# This file is a part of Julia. License is MIT: http://julialang.org/license module Rounding include(String(vcat(length(Core.ARGS)>=2?Core.ARGS[2].data:"".data, "fenv_constants.jl".data))) # include($BUILDROOT/base/fenv_constants.jl) export RoundingMode, RoundNearest, RoundToZero, RoundUp, RoundDown, RoundFromZero, RoundNearestTiesAway, RoundNearestTiesUp, rounding, setrounding, get_zero_subnormals, set_zero_subnormals ## rounding modes ## """ RoundingMode A type used for controlling the rounding mode of floating point operations (via [`rounding`](:func:`rounding`)/[`setrounding`](:func:`setrounding`) functions), or as optional arguments for rounding to the nearest integer (via the [`round`](:func:`round`) function). Currently supported rounding modes are: - [`RoundNearest`](:obj:`RoundNearest`) (default) - [`RoundNearestTiesAway`](:obj:`RoundNearestTiesAway`) - [`RoundNearestTiesUp`](:obj:`RoundNearestTiesUp`) - [`RoundToZero`](:obj:`RoundToZero`) - [`RoundFromZero`](:obj:`RoundFromZero`) (`BigFloat` only) - [`RoundUp`](:obj:`RoundUp`) - [`RoundDown`](:obj:`RoundDown`) """ immutable RoundingMode{T} end """ RoundNearest The default rounding mode. Rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer. """ const RoundNearest = RoundingMode{:Nearest}() """ RoundToZero [`round`](:func:`round`) using this rounding mode is an alias for [`trunc`](:func:`trunc`). """ const RoundToZero = RoundingMode{:ToZero}() """ RoundUp [`round`](:func:`round`) using this rounding mode is an alias for [`ceil`](:func:`ceil`). """ const RoundUp = RoundingMode{:Up}() """ RoundDown [`round`](:func:`round`) using this rounding mode is an alias for [`floor`](:func:`floor`). """ const RoundDown = RoundingMode{:Down}() const RoundFromZero = RoundingMode{:FromZero}() # mpfr only """ RoundNearestTiesAway Rounds to nearest integer, with ties rounded away from zero (C/C++ [`round`](:func:`round`) behaviour). """ const RoundNearestTiesAway = RoundingMode{:NearestTiesAway}() """ RoundNearestTiesUp Rounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript [`round`](:func:`round`) behaviour). """ const RoundNearestTiesUp = RoundingMode{:NearestTiesUp}() to_fenv(::RoundingMode{:Nearest}) = JL_FE_TONEAREST to_fenv(::RoundingMode{:ToZero}) = JL_FE_TOWARDZERO to_fenv(::RoundingMode{:Up}) = JL_FE_UPWARD to_fenv(::RoundingMode{:Down}) = JL_FE_DOWNWARD function from_fenv(r::Integer) if r == JL_FE_TONEAREST return RoundNearest elseif r == JL_FE_DOWNWARD return RoundDown elseif r == JL_FE_UPWARD return RoundUp elseif r == JL_FE_TOWARDZERO return RoundToZero else throw(ArgumentError("invalid rounding mode code: $r")) end end """ setrounding(T, mode) Set the rounding mode of floating point type `T`, controlling the rounding of basic arithmetic functions ([`+`](:func:`+`), [`-`](:func:`-`), [`*`](:func:`*`), [`/`](:func:`/`) and [`sqrt`](:func:`sqrt`)) and type conversion. Other numerical functions may give incorrect or invalid values when using rounding modes other than the default `RoundNearest`. Note that this may affect other types, for instance changing the rounding mode of `Float64` will change the rounding mode of `Float32`. See [`RoundingMode`](:obj:`RoundingMode`) for available modes. !!! warning This feature is still experimental, and may give unexpected or incorrect values. """ setrounding(T::Type, mode) """ rounding(T) Get the current floating point rounding mode for type `T`, controlling the rounding of basic arithmetic functions ([`+`](:func:`+`), [`-`](:func:`-`), [`*`](:func:`*`), [`/`](:func:`/`) and [`sqrt`](:func:`sqrt`)) and type conversion. See [`RoundingMode`](:obj:`RoundingMode`) for available modes. """ :rounding setrounding_raw{T<:Union{Float32,Float64}}(::Type{T},i::Integer) = ccall(:fesetround, Int32, (Int32,), i) rounding_raw{T<:Union{Float32,Float64}}(::Type{T}) = ccall(:fegetround, Int32, ()) setrounding{T<:Union{Float32,Float64}}(::Type{T},r::RoundingMode) = setrounding_raw(T,to_fenv(r)) rounding{T<:Union{Float32,Float64}}(::Type{T}) = from_fenv(rounding_raw(T)) """ setrounding(f::Function, T, mode) Change the rounding mode of floating point type `T` for the duration of `f`. It is logically equivalent to: old = rounding(T) setrounding(T, mode) f() setrounding(T, old) See [`RoundingMode`](:obj:`RoundingMode`) for available rounding modes. !!! warning This feature is still experimental, and may give unexpected or incorrect values. A known problem is the interaction with compiler optimisations, e.g. julia> setrounding(Float64,RoundDown) do 1.1 + 0.1 end 1.2000000000000002 Here the compiler is *constant folding*, that is evaluating a known constant expression at compile time, however the rounding mode is only changed at runtime, so this is not reflected in the function result. This can be avoided by moving constants outside the expression, e.g. julia> x = 1.1; y = 0.1; julia> setrounding(Float64,RoundDown) do x + y end 1.2 """ function setrounding{T}(f::Function, ::Type{T}, rounding::RoundingMode) old_rounding_raw = rounding_raw(T) setrounding(T,rounding) try return f() finally setrounding_raw(T,old_rounding_raw) end end # Should be equivalent to: # setrounding(Float64,r) do # convert(T,x) # end # but explicit checks are currently quicker (~20x). # Assumes conversion is performed by rounding to nearest value. # To avoid ambiguous dispatch with methods in mpfr.jl: (::Type{T}){T<:AbstractFloat}(x::Real,r::RoundingMode) = _convert_rounding(T,x,r) _convert_rounding{T<:AbstractFloat}(::Type{T},x::Real,r::RoundingMode{:Nearest}) = convert(T,x) function _convert_rounding{T<:AbstractFloat}(::Type{T},x::Real,r::RoundingMode{:Down}) y = convert(T,x) y > x ? prevfloat(y) : y end function _convert_rounding{T<:AbstractFloat}(::Type{T},x::Real,r::RoundingMode{:Up}) y = convert(T,x) y < x ? nextfloat(y) : y end function _convert_rounding{T<:AbstractFloat}(::Type{T},x::Real,r::RoundingMode{:ToZero}) y = convert(T,x) if x > 0.0 y > x ? prevfloat(y) : y else y < x ? nextfloat(y) : y end end """ set_zero_subnormals(yes::Bool) -> Bool If `yes` is `false`, subsequent floating-point operations follow rules for IEEE arithmetic on subnormal values ("denormals"). Otherwise, floating-point operations are permitted (but not required) to convert subnormal inputs or outputs to zero. Returns `true` unless `yes==true` but the hardware does not support zeroing of subnormal numbers. `set_zero_subnormals(true)` can speed up some computations on some hardware. However, it can break identities such as `(x-y==0) == (x==y)`. """ set_zero_subnormals(yes::Bool) = ccall(:jl_set_zero_subnormals,Int32,(Int8,),yes)==0 """ get_zero_subnormals() -> Bool Returns `false` if operations on subnormal floating-point values ("denormals") obey rules for IEEE arithmetic, and `true` if they might be converted to zeros. """ get_zero_subnormals() = ccall(:jl_get_zero_subnormals,Int32,())!=0 end #module