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Abstract

SLALOM (SoLAr CelL Multivariate OptiMizer) [1] is a set of open-source Python programs
implementing a rigorous mathematical methods for the optimization of solar cells using as backend
a drift-diffusion device simulator 1. It aims to be simple to use, to maintain and to extend. It includes
a core optimizer using the well tested robust mathematical methods, a set of user interface utilities
and some complete and working examples easily adaptable to new solar cell technologies. SLALOM
uses, as device simulator, the Silvaco® Atlas tool. It can be easily extended to use any simulator that
have a standard input format and a command line interface.

1 Install

Usually the device simulator is installed on a high performance and robust Linux server with Red Hat,
CentOS or Debian distribution and far more rarely on Windows or macOS. Linux offers the stability,
flexibility, performance and durability needed for optoelectronic devices simulation. Figure 1 shows a
schematic view of the two main configurations where SLALOM is used:

• Client / Server configuration, where the device simulator (e.g. Silvaco®) is installed on a remote
high-performance calculation server under Linux (Red Hat, CentOS or Debian) and the optimizer
in installed on the user local machine (laptop, thin client, workstation or even tablet or smartphone).
User connect to the remote server using the standard SSH (Secure Shell) protocol using public
/ private keys. In this configuration SLALOM is installed on the client side and controls the
remotely installed simulator to peform the solar cell optimization. This configuration is the
standard one in academic institutions or laboratories where a high performance calculation server
(or a clutser server) is remotely used for TCAD and simulation.

• Local configuration, where the device simulator and SLALOM are installed on the same computer.

SLALOM handle these configurations transparently and should be installed, in both cases, locally.

1.1 SLALOM requirements

• Python version 2.7.x or later [2] (SLALOM is coded and tested using Python 2.7.12).

• NumPy version 1.16.2 or later. NumPy is a package for linear algebra and numerical computing
[3]. Update NumPy if the installed version is older than the required one.

1SLALOM is freely available on the github repository https://github.com/sidihamady/SLALOM, or by
downloading the up-to-date archive http://www.hamady.org/photovoltaics/slalom_source.zip or from HAL archive
https://hal.archives-ouvertes.fr/hal-01897934
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Figure 1: SLALOM install cases. Case 1 is the standard way: the device simulator (Silvaco®, or any
other simulator) is installed on a remote calculation server and accessed from a local computer or thin
client using the SSH protocol. Case 2 correspond to the case where the device simulator is installed in
the user machine and can then be accessed locally.
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• SciPy version 1.2.1 or later. SciPy contains specialized scientific routines for, e.g., mathematical
optimization among many other routines [4]. Update SciPy if the installed version is older than
the required one.

• Matplotlib version 1.3.x or later. Matplotlib is a 2D plotting and visualization package [5].

• Tkinter 8.5 or later (optional, required only for the client GUI monitor and the device definition
module). Tkinter is a package for building multi-platform graphical user interface (GUI) [6].

• Gitbash for Windows (for SSH in Client / Server configuration) [7]: Linux-like console for
Windows including standard and Git tools and commands.

1.2 Linux

Python is already installed with almost any Linux distribution.
For Red Hat (or clones such as CentOS or Scientific Linux, or Fedora), NumPy, SciPy and Matplotlib
can be installed using yum:

sudo yum install python-numpy python-scipy python-matplotlib tkinter python-matplotlib-tk

If the default Python version is older than 2.7.x (as for CentOS 6.x and Red Hat 6.x), you have to install
a newer Python / NumPy / SciPy / Matplotlib version. To check your Python version, just type:

/usr/bin/python -V

You have also to update NumPy and SciPy if the installed versions are older than the required ones.

1.3 Windows

Two methods (at least!) to install Python / NumPy / SciPy / Matplotlib under Windows:

• Method 1 (recommended): Download and install the Anaconda distribution:

https://www.anaconda.com/distribution/

Choose Python 2.7 version.

Anaconda contains almost everything you need for scientific programming with Python and is
well maintained.

• Method 2: Install the official Python distribution from:

https://www.python.org/downloads/release/python-2712/

Choose preferably Python 2.7.12 and install it.

When Python is installed, download and install NumPy/SciPy/Matplotlib from:

http://www.lfd.uci.edu/ gohlke/pythonlibs/
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The only advantage of this latter method is a smaller size since only vanilla Python and selected
modules are installed.

Under Windows you need SSH client to access the remote calculation server if SLALOM is used
in the Client / Server configuration (as usually done). For that you need to install Git for Windows
from here:

https://git-for-windows.github.io/

Git for Windows offers a Linux-like console under Windows (Gitbash) including a very good SSH
client in addition to Git and many other standard commands and tools.

To test Gitbash, start it and type some commands:

cd /C/Users/MyName/.ssh/
ls
vi ./config

If you are not familiar to Linux, you need to learn some basic commands and tools such as ls, cd,
mkdir, cp, mv, pwd, cat, touch, chmod, chown, ssh, etc.

Note: under Gitbash, file path uses the Linux notation:

/C/Users/MyName/.ssh/config is the Gitbash equivalent for: C:\Users\MyName\.ssh\config

1.4 SSH communication

As highlighted previously, SLALOM use the Secure Shell (SSH) to control the simulator installed
on the remote server.

To configure the SSH client (under Windows with Gitbash or under Linux), perform the followings
steps:

– edit the /.ssh/config. You can use vi to edit this file (or any other editor):

cd /.ssh/
ls
vi ./config

Put the remote server information, like:

Host slalom
Hostname 192.168.1.10
User myname

Replace with your server information given by your system administrator.
To access the remote calculation server defined in /.ssh/config, you need to use SSH with
keys. The idea is simply to use cryptographic keys to communicate with the server and avoid
using password. Two keys are necessary, a private one located on the client side and a public
one located on the server. To create the two keys, start a Linux console (or Gitbash under
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Windows) and type:

ssh-keygen -t rsa -b 4096 -C "me@mail.com"

Replace with your e-mail.
ssh-keygen generated a private/public keys pair. You can view the public key by typing:

cat /.ssh/id_rsa.pub

After generating the keys, you need to send the public one to the server:

cat /.ssh/id_rsa.pub | ssh myname@slalom 'cat >> /home/myname/.ssh/authorized_keys'

Replace with your server information as included in /.ssh/config.
As a last step, connect to the server using SSH and when asked choose to add it to the known
hosts:

ssh myname@slalom

The next time the connexion will be estabslihed without asking for password. The public /
private keys pair ensure a secure communication between the client and the server. SLALOM
will use this reliable and secure mechanism to control the remote simulator.
If the connexion failed, you can check and, if necessary, correct the remote SSH file access
permissions:
Connect to the server using password and type:

chmod 700 .ssh
chmod 600 .ssh/authorized_keys

Disconnect from the server, and retry to connect without using password.

1.5 Installing SLALOM

When the required packages (Python / NumPy / SciPy / Matplotlib) are installed and SSH configured,
you can install SLALOM by downloading it from:

https://github.com/sidihamady/SLALOM

http://www.hamady.org/photovoltaics/slalom_source.zip.

Unzip and that’s all!

2 Step-by-step Guide

2.1 SLALOM directory structure

The SLALOM distribution structure is shown in figure 2.
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• The Device directory contains the input files for Silvaco® simulator. For the simulator, the
input files are coded with four mandatory prerequisites: simplicity, modularity, clearness and
reusability. For Silvaco® par exemple all the material parameters and physical model are defined
in a specialized C external files and reused and adapted for new structure. To define a new solar
cell structure, juste reuse these files, keep the same structure and prerequisites, and adapt to your
specific study.

For Silvaco® simulator, two solar cell structures are included in SLALOM: a CdS/CZTS (Copper
Zinc Tin Sulfide) structure and a InGaN (Indium Gallium Nitride) PN structure. For instance,
there is one CdS/CZTS input file for Deckbuild (CZTS_NP.in) and seven C files for physical
models and parameters: CdS_Index.c for the refractive index and extinction coefficient of CdS;
CZTS_Bandgap.c for the bandgap, affinity and density of states model; CZTS_Index.c for the
refractive index and extinction coefficient of CZTS; CZTS_Mobility.c for the CZTS mobility
model; CZTS_Permittivity.c for the CZTS dielectric permittivity model; CZTS_Recomb.c for the
CZTS recombinations model; and CZTS_Parameters.h header file with the CZTS parameters used
by the above C files.

• The Guide directory contains this PDF guide.

• The Images directory contains various icons and images used by the GUI part of SLALOM.

• The Remote directory is only used during the optimization to upload simulation files to the remote
calculation server and is, otherwise, empty.

• The SLALOM Python files with:

– slalom.py: the SLALOM startup module. This module set the parameters, the optimization
method and control the whole process.

– slalomCore.py: the SLALOM core class, implementing the mathematical optimization
methods provided by the SciPy package and controlling the device simulation engine, e.g.
Silvaco®. As a class with well defined and modularized functionalities it can be easily
externded by creating a new inherited class. This inheritance mechanism is very useful and
allows modularity, clearness, reliability and keeping unchanged a highly tested codebase.

– slalomDevice.py: class defining a set of devices (e.g. InGaN_PN, CZTS_NP, etc.) for easier
and more robust optimization work. For every project, this class can be reimplemented to
include any set of relevant devices.

– slalomDeviceGui.py: class providing a useful interface to create a new device type. It
is only used if the device type specified in slalom.py is not defined in slalomDevice.py.
slalomDeviceGui.py uses the Tkinter graphical toolkit that is already installed on the client
(this is generally the case, except for some CentOS or Red Hat machines). If Tkinter is not
installed, this class is not used.

– slalomMonitor.py: used to monitor the optimizer either in client / server configuration
using SSH or locally if it runs on the same machine than the optimizer. slalomMonitor uses
the slalomWindow class that provide visualisation and control functionalities. If Tkinter is
not installed, this class is not used.

– slalomSimulator.py: class interfacing the solar cell simulator and encapsulates functionality
specific to the simulator, e.g. Silvaco®, and can be easily extended to include any simulator
that can be launched from the command line and output results in text files (i.e. any well
designed simulator).

– slalomWindow.py: common class providing the visualisation and control functionalities
used by the SLALOM GUI part, only available if Tkinter is installed.
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Figure 2: The SLALOM distribution structure.

SLALOM includes predefined solar cell structures for the Silvaco® simulator. Among these structures
are an Indium Gallium Nitride (InGaN) and Copper Zinc Tin Sulfide (CZTS) solar cells.

2.2 Case Study: InGaN PN Solar Cell

The InGaN PN solar cell simulation files for the Silvaco® simulator are located in the SLALOM/Device
directory.

For Silvaco®, The Deckbuild InGaN_PN.in can be edited, tested and modified in the Deckbuild editor.
As underlined previously, all the material parameters and models are defined in C source files for
modularity, simplicity and reliability.
These C files can be modified, updated and adapted to the state-of-the-art.

After checking the input (InGaN_PN.in) and C files for Silvaco®, open the SLALOM device class file:
slalomDevice.py. This class define a set of devices for a solar cell technology of interest to the user. By
default it contains the InGaN PN solar cell definition, among others. This class is very useful by saving
a lot of time while permitting a far more reliable optimization work.
In slalomDevice.py, each device type is defined by:

• its associated input filename (class member inputFilename)

• the parameters name array (paramName) as defined in the simulator input file. For Silvaco® for
example, every parameter name in the array corresponds to a variable definition in the Deckbuild
input file as: set paramName = parameValue. Example: set NLayerThick = 1.0.

• start values (paramStart). Array containing the lower limit for each parameter.
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• initial values (paramInit). Array containing the initial value for each parameter.

• final values (paramEnd). Array containing the upper limit for each parameter.

• the number of points (paramPoints). Array containing, for each parameter, the number of points
between start and final values.

• the variation type (paramLogscale). For each parameter, set to True for logarithmic variation (e.g.
for doping) and False for linear variation (e.g. for thickness, bandgap, etc.).

• the normalization values (paramNorm). Array of values used in the optimization, corresponding
to a "standard" value for each parameter (e.g. 1017 for doping).

• numeric format (paramFormat). C-style format for each parameter. The simple rule is to use
"%.8 f " for linearly varying parameters (e.g. thickness) and "%.5e" for logarithmic variation (e.g.
for doping). paramFormatShort corresponds to the compact version of paramFormat.

In the present case, we want to optimize the InGaN PN solar cell with respect to five parameters[8, 9, 10]:
The N-layer doping concentration and thickness, the P-layer doping concentration and thickness and
the Indium composition. The thickness and composition vary linearly while the doping variation is
logarithmic.

Keep slalomDevice.py untouched and open the SLALOM startup file: (slalom.py). This module control
the whole optimization process: set the device parameters, the mathematical method, the communication
parameters and so on. Usually by properly defining devices in slalomDevice.py it is only necessary to
set the device type and SSH parameters in slalom.py. Check and set the folowing values to reflect your
installation (specifically currentDir, remoteDir and SSH parameters):

deviceSimulator = "atlas"

# your local device directory
currentDir = "N:\TCAD\SLALOM\Device\Silvaco\"

# remoteDir is the name of the remote directory...
# ... used when using SSH to connect to a remote...
# ... server where the simulator is installed.
remoteDir = "/home/user/SLALOM/Device/Silvaco/"

# put here the SSH host configured previously
remoteSSHhost = "user@slalom"

# the device type defined in slalomDevice.py
deviceType = "InGaN_PN"

optimType = "Optim"

minimizeMethod = "SLSQP"

If you are using the local configuration (simulator and SLALOM installed locally on the same machine)
put an empty value in remoteDir and remoteSSHhost:

remoteDir = ""
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remoteSSHhost = ""

After setting these parameters in slalom.py, open a Linux console (or Gitbash under Windows) and cd
to the SLALOM directory...:

cd /SLALOM

... and start the optimizer:

python slalom.py

The optimization process will start and the SLALOM monitor launched (if Tkinter installed). The
monitor gives the solar cell performances (open-circuit voltage, short-circuit current and efficiency). It
gives also the current-voltage characteristic (click the View JV button), the spectral response (View SR
button) and the raw values for every set of optimization parameters (View data button), permitting to
precisely and interactively follow the process. If the monitor is not started, open a console and run it:
python slalomMonitor.py

The optimizer can be stopped at any time by clicking the Stop button. The time statistics (simulation
mean, minimum and maximum duration and so on) are shown in realtime. You can close the monitor
(without stopping the optimizer) by clicking the Close button (or the window close button) and restart it
later with the command: python slalomMonitor.py

When the optimization is finished, the results are zipped and downloaded locally for in-detail analysis.
On the main server used to develop SLALOM (a Red Hat Linux server with two 8-core Xeon processors
and 32 GB of RAM), every simulation takes one minute up to ten minutes (strongly depending on device,
mesh, parameters, required tolerance, solver, etc.) and the whole optimization process takes one hour
up to fifty hours.

The whole set of results is stored in a sub-directory in the output directory with a name prefixed with the
date and device type (for example: 20170210_1755_InGaN_PN). Each result file name is prefixed with
simuloutput_ and the iteration index and contains, as header, the corresponding set of parameters. If the
first line in these files is v Atlas then they can be visualized by the Silvaco® Tonyplot tool. Other files
can also be plotted using Tonyplot providing that the header lines (beginning with #) are removed since
Tonyplot unfortunately do not ignore comment lines. In all cases these files are in plain ASCII format
and can be visualized and treated by any plotting and analysis software (just skip the header lines to plot
the included data).
The file(s) prefixed with:

• simuloutput_all correspond to distribution (electric field, potential, etc.) as calculated by Silvaco®

for each set of parameters choosen by the optimizer.

• simuloutput_band corresponds to the band diagram at equilibrium.

• simuloutput_mesh_all correspond to the mesh input generated by the simulator.

• simuloutput_popt contains the incident optical power density in mW/cm2.

• simuloutput_jv correspond to the current-voltage characteristic for each set of parameters choosen
by the optimizer. The files prefixed with simuloutput_jvp correspond also to current-voltage
characteristic for each set of parameters choosen by the optimizer but only up to the open-circuit
voltage.

• simuloutput_pv correspond to power-voltage characteristic.
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• simuloutput_photocurrent correspond to the available and source photocurrent, used to calculate
the external and internal quantum efficiencies.

• simuloutput_spectralresponse_eqe and simuloutput_spectralresponse_iqe for the external and the
internal quantum efficiency spectra.

• simuloutput_optimized contains all the points set by the optimizer and, for each point, the solar
cell performances.

• simuloutput_log contains the SLALOM output including all the messages printed out during the
optimization.

• simuloutput_stdout contains the simulator standard output including all the messages printed out
during the simulation. Useful for debugging purpose, if the simulator is diverging for example.

The result directory is self-contained and includes even the input file and C model files used to produce
the results it contains, for reliable analysis and archiving. This directory is zipped at the end of the
optimization process.

In this study case, SLALOM was started with the default optimization method but it has three modes
(represented by the optimType variable in slalom.py):

• Snap: only one simulation is performed, corresponding to the set of parameters paramInit defined
in slalomDevice.py. This mode is usually used to test one particular set of parameters before
performing a full optimization.

• Brute: Brute force optimization: for each parameter, an iteration is done between paramStart and
paramEnd with the number of points specified by paramPoints as defined in slalomDevice.py.
This mode and can take a very long time to perform. For example with four parameters and ten
points per parameter, 104 simulations will be performed with a overall duration of 104 minutes
(considering roughly one minute per simulation) and 166 hours or seven days!

• Optim: Mathematical optimization using one of the following methods:

– L-BFGS-B: a variant of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, a quasi
- Newton iterative method to solve nonlinear optimization problems [11]. The L stands for
Limited memory as this variant use a modified algorithm that need to store in memory only
a part of the Hessian matrix. In this method name, B stands for Bound constrained, since this
variant is adapted to handle constraints on the parameters with a specified variation range,
condition necessary in solar cell optimization since each parameter is constrained by the
physics and the current technology.

– SLSQP: Sequential Least Squares Programming, a Newton method for constrained problems
using a Hessian approximation [12]. The SLSQP method usually needs less evaluations, for
the drift-diffusion simulation considered here, than L-BFGS-B.

Other methods can be easily integrated in SLALOM. The two choosen methods were practically
demonstrated to have a good compromise between robustness and speed when applied to our
complex drif-diffusion problem in solar cells.

The computing duration of the mathematical optimization methods is at least two orders of magnitude
less than the brute force method. For the case taken previously (seven days needed by brute force)
it will take only three hours or less for the L-BFGS-B method to find the optimal set of parameters.
Nonetheless, the used optimization methods, even very fast, will not necessarily find the absolute
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(global) optimum since they can get stuck on a local one, specially for this complex problem involving
the resolution of the nonlinear coupled drif-diffusion equations. This is typically an example of the
so-called non-convex optimization problem. There are at least two ways of dealing with this common
issue. Firstly we can give initial set of parameters close to what we expect to be the global optimum.
This can be generally done according to the user experience. The second method is to perform few
optimizations starting each time from a random set of parameters. The absolute optimum will be given
by the global optimal efficiency among these local optima. One effective strategy the we use is to
calculate efficiency for a dozen of points (or more) randomly choosen in a well-defined variation domain
and give the best one to the optimizer as the initial set of parameters. Another strategy, only feasible for
three parameters or less, is to do a rough brute force optimization (for exemple 4 points per parameters
and then 64 total number of points for three parameters) and choose the range where the brute force gives
the best efficiency as the optimizer variation domain. The convergence of the optimizer depends also
on the internal implementation and numerical parameters, mainly the required tolerance (tolerance in
slalomCore.py), the maximum number of iterations and the Jacobian calculation method and resolution
(jaceps in slalomCore.py).The tolerance default value can be changed to handle particular situations. If
increased, the convergence will be faster but the probability to get stuck on a local optimum becomes
higher. On the contrary, if the tolerance is decreased, the convergence becomes slower but the probability
to find the absolute optimum usually increases.

As illustration, Figure 3 shows the efficiency of the InGaN PN solar cell as determined by the optimizer
using the L-BFGS-B and SLSQP methods with the initial point choosen far from the global optimum
(first case, Figure 3a) and near it (second case, Figure 3b). Each index corresponds to a set of parameters
choosen by the optimizer in the variation domain defined in slalomDevice.py. None of the strategies
described above was used. Both methods converge to same set of optimal parameters in about two hours
for L-BFGS-B and one hour for SLSQP on a Red Hat Linux server with two 8-core Xeon processors
and 32 GB of RAM. Usually, for the tested solar cell structures, SLSQP is faster but, as other methods,
can optimize to a local point.
When the initial point was choosen in the close vicinity of the global optimum (second case, 3b), the
algorithm obviously converges faster to the optimum (fifty minutes for SLSQP and ninety minutes for
L-BFGS-B). This point illustrates the fact that it is necessary to use a "reasonable" strategy, as explained
previously, to find the global solar cell optimal efficiency considering the complexity of the underlying
physical model (drift-diffusion) and its non-convex nature. Nonetheless, finding a local optimum in a
constrained parameters range could be interesting for technological and feasibility reasons (a feasible
lower optimum is practically more interesting than a higher unreachable one).

The optimal set of parameters ("point") lies in the vicinity of the following set of values (giving an
optimal efficiency of about 18%, a short-circuit current of 26.8mA/cm2, an open-circuit voltage of 0.85V
and a fill factor of 78%):
(P-layer thickness of 0.01µm, N-layer thickness of 1µm, P-layer doping of 1019cm−3, N-layer doping
of 4×1016cm−3, Indium composition of 56%).

Figure 4a shows the current-voltage characteristic near optimal point while Figure 4b plots the external
and internal quantum efficiency spectra.
When using the brute force method with only 5 points per parameter, the total number of points is
3125 (= 55). The total duration is about 100 hours on the same machine. The resolution is equal to
the range divided by the number of points per parameter. If seeking higher resolution, the brute force
duration become completey infeasible: it varies as nm where n is the number of points and m the number
of parameters. For thickness, for example, the resolution is about 0.2µm (for 5 points per parameter)
meaning that the optimal thickness is known within this uncertainty. For the optimization methods
(L-BFGS-B and SLSQP) the resolution is determined by the Jacobian step which is, in this case, equal
to the range divided by 50, meaning 0.02µm, ten times better than previously. Therefore, with a far
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better resolution, the L-BFGS-B and SLSQP methods are at least two orders of magnitude faster than
the brute force method.
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(a) Initial point choosen relatively far from the global optimum.
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(b) Initial point choosen in the close vicinity of the global optimum.

Figure 3: Efficiency of the InGaN PN solar cell determined by SLALOM using the L-BFGS-B and
SLSQP methods.
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(b) External and internal quantum efficiency spectra.

Figure 4: Current-voltage characteristic and external and internal quantum efficiency spectra of the
InGaN PN solar cell at the optimum.

14



References

[1] S Ould Saad Hamady and N Fressengeas. SLALOM: Open-source, portable, and easy-to-use solar
cell optimizer. Application to the design of InGaN solar cells. EPJ Photovoltaics, 9:13, 2018.

[2] Guido van Rossum. Python programming language. https://www.python.org/, 2017.

[3] S. van der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array: A structure for efficient
numerical computation. Computing in Science Engineering, 13(2):22–30, March 2011.

[4] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python,
2001–. http://www.scipy.org/.

[5] John D Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering,
9(3):90–95, 2007.

[6] John W Shipman. Tkinter 8.5 reference: a GUI for Python.
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html, 2013.

[7] Johannes Schindelin. Git for windows: the windows port of git. https://git-for-windows.github.io/,
2017.

[8] A Adaine, S Ould Saad Hamady, and N Fressengeas. Simulation study of a new InGaN p-layer
free schottky based solar cell. Superlattices and Microstructures, 96:121–133, 2016.

[9] S Ould Saad Hamady, A Adaine, and N Fressengeas. Numerical simulation of InGaN schottky
solar cell. Materials Science in Semiconductor Processing, 41:219–225, 2016.

[10] Abdoulwahab Adaine, Sidi Ould Saad Hamady, and Nicolas Fressengeas. Effects of structural
defects and polarization charges in InGaN-based double-junction solar cell. Superlattices and
Microstructures, 107:267–277, July 2017.

[11] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for
bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.

[12] Stephen J Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35(67-68):7,
1999.

15


	Install
	SLALOM requirements
	Linux
	Windows
	SSH communication
	Installing SLALOM

	Step-by-step Guide
	SLALOM directory structure
	Case Study: InGaN PN Solar Cell


