Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/MPS
01 July 2024, 01:15:22 UTC
  • Code
  • Branches (4)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/2.2.0
    • refs/tags/2.3.0
    • refs/tags/2.3.1
    No releases to show
  • d623215
  • /
  • man
  • /
  • expgg.Rd
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:c9e8277e3903121808bdfd5b648e3d8b8041718b
origin badgedirectory badge Iframe embedding
swh:1:dir:21136e110e9d5b2b3334e2f6f5c2ff430ae8740c
origin badgerevision badge
swh:1:rev:af356d7b234b3643fbee6d99cd7918dc32ca9a02
origin badgesnapshot badge
swh:1:snp:b8b44289f41edc16b44a75b0f37058a9a21dc14a
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: af356d7b234b3643fbee6d99cd7918dc32ca9a02 authored by Mahdi Teimouri on 04 October 2019, 19:00:02 UTC
version 2.3.1
Tip revision: af356d7
expgg.Rd
\name{expgg}
\alias{dexpgg} \alias{pexpgg} \alias{qexpgg} \alias{rexpgg} \alias{mpsexpgg} \alias{qqexpgg}
\title{exponentiated generalized G distribution}
\description{Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the exponentiated generalized \code{G} distribution. The General form for the probability density function (pdf) of the exponentiated generalized \code{G} distribution due to Cordeiro et al. (2013) is given by
\deqn{f(x,{\Theta}) = a\,b\,g(x-\mu,\theta ){\left( {1 - G(x-\mu,\theta )} \right)^{a - 1}}{\left[ {1 - {{\left( {1 - G(x-\mu,\theta )} \right)}^a}} \right]^{b - 1}},}
where \eqn{\theta} is the baseline family parameter vector. Also, a>0, b>0, and \eqn{\mu} are the extra parameters induced to the baseline cumulative distribution function (cdf) \code{G} whose pdf is \code{g}. The general form for the cumulative distribution function (cdf) of the exponentiated generalized \code{G} distribution is given by
\deqn{F(x,{\Theta}) = {\left[ {1 - {{\left( {1 - G(x-\mu,\theta )} \right)}^a}} \right]^b}.}
Here, the baseline \code{G} refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is \eqn{\Theta=(a,b,\theta,\mu)} where \eqn{\theta} is the baseline \code{G} family's parameter space. If \eqn{\theta} consists of the shape and scale parameters, the last component of \eqn{\theta} is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter \eqn{\mu} is placed in the last component of \eqn{\Theta}.}
\usage{
dexpgg(mydata, g, param, location = TRUE, log=FALSE)
pexpgg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qexpgg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rexpgg(n, g, param, location = TRUE)
qqexpgg(mydata, g, location = TRUE, method)
mpsexpgg(mydata, g, location = TRUE, method, sig.level)
}
\arguments{
  \item{g}{The name of family's pdf including: "\code{birnbaum-saunders}", "\code{burrxii}", "\code{chisq}", "\code{chen}", "\code{exp}", "\code{f}", "\code{frechet}", "\code{gamma}", "\code{gompetrz}", "\code{lfr}", "\code{log-normal}", "\code{log-logistic}", "\code{lomax}", "\code{rayleigh}", and "\code{weibull}".}
  \item{p}{a vector of value(s) between 0 and 1 at which the quantile needs to be computed.}
  \item{n}{number of realizations to be generated.}
  \item{mydata}{Vector of observations.}
  \item{param}{parameter vector \eqn{\Theta=(a,b,\theta,\mu)}}
  \item{location}{If \code{FALSE}, then the location parameter will be omitted.}
  \item{log}{If \code{TRUE}, then log(pdf) is returned.}
  \item{log.p}{If \code{TRUE}, then log(cdf) is returned and quantile is computed for \code{exp(-p)}.}
  \item{lower.tail}{If \code{FALSE}, then \code{1-cdf} is returned and quantile is computed for \code{1-p}.}
  \item{method}{The used method for maximizing the sum of log-spacing function. It will be  "\code{BFGS}", "\code{CG}", "\code{L-BFGS-B}", "\code{Nelder-Mead}", or "\code{SANN}".}
  \item{sig.level}{Significance level for the Chi-square goodness-of-fit test.}
}
\details{
It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are m(\code{log}(m)+0.57722)-0.5-1/(12m) and m(\eqn{\pi^2}/6-1)-0.5-1/(6m), respectively, with \code{m=n+1}, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of \code{n} independent realizations at the given significance level, indicated in above as \code{sig.level}.}
\value{
\enumerate{
\item A vector of the same length as \code{mydata}, giving the pdf values computed at \code{mydata}.
\item A vector of the same length as \code{mydata}, giving the cdf values computed at \code{mydata}.
\item A vector of the same length as \code{p}, giving the quantile values computed at \code{p}.
\item A vector of the same length as \code{n}, giving the random numbers realizations.
\item A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (\code{AIC}), Consistent Akaike Information Criterion (\code{CAIC}), Bayesian Information Criterion (\code{BIC}), Hannan-Quinn information criterion (\code{HQIC}), Cramer-von Misses statistic (\code{CM}), Anderson Darling statistic (\code{AD}), log-likelihood statistic (\code{log}), and Moran's statistic (\code{M}). The Kolmogorov-Smirnov (\code{KS}) test statistic and corresponding \code{p-value}. The Chi-square test statistic, critical upper tail Chi-square distribution, related \code{p-value}, and the convergence status.
}
}
\references{
Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, \emph{Biometrika}, 76 (2), 385-392.

Cordeiro, G. M., Ortega, E. M. M., and  da Cunha, D. C. C. (2013). The exponentiated generalized class of distributions, \emph{Journal of Data Science}, 11, 1-27.}
\author{Mahdi Teimouri}
\examples{
mydata<-rweibull(100,shape=2,scale=2)+3
dexpgg(mydata, "weibull", c(1,1,2,2,3))
pexpgg(mydata, "weibull", c(1,1,2,2,3))
qexpgg(runif(100), "weibull", c(1,1,2,2,3))
rexpgg(100, "weibull", c(1,1,2,2,3))
qqexpgg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsexpgg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top