocaml.tailcall]) g gas k ks hash stack | ISha512 (_, k) -> let bytes = accu in let hash = Raw_hashes.sha512 bytes in (step [@ocaml.tailcall]) g gas k ks hash stack | ISource (_, k) -> let res = (sc.payer, "default") in (step [@ocaml.tailcall]) g gas k ks res (accu, stack) | ISender (_, k) -> let res = (sc.source, "default") in (step [@ocaml.tailcall]) g gas k ks res (accu, stack) | ISelf (_, ty, entrypoint, k) -> let res = (ty, (sc.self, entrypoint)) in (step [@ocaml.tailcall]) g gas k ks res (accu, stack) | ISelf_address (_, k) -> let res = (sc.self, "default") in (step [@ocaml.tailcall]) g gas k ks res (accu, stack) | IAmount (_, k) -> let accu = sc.amount and stack = (accu, stack) in (step [@ocaml.tailcall]) g gas k ks accu stack | IDig (_, _n, n', k) -> let ((accu, stack), x) = interp_stack_prefix_preserving_operation (fun v stack -> (stack, v)) n' accu stack in let accu = x and stack = (accu, stack) in (step [@ocaml.tailcall]) g gas k ks accu stack | IDug (_, _n, n', k) -> let v = accu in let (accu, stack) = stack in let ((accu, stack), ()) = interp_stack_prefix_preserving_operation (fun accu stack -> ((v, (accu, stack)), ())) n' accu stack in (step [@ocaml.tailcall]) g gas k ks accu stack | IDipn (_, _n, n', b, k) -> let (accu, stack, restore_prefix) = kundip n' accu stack k in let ks = KCons (restore_prefix, ks) in (step [@ocaml.tailcall]) g gas b ks accu stack | IDropn (_, _n, n', k) -> let stack = let rec aux : type a s b t. (b, t, b, t, a, s, a, s) stack_prefix_preservation_witness -> a -> s -> b * t = fun w accu stack -> match w with | KRest -> (accu, stack) | KPrefix (_, w) -> let (accu, stack) = stack in aux w accu stack in aux n' accu stack in let (accu, stack) = stack in (step [@ocaml.tailcall]) g gas k ks accu stack | ISapling_empty_state (_, memo_size, k) -> let state = Sapling.empty_state ~memo_size () in (step [@ocaml.tailcall]) g gas k ks state (accu, stack) | ISapling_verify_update (_, k) -> ( let transaction = accu in let (state, stack) = stack in let address = Contract.to_b58check sc.self in let chain_id = Chain_id.to_b58check sc.chain_id in let anti_replay = address ^ chain_id in let ctxt = update_context gas ctxt in Sapling.verify_update ctxt state transaction anti_replay >>=? fun (ctxt, balance_state_opt) -> let gas = update_local_gas_counter ctxt in let ctxt = outdated ctxt in match balance_state_opt with | Some (balance, state) -> let state = Some (Script_int.of_int64 balance, state) in (step [@ocaml.tailcall]) (ctxt, sc) gas k ks state stack | None -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks None stack ) | IChainId (_, k) -> let accu = sc.chain_id and stack = (accu, stack) in (step [@ocaml.tailcall]) g gas k ks accu stack | INever _ -> ( match accu with _ -> . ) | IVoting_power (_, k) -> let key_hash = accu in let ctxt = update_context gas ctxt in Vote.get_voting_power ctxt key_hash >>=? fun (ctxt, rolls) -> let power = Script_int.(abs (of_int32 rolls)) in let gas = update_local_gas_counter ctxt in let ctxt = outdated ctxt in (step [@ocaml.tailcall]) (ctxt, sc) gas k ks power stack | ITotal_voting_power (_, k) -> let ctxt = update_context gas ctxt in Vote.get_total_voting_power ctxt >>=? fun (ctxt, rolls) -> let power = Script_int.(abs (of_int32 rolls)) in let gas = update_local_gas_counter ctxt in let ctxt = outdated ctxt in let g = (ctxt, sc) in (step [@ocaml.tailcall]) g gas k ks power (accu, stack) | IKeccak (_, k) -> let bytes = accu in let hash = Raw_hashes.keccak256 bytes in (step [@ocaml.tailcall]) g gas k ks hash stack | ISha3 (_, k) -> let bytes = accu in let hash = Raw_hashes.sha3_256 bytes in (step [@ocaml.tailcall]) g gas k ks hash stack | IAdd_bls12_381_g1 (_, k) -> let x = accu and (y, stack) = stack in let accu = Bls12_381.G1.add x y in (step [@ocaml.tailcall]) g gas k ks accu stack | IAdd_bls12_381_g2 (_, k) -> let x = accu and (y, stack) = stack in let accu = Bls12_381.G2.add x y in (step [@ocaml.tailcall]) g gas k ks accu stack | IAdd_bls12_381_fr (_, k) -> let x = accu and (y, stack) = stack in let accu = Bls12_381.Fr.add x y in (step [@ocaml.tailcall]) g gas k ks accu stack | IMul_bls12_381_g1 (_, k) -> let x = accu and (y, stack) = stack in let accu = Bls12_381.G1.mul x y in (step [@ocaml.tailcall]) g gas k ks accu stack | IMul_bls12_381_g2 (_, k) -> let x = accu and (y, stack) = stack in let accu = Bls12_381.G2.mul x y in (step [@ocaml.tailcall]) g gas k ks accu stack | IMul_bls12_381_fr (_, k) -> let x = accu and (y, stack) = stack in let accu = Bls12_381.Fr.mul x y in (step [@ocaml.tailcall]) g gas k ks accu stack | IMul_bls12_381_fr_z (_, k) -> let x = accu and (y, stack) = stack in let x = Bls12_381.Fr.of_z (Script_int.to_zint x) in let res = Bls12_381.Fr.mul x y in (step [@ocaml.tailcall]) g gas k ks res stack | IMul_bls12_381_z_fr (_, k) -> let y = accu and (x, stack) = stack in let x = Bls12_381.Fr.of_z (Script_int.to_zint x) in let res = Bls12_381.Fr.mul x y in (step [@ocaml.tailcall]) g gas k ks res stack | IInt_bls12_381_fr (_, k) -> let x = accu in let res = Script_int.of_zint (Bls12_381.Fr.to_z x) in (step [@ocaml.tailcall]) g gas k ks res stack | INeg_bls12_381_g1 (_, k) -> let x = accu in let accu = Bls12_381.G1.negate x in (step [@ocaml.tailcall]) g gas k ks accu stack | INeg_bls12_381_g2 (_, k) -> let x = accu in let accu = Bls12_381.G2.negate x in (step [@ocaml.tailcall]) g gas k ks accu stack | INeg_bls12_381_fr (_, k) -> let x = accu in let accu = Bls12_381.Fr.negate x in (step [@ocaml.tailcall]) g gas k ks accu stack | IPairing_check_bls12_381 (_, k) -> let pairs = accu in let check = match pairs.elements with | [] -> true | pairs -> Bls12_381.( miller_loop pairs |> final_exponentiation_opt |> Option.map Gt.(eq one)) |> Option.value ~default:false in (step [@ocaml.tailcall]) g gas k ks check stack | IComb (_, _, witness, k) -> let rec aux : type before after. (before, after) comb_gadt_witness -> before -> after = fun witness stack -> match (witness, stack) with | (Comb_one, stack) -> stack | (Comb_succ witness', (a, tl)) -> let (b, tl') = aux witness' tl in ((a, b), tl') in let stack = aux witness (accu, stack) in let (accu, stack) = stack in (step [@ocaml.tailcall]) g gas k ks accu stack | IUncomb (_, _, witness, k) -> let rec aux : type before after. (before, after) uncomb_gadt_witness -> before -> after = fun witness stack -> match (witness, stack) with | (Uncomb_one, stack) -> stack | (Uncomb_succ witness', ((a, b), tl)) -> (a, aux witness' (b, tl)) in let stack = aux witness (accu, stack) in let (accu, stack) = stack in (step [@ocaml.tailcall]) g gas k ks accu stack | IComb_get (_, _, witness, k) -> let comb = accu in let rec aux : type before after. (before, after) comb_get_gadt_witness -> before -> after = fun witness comb -> match (witness, comb) with | (Comb_get_zero, v) -> v | (Comb_get_one, (a, _)) -> a | (Comb_get_plus_two witness', (_, b)) -> aux witness' b in let accu = aux witness comb in (step [@ocaml.tailcall]) g gas k ks accu stack | IComb_set (_, _, witness, k) -> let value = accu and (comb, stack) = stack in let rec aux : type value before after. (value, before, after) comb_set_gadt_witness -> value -> before -> after = fun witness value item -> match (witness, item) with | (Comb_set_zero, _) -> value | (Comb_set_one, (_hd, tl)) -> (value, tl) | (Comb_set_plus_two witness', (hd, tl)) -> (hd, aux witness' value tl) in let accu = aux witness value comb in (step [@ocaml.tailcall]) g gas k ks accu stack | IDup_n (_, _, witness, k) -> let rec aux : type before after. (before, after) dup_n_gadt_witness -> before -> after = fun witness stack -> match (witness, stack) with | (Dup_n_zero, (a, _)) -> a | (Dup_n_succ witness', (_, tl)) -> aux witness' tl in let stack = (accu, stack) in let accu = aux witness stack in (step [@ocaml.tailcall]) g gas k ks accu stack (* Tickets *) | ITicket (_, k) -> let contents = accu and (amount, stack) = stack in let ticketer = (sc.self, "default") in let accu = {ticketer; contents; amount} in (step [@ocaml.tailcall]) g gas k ks accu stack | IRead_ticket (_, k) -> let {ticketer; contents; amount} = accu in let stack = (accu, stack) in let accu = (ticketer, (contents, amount)) in (step [@ocaml.tailcall]) g gas k ks accu stack | ISplit_ticket (_, k) -> let ticket = accu and ((amount_a, amount_b), stack) = stack in let result = if Compare.Int.( Script_int.(compare (add_n amount_a amount_b) ticket.amount) = 0) then Some ({ticket with amount = amount_a}, {ticket with amount = amount_b}) else None in (step [@ocaml.tailcall]) g gas k ks result stack | IJoin_tickets (_, contents_ty, k) -> let (ticket_a, ticket_b) = accu in let result = if Compare.Int.( compare_address ticket_a.ticketer ticket_b.ticketer = 0 && compare_comparable contents_ty ticket_a.contents ticket_b.contents = 0) then Some { ticketer = ticket_a.ticketer; contents = ticket_a.contents; amount = Script_int.add_n ticket_a.amount ticket_b.amount; } else None in (step [@ocaml.tailcall]) g gas k ks result stack ) (* Zero-cost logging ================= *) (* The following functions insert a logging instruction and modify the continuation to continue the logging process in the next execution steps. There is a special treatment of instructions that generate fresh continuations: we pass a constructor as argument to their evaluation rules so that they can instrument these fresh continuations by themselves. This on-the-fly instrumentation of the execution allows zero-cost logging since logging instructions are only introduced if an initial logging continuation is pushed in the initial continuation that starts the evaluation. *) and log : type a s b t r f. logger * logging_event -> (a, s, b, t, r, f) step_type = fun (logger, event) ((ctxt, _) as g) gas k ks accu stack -> ( match (k, event) with | (ILog _, LogEntry) -> () | (_, LogEntry) -> log_entry logger ctxt gas k accu stack | (_, LogExit prev_kinfo) -> log_exit logger ctxt gas prev_kinfo k accu stack ) ; let k = log_next_kinstr logger k in let with_log k = match k with KLog _ -> k | _ -> KLog (k, logger) in match k with | IList_map (_, body, k) -> (ilist_map [@ocaml.tailcall]) with_log g gas (body, k) ks accu stack | IList_iter (_, body, k) -> (ilist_iter [@ocaml.tailcall]) with_log g gas (body, k) ks accu stack | ISet_iter (_, body, k) -> (iset_iter [@ocaml.tailcall]) with_log g gas (body, k) ks accu stack | IMap_map (_, body, k) -> (imap_map [@ocaml.tailcall]) with_log g gas (body, k) ks accu stack | IMap_iter (_, body, k) -> (imap_iter [@ocaml.tailcall]) with_log g gas (body, k) ks accu stack | ILoop (_, body, k) -> let ks = with_log (KLoop_in (body, KCons (k, ks))) in (next [@ocaml.tailcall]) g gas ks accu stack | ILoop_left (_, bl, br) -> let ks = with_log (KLoop_in_left (bl, KCons (br, ks))) in (next [@ocaml.tailcall]) g gas ks accu stack | IMul_teznat (kinfo, k) -> let extra = (kinfo, k) in (imul_teznat [@ocaml.tailcall]) (Some logger) g gas extra ks accu stack | IMul_nattez (kinfo, k) -> let extra = (kinfo, k) in (imul_nattez [@ocaml.tailcall]) (Some logger) g gas extra ks accu stack | ILsl_nat (kinfo, k) -> let extra = (kinfo, k) in (ilsl_nat [@ocaml.tailcall]) (Some logger) g gas extra ks accu stack | ILsr_nat (kinfo, k) -> let extra = (kinfo, k) in (ilsr_nat [@ocaml.tailcall]) (Some logger) g gas extra ks accu stack | IFailwith (_, kloc, tv, _) -> (ifailwith [@ocaml.tailcall]) (Some logger) g gas kloc tv accu | IExec (_, k) -> (iexec [@ocaml.tailcall]) (Some logger) g gas k ks accu stack | _ -> (step [@ocaml.tailcall]) g gas k (with_log ks) accu stack [@@inline] and klog : type a s r f. logger -> outdated_context * step_constants -> local_gas_counter -> (a, s, r, f) continuation -> (a, s, r, f) continuation -> a -> s -> (r * f * outdated_context * local_gas_counter) tzresult Lwt.t = fun logger g gas ks0 ks accu stack -> (match ks with KLog _ -> () | _ -> log_control logger ks) ; let enable_log ki = log_kinstr logger ki in let mk k = match k with KLog _ -> k | _ -> KLog (k, logger) in match ks with | KCons (ki, ks') -> let log = enable_log ki in let ks = mk ks' in (step [@ocaml.tailcall]) g gas log ks accu stack | KNil -> (next [@ocaml.tailcall]) g gas ks accu stack | KLoop_in (ki, ks') -> let ks' = mk ks' in let ki = enable_log ki in (kloop_in [@ocaml.tailcall]) g gas ks0 ki ks' accu stack | KReturn (stack', ks') -> let ks' = mk ks' in let ks = KReturn (stack', ks') in (next [@ocaml.tailcall]) g gas ks accu stack | KLoop_in_left (ki, ks') -> let ks' = mk ks' in let ki = enable_log ki in (kloop_in_left [@ocaml.tailcall]) g gas ks0 ki ks' accu stack | KUndip (x, ks') -> let ks' = mk ks' in let ks = KUndip (x, ks') in (next [@ocaml.tailcall]) g gas ks accu stack | KIter (body, xs, ks') -> let ks' = mk ks' in let body = enable_log body in (kiter [@ocaml.tailcall]) mk g gas (body, xs) ks' accu stack | KList_enter_body (body, xs, ys, len, ks') -> let ks' = mk ks' in let extra = (body, xs, ys, len) in (klist_enter [@ocaml.tailcall]) mk g gas extra ks' accu stack | KList_exit_body (body, xs, ys, len, ks') -> let ks' = mk ks' in let extra = (body, xs, ys, len) in (klist_exit [@ocaml.tailcall]) mk g gas extra ks' accu stack | KMap_enter_body (body, xs, ys, ks') -> let ks' = mk ks' in (kmap_enter [@ocaml.tailcall]) mk g gas (body, xs, ys) ks' accu stack | KMap_exit_body (body, xs, ys, yk, ks') -> let ks' = mk ks' in (kmap_exit [@ocaml.tailcall]) mk g gas (body, xs, ys, yk) ks' accu stack | KLog (_, _) -> (* This case should never happen. *) (next [@ocaml.tailcall]) g gas ks accu stack [@@inline] (* Entrypoints =========== *) let step_descr ~log_now logger (ctxt, sc) descr accu stack = let gas = (Gas.remaining_operation_gas ctxt :> int) in ( match logger with | None -> step (outdated ctxt, sc) gas descr.kinstr KNil accu stack | Some logger -> ( if log_now then let kinfo = kinfo_of_kinstr descr.kinstr in logger.log_interp descr.kinstr ctxt kinfo.iloc descr.kbef (accu, stack) ) ; let log = ILog (kinfo_of_kinstr descr.kinstr, LogEntry, logger, descr.kinstr) in step (outdated ctxt, sc) gas log KNil accu stack ) >>=? fun (accu, stack, ctxt, gas) -> return (accu, stack, update_context gas ctxt) let interp logger g (Lam (code, _)) arg = step_descr ~log_now:true logger g code arg (EmptyCell, EmptyCell) >|=? fun (ret, (EmptyCell, EmptyCell), ctxt) -> (ret, ctxt) let kstep logger ctxt step_constants kinstr accu stack = let gas = (Gas.remaining_operation_gas ctxt :> int) in let kinstr = match logger with | None -> kinstr | Some logger -> ILog (kinfo_of_kinstr kinstr, LogEntry, logger, kinstr) in step (outdated ctxt, step_constants) gas kinstr KNil accu stack >>=? fun (accu, stack, ctxt, gas) -> return (accu, stack, update_context gas ctxt) let internal_step ctxt step_constants gas kinstr accu stack = step (ctxt, step_constants) gas kinstr KNil accu stack let step logger ctxt step_constants descr stack = step_descr ~log_now:false logger (ctxt, step_constants) descr stack (* High-level functions ==================== *) let execute logger ctxt mode step_constants ~entrypoint ~internal unparsed_script arg : ( Script.expr * packed_internal_operation list * context * Lazy_storage.diffs option ) tzresult Lwt.t = parse_script ctxt unparsed_script ~legacy:true ~allow_forged_in_storage:true >>=? fun (Ex_script {code; arg_type; storage; storage_type; root_name}, ctxt) -> record_trace (Bad_contract_parameter step_constants.self) (find_entrypoint arg_type ~root_name entrypoint) >>?= fun (box, _) -> trace (Bad_contract_parameter step_constants.self) (parse_data ctxt ~legacy:false ~allow_forged:internal arg_type (box arg)) >>=? fun (arg, ctxt) -> Script.force_decode_in_context ctxt unparsed_script.code >>?= fun (script_code, ctxt) -> Script_ir_translator.collect_lazy_storage ctxt arg_type arg >>?= fun (to_duplicate, ctxt) -> Script_ir_translator.collect_lazy_storage ctxt storage_type storage >>?= fun (to_update, ctxt) -> trace (Runtime_contract_error (step_constants.self, script_code)) (interp logger (ctxt, step_constants) code (arg, storage)) >>=? fun ((ops, storage), ctxt) -> Script_ir_translator.extract_lazy_storage_diff ctxt mode ~temporary:false ~to_duplicate ~to_update storage_type storage >>=? fun (storage, lazy_storage_diff, ctxt) -> trace Cannot_serialize_storage ( unparse_data ctxt mode storage_type storage >>=? fun (storage, ctxt) -> Lwt.return ( Gas.consume ctxt (Script.strip_locations_cost storage) >>? fun ctxt -> ok (Micheline.strip_locations storage, ctxt) ) ) >|=? fun (storage, ctxt) -> let (ops, op_diffs) = List.split ops.elements in let lazy_storage_diff = match List.flatten (List.map (Option.value ~default:[]) (op_diffs @ [lazy_storage_diff])) with | [] -> None | diff -> Some diff in (storage, ops, ctxt, lazy_storage_diff) type execution_result = { ctxt : context; storage : Script.expr; lazy_storage_diff : Lazy_storage.diffs option; operations : packed_internal_operation list; } let execute ?logger ctxt mode step_constants ~script ~entrypoint ~parameter ~internal = execute logger ctxt mode step_constants ~entrypoint ~internal script (Micheline.root parameter) >|=? fun (storage, operations, ctxt, lazy_storage_diff) -> {ctxt; storage; lazy_storage_diff; operations} (* Internals ========= *) (* We export the internals definitions for tool that requires a white-box view on the interpreter, typically snoop, the gas model inference engine. *) module Internals = struct type nonrec local_gas_counter = local_gas_counter type nonrec outdated_context = outdated_context = | OutDatedContext of Alpha_context.t [@@unboxed] let next logger g gas ks accu stack = let ks = match logger with None -> ks | Some logger -> KLog (ks, logger) in next g gas ks accu stack let step (ctxt, step_constants) gas ks accu stack = internal_step ctxt step_constants gas ks accu stack end