Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/smolkelab/Ribozyme_switch_generator
05 April 2024, 20:01:44 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    No releases to show
  • 03cd1e6
  • /
  • Predict_activities.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:c699bc6975a4cbf1d00b87e52f0c9c6a63a64e1e
origin badgedirectory badge Iframe embedding
swh:1:dir:03cd1e63a34fff88a4a02cbcfcb82410c767095e
origin badgerevision badge
swh:1:rev:786f72a93791e6d2e7bd35b2bb1ee66ed21a1680
origin badgesnapshot badge
swh:1:snp:da3dc5b2a649f32bd92d0cb1221ac441b5156359

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 786f72a93791e6d2e7bd35b2bb1ee66ed21a1680 authored by Calvin M Schmidt on 25 May 2020, 20:45:40 UTC
Initial commit
Tip revision: 786f72a
Predict_activities.py
import pickle
import numpy as np
from keras.models import model_from_json
import csv

def loop_one_hot_encode(loop_seq, loop_struct):
    '''
    Encodes a ribozyme loop into a 3-dimensional array meant to represent its 3-domensional physical form. The
    dimensions are as follows:
        width - 2, to represent the nucleotides as the directly emerge from a paired stem
        height - 15, to encapsulate long loops. Most positions will be blank for shorter loops
        channels - 8, to represent the 4 nucleotides, each in a bonded or unbonded state
    :param loop_seq: String of nucleotides representing the sequence of the loop
    :param loop_struct: String of dot-bracket notation representing the structure of the loop
    :return: numpy array of size (2, 1, 15, 8)
    '''

    encoded_loop = np.zeros((2, 1, 15, 8))
    loop_codes = ['A', 'A', 'U', 'U', 'C', 'C', 'G', 'G']

    if len(loop_seq) <= 30:
        # Iterates forward from the 5' end of the loop and backwards from the 3' end simultaneously, marking at each
        # position the correct channel.
        for i in range(len(loop_seq) // 2):
            encoded_loop[0, 0, i, loop_codes.index(loop_seq[i]) + (loop_struct[i] == '(' or loop_struct[i] == ')')] = 1
            encoded_loop[1, 0, i, loop_codes.index(loop_seq[-(i + 1)]) + (loop_struct[-(i + 1)] == '(' or loop_struct[-(i + 1)] == ')')] = 1

        # If an odd number of nucleotides, put the on at the apex of the loop into the 1st column.
        if len(loop_seq) % 2 == 1:
            i = len(loop_seq) // 2
            encoded_loop[0, 0, i, loop_codes.index(loop_seq[i]) + (loop_struct[i] == '(' or loop_struct[i] == ')')] = 1

    else:
        # If the loop is too large to fit, just does the first 15 on each side.
        for i in range(15):
            encoded_loop[0, 0, i, loop_codes.index(loop_seq[i]) + (loop_struct[i] == '(' or loop_struct[i] == ')')] = 1
            encoded_loop[1, 0, i, loop_codes.index(loop_seq[-(i + 1)]) + (loop_struct[-(i + 1)] == '(' or loop_struct[-(i + 1)] == ')')] = 1

    return encoded_loop

def struct_dict_to_array(in_dict):
    '''
    Turns a dictionary of ribozyme sequences and structures into a 5-dimensional numpy array, containing 4-dimensional
    arrays representing paired ribozyme loops for each sequence, along with an array containing the basal
    gene-regulatory activity for each sequence.
    :param in_dict: Dictionary of ribozyme sequences where the keys are tuples like so: (sequence string, dot-bracket
    structure string) and the value is the basal gene-regulatory activity for that sequence.
    :return: Tuple containing 3 arrays:
        5-dimensional numpy array representing paired ribozyme loops for each sequence
        1-dimensional numpy array containing the basal gene-regulatory activity for each sequence
        1-dimensional array of tuples, containing the sequences of the 2 loops for each sequence
    '''

    out_X = []
    out_y = []
    out_loops = []
    first, mid, last = 'GCUGUC', 'CUGAUGA', 'GAAACAGC'

    # Iterates through each sequence in the dictionary
    for seq in in_dict.keys():
        test_seq = seq[0]
        test_struct = seq[1]

        # Gets the sequence and array of the first loop
        loop_seq = test_seq[test_seq.find(first) + len(first): test_seq.find(mid)]
        loop_struct = test_struct[test_seq.find(first) + len(first): test_seq.find(mid)]
        l1 = loop_one_hot_encode(loop_seq, loop_struct)
        l1_seq = loop_seq

        # Gets the sequence and array of the second loop
        loop_seq = test_seq[test_seq.find(mid) + len(mid): test_seq.find(last)]
        loop_struct = test_struct[test_seq.find(mid) + len(mid): test_seq.find(last)]
        l2 = loop_one_hot_encode(loop_seq, loop_struct)

        # Pairs the 2 loops up and stores paired array and value
        out_X.append(np.concatenate((l1, l2), axis=1))
        out_y.append(in_dict[seq][0])
        out_loops.append((l1_seq, loop_seq))

    out_X = np.array(out_X).astype('float32')
    out_y = np.expand_dims(out_y, axis=1)

    return out_X, out_y, out_loops

# Reads in test data
test_list = pickle.load(open('Candidate_list_RNAs_min_structures.pkl', 'rb'))
rest_dict = {}
test_dict = {}

for seq in test_list:
    target_dict = test_dict
    target_dict[seq[0]] = seq

test_seq_dict = {}
# Pulls test data into dictionary for later conversion to array
for i in test_dict.keys():
    test_seq_dict[(tuple(test_dict[i][1][0]), tuple(test_dict[i][1][1]), test_dict[i][0], test_dict[i][2])] = \
        [1]

# Segments training data by structure, creating a dictionaries where each sequence in that dictionary has the same
# structure
test_segmented_dict = {}
for loop in test_seq_dict:
    if (len(loop[0][0]) / 2, len(loop[0][1]) / 2, loop[1][0], loop[1][1]) not in test_segmented_dict:
        test_segmented_dict[(int(len(loop[0][0]) / 2), int(len(loop[0][1]) / 2), loop[1][0], loop[1][1])] = {}

    test_segmented_dict[(len(loop[0][0]) / 2, len(loop[0][1]) / 2, loop[1][0], loop[1][1])][(loop[2], loop[3])] = \
    test_seq_dict[loop]

# List of structures in the segmented dictionary that have over 50 entries
test_populous_loops = [i for i in test_segmented_dict.keys() if len(test_segmented_dict[i]) > 1]

all_pr = []
all_loops = []
# For each structure segment, finds the appropriate model, pulls it, and gets predictions for sequences in that segment
for te_seg in test_segmented_dict:
    try:
        teX, teY, teloops = struct_dict_to_array(test_segmented_dict[te_seg])

        json_file = open('Models/' + str(list(te_seg)) + ".json", 'r')
        loaded_model_json = json_file.read()
        json_file.close()
        loaded_model = model_from_json(loaded_model_json)
        loaded_model.load_weights('Models/' + str(list(te_seg)) + "model.h5")

        pr = loaded_model.predict(teX, batch_size=32)

        all_loops.extend(teloops)
        all_pr.extend(pr)
        print("Model for " + str(te_seg) + " found and used.")

    except:
        print("Model for " + str(te_seg) + " not found.")

# Writes the predicted values out to a csv in order of lowest predicted basal gene-regulatory activity to highest.
with open('predictions.csv', 'w', newline='') as csvfile:
    writer = csv.writer(csvfile, delimiter=',',
                            quotechar='|', quoting=csv.QUOTE_MINIMAL)
    writer.writerow(['Loop I seq', 'Loop II seq', 'Predicted basal log10(GFP/mCh)'])
    best_pr = [i[0] for i in sorted(enumerate(all_pr), key=lambda x:x[1])]
    for i in best_pr:
        writer.writerow([all_loops[i][0], all_loops[i][1], all_pr[i][0]])

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API