
PyCSP3

Modeling Combinatorial Constrained Problems in Python

Christophe Lecoutre and Nicolas Szczepanski
University of Artois

CRIL CNRS, UMR 8188
France

{lecoutre,szczepanski}@cril.fr

Version 2.0 – December 15, 2021

https://github.com/xcsp3team/pycsp3

https://github.com/xcsp3team/pycsp3

Abstract

In this document, we introduce PyCSP3, a Python library that allows us to write models of combina-
torial constrained problems in a declarative manner. Currently, with PyCSP3, you can write models of
constraint satisfaction and optimization problems. More specifically, you can build CSP (Constraint
Satisfaction Problem) and COP (Constraint Optimization Problem) models. Importantly, there is
a complete separation between the modeling and solving phases: you write a model, you compile it
(while providing some data) in order to generate an XCSP3 instance (file), and you solve that problem
instance by means of a constraint solver. You can also directly pilot the solving procedure in PyCSP3,
possibly conducting an incremental solving strategy. In this document, you will find all that you need
to know about PyCSP3, with more than 50 illustrative models.

In a nutshell, the main ingredients of the complete tool chain we propose for handling combinatorial
constrained problems are:

◦ PyCSP3: a Python library for modeling constrained problems, which is described in this docu-
ment (or equivalently, JvCSP3, a Java-based API)

◦ XCSP3: an intermediate format used to represent problem instances while preserving structure
of models [7]

Model PyCSP3
| JvCSP3

(Python 3 | Java 8)

Data
(JSON)

Compiler

XCSP3 Instance
(XML)

ACE Choco Mistral OscaR PicatSAT ...

Figure 1: Complete process for modeling and solving combinatorial constrained problems.

For modeling, as indicated above, the user can choose between two well-known languages (Python
or Java), but this document is devoted to Python. As shown in Figure 1, the user who wishes to solve
a combinatorial constrained problem has to:

1. write a model using either the Python library PyCSP3 (i.e., write a Python file) or the Java
modeling API JvCSP3 (i.e., write a Java file)

2. provide a data file (in JSON format) for a specific problem instance to be solved

3. compile both files (model and data) so as to generate an XCSP3 instance (file)

4. solve the XCSP3 file (problem instance under format XCSP3) by using a constraint solver as,
e.g., ACE [29], Choco [36], OscaR [32] or PicatSAT [43]

This approach has many advantages:

◦ Python (and Java), JSON, and XML are robust mainstream technologies

◦ Using JSON for data permits to have a unified notation, easy to read for both humans and
computers

1

◦ using Python 3 (or Java 8) for modeling allows the user to avoid learning again a new program-
ming language

◦ Using a coarse-grained XML structure permits to have compact and readable problem instances.
Note that using JSON instead of XML for representing instances would have been possible but
has some drawbacks, as explained in an appendix of XCSP3 Specifications [7].

PyCSP3 is inspired from both JvCSP3 [28] and Numberjack [23], and as CPpy [22], PyCSP3 can be
seen as a Python-embedded CP (Constraint Programming) modeling language. Currently, PyCSP3 is
focused on XCSP3-core [8], which allows us to use integer variables (with finite domains) and popular
constraints.

Using the Compiler As we shall see in this document, for generating an XCSP3 file from a PyCSP3

model, you have to execute:

python <model_file> [options]

with:

◦ <model_file>: a Python file to be executed, describing a model in PyCSP3

◦ [options]: possible options to be used when compiling

Licence. PyCSP3 is licensed under the MIT License

Code. PyCSP3 code is available

◦ on Github: https://github.com/xcsp3team/pycsp3

◦ as a PyPi package: https://pypi.org/project/pycsp3

2

https://en.wikipedia.org/wiki/MIT_License
https://github.com/xcsp3team/pycsp3
https://pypi.org/project/pycsp3

Contents

1 Illustrative Models in PyCSP3 5
1.1 Single Problems . 5

1.1.1 A Simple Riddle . 5
1.1.2 Traveling the World . 12

1.2 Academic Problems . 15
1.2.1 Queens Problem . 15
1.2.2 Board Coloration . 18
1.2.3 Magic Sequence . 21
1.2.4 Golomb Ruler . 23

1.3 Structured Problems . 25
1.3.1 Sudoku . 25
1.3.2 Warehouse Location . 28
1.3.3 Black Hole (Solitaire) . 30
1.3.4 Rack Configuration . 33

2 Data, Variables and Objectives 36
2.1 Specifying Data . 36
2.2 Declaring Variables . 45

2.2.1 Stand-alone Variables . 45
2.2.2 Arrays of Variables . 46

2.3 Specifying Objectives . 48

3 Twenty Popular Constraints 51
3.1 Constraint intension . 53
3.2 Constraint extension . 55
3.3 Constraint regular . 60
3.4 Constraint mdd . 61
3.5 Constraint allDifferent . 62
3.6 Constraint allDifferentList . 66
3.7 Constraint allEqual . 68
3.8 Constraints increasing and decreasing . 69
3.9 Constraints lexIncreasing and lexDecreasing . 71
3.10 Constraint sum . 73
3.11 Constraint count . 76
3.12 Constraint nValues . 78
3.13 Constraint cardinality . 79
3.14 Constraint maximum . 82
3.15 Constraint minimum . 83
3.16 Constraint element . 83
3.17 Constraint channel . 88

3

3.18 Constraint noOverlap . 91
3.19 Constraint cumulative . 94
3.20 Constraint circuit . 96
3.21 Meta-Constraint slide . 98

4 Logically Combining Constraints 100
4.1 Using Meta-Constraints . 100
4.2 Using Reification . 101
4.3 Using Tabling . 102
4.4 Using Reformulation . 106

5 Interface of the Library 113
5.1 Command-Line Interface . 113
5.2 Main Module Interface . 115

5.2.1 Building Models . 115
5.2.2 Building Expressions . 115
5.2.3 Building Global Constraints . 116
5.2.4 Loading (Default) JSON Data . 117
5.2.5 Handling Lists (Matrices) . 117
5.2.6 Handling Tuples . 119
5.2.7 Utility Computations . 119
5.2.8 Building Compressed Forms of Tables . 120
5.2.9 Building Meta-constraints . 121
5.2.10 Solving . 121

5.3 Controlling Imports . 122

6 Piloting the Solving Process 125
6.1 Running a Solver . 125
6.2 Finding One, Several or All Solutions . 129
6.3 Incremental Solving . 132

6.3.1 Enumerating Solutions with Solution-Blocking Constraints 132
6.3.2 Simulating an Optimization Procedure . 133
6.3.3 Computing Diversified Solutions . 134

6.4 Extracting Unsatisfiable Cores . 136

7 Frequently Asked Questions 137

8 Changelog 138

4

Chapter 1

Illustrative Models in PyCSP3

Warning. In this chapter, we gently introduce PyCSP3 by means of various problems that illustrate
the main ingredients of the library. We also usually show the result of compiling PyCSP3 models into
XCSP3, although that part can be totally ignored.

1.1 Single Problems
We propose to start discovering PyCSP3 with some very simple problems. We call them single
problems because they are unique (meaning that we do not need to provide any external data when
compiling them).

1.1.1 A Simple Riddle
Remember that when you were young, you were used to play at riddles, some of them having a
mathematical background, as for example:

Which sequence of four successive integer numbers sum up to 14?

Figure 1.1: Famous Riddles in Carambar Candies. (image from www.flickr.com)

If you were already familiar with Mathematics, maybe you were able to formalize this riddle by:

◦ introducing four integer variables:

– x1 ∈ N, x2 ∈ N, x3 ∈ N, x4 ∈ N

◦ introducing the following mathematical equations (constraints):

– x1 + 1 = x2

– x2 + 1 = x3

– x3 + 1 = x4

– x1 + x2 + x3 + x4 = 14

5

https://www.flickr.com/photos/bloggyboulga/759966039

This is a CSP (Constraint Satisfaction Problem) instance, involving four integer variables, three
binary constraints (i.e., constraints involving exactly two distinct variables) and one quaternary con-
straint (i.e., constraint involving exactly four distinct variables).

After a rough analysis, we can decide to set 0 as lower bound and 14 as upper bound for the
values that can be assigned to the integer variables because, by using that interval of values, we are
absolutely certain of not losing any solutions while avoiding to reason with an infinite set of values.
We then obtain the following PyCSP3 model in a file called ‘Riddle.py’:

PyCSP3 Model 1

from pycsp3 import *

x1 = Var(range (15))
x2 = Var(range (15))
x3 = Var(range (15))
x4 = Var(range (15))

satisfy(
x1 + 1 == x2 ,
x2 + 1 == x3 ,
x3 + 1 == x4 ,
x1 + x2 + x3 + x4 == 14

)

In this Python file, after the first import statement, we declare stand-alone variables by using the
PyCSP3 function Var(). Here, we declare four variables called x1, x2, x3, and x4, each one with
the set of integers {0, 1, . . . , 14} as domain, which is specified by simply calling the Python function
range().

Remark 1 In PyCSP3, which is currently targeted to XCSP3-core, we can only define integer and
symbolic variables with finite domains, i.e., variables with a finite set of integers or symbols (strings).

To define the domain of a variable, we can simply list values, or use range(). For example:
w = Var(range (15))
x = Var(0, 1)
y = Var(0, 2, 4, 6, 8)
z = Var("a", "b", "c")

declares four variables corresponding to:

◦ w ∈ {0, 1, . . . , 14}
◦ x ∈ {0, 1}
◦ y ∈ {0, 2, 4, 6, 8}
◦ z ∈ {a, b, c}
Values can be directly listed as above, or given in a set (and even possibly in a list, although not

shown here) as follows:
w = Var({range (15)})
x = Var({0, 1})
y = Var({0, 2, 4, 6, 8})
z = Var({"a", "b", "c"})

It is also possible to name the parameter dom when defining the domain:
w = Var(dom=range (15))
x = Var(dom={0, 1})
y = Var(dom={0, 2, 4, 6, 8})
z = Var(dom={"a", "b", "c"})

6

Finally, it is of course possible to use generators and comprehension lists/sets. For example, for y,
we can write:
y = Var(i for i in range (10) if i % 2 == 0)

or equivalently:
y = Var({i for i in range (10) if i % 2 == 0})

or still equivalently:
y = Var(dom={i for i in range (10) if i % 2 == 0})

Now, let us turn to constraints. When constraints must be imposed on variables, we say that these
constraints must be satisfied. Then, to impose (post) them, we call the PyCSP3 function satisfy(),
with each constraint passed as a parameter (and so, with commas used as a separator between con-
straints). In our example, we have posted four constraints to be satisfied. These constraints are given
in intension, by using classical arithmetic, relational and logical operators. Note that for forcing
equality, we need to use ‘==’ in Python (the operator ‘=’ used for assignment cannot be redefined).
In Table 1.1, you can find a few other examples of intension constraints, while in Tables 1.2 and 1.3,
you can find the available operators and functions in PyCSP3.

Once you have a PyCSP3 model, you can compile it in order to get an XCSP3 file that can be
solved by a constraint solver. The command is as follows:

python Riddle.py

The content of the generated XCSP3 file is:
<instance format="XCSP3" type="CSP">

<variables >
<var id="x1"> 0..14 </var >
<var id="x2"> 0..14 </var >
<var id="x3"> 0..14 </var >
<var id="x4"> 0..14 </var >

</variables >
<constraints >

<intension > eq(add(x1 ,1),x2) </intension >
<intension > eq(add(x2 ,1),x3) </intension >
<intension > eq(add(x3 ,1),x4) </intension >
<intension > eq(add(x1 ,x2,x3,x4) ,14) </intension >

</constraints >
</instance >

Expressions Observations

x+ y < 10 equivalent to 10 > x+ y
x ∗ 2− 10 ∗ y + 5 == 100 we need to use ‘==’ in Python
abs(z[0]− z[1]) >= 2 equivalent to dist(z[0], z[1]) >= 2
(x == y) | (y == 0) parentheses are required

disjunction(x < 2, y < 4, x > y) equivalent to (x < 2) | (y < 4) | (x > y)
imply(x == 0, y > 0) equivalent to (x != 0) | (y > 0)
iff(x > 0, y > 0) equivalent to (x > 0) == (y > 0)

(x == 0) ˆ (y == 1) use of the logical xor operator
ift(x == 0, 5, 10) the value is 5 if x is 0 else 10

Table 1.1: A few examples of expressions denoting intension constraints.

7

Arithmetic Operators

+ addition
− subtraction
∗ multiplication
// integer division
% remainder
** power

Relational Operators

< Less than
<= Less than or equal
>= Greater than or equal
> Greater than
! = Different from
== Equal to

Set Operators

in membership
not in non membership

Logical Operators

∼ logical not
| logical or
& logical and
ˆ logical xor

Table 1.2: Operators that can be used to build expressions (predicates) of intension constraints.
Integer values 0 and 1 are respectively equivalent to Boolean values False and True. Note that we
use the operator == for testing equality and the operators |, & and ˆ for logically combining (sub-
)expressions. When specifying constraints, we can’t use the Python operators =, and, or and not
(because, technically, they cannot be redefined in Python).

Functions

abs() absolute value of the argument
min() minimum value of 2 or more arguments
max() maximum value of 2 or more arguments
dist() distance between the 2 arguments
conjunction() conjunction of 2 or more arguments
disjunction() disjunction of 2 or more arguments
imply() implication between 2 arguments
iff() equivalence between 2 or more arguments
ift() ift(b,u,v) returns u if b is true, v otherwise

Table 1.3: Functions that can be used to build expressions (predicates) of intension constraints.

8

To display the XCSP3 instance in the standard output (stdout) of the operating system (instead
of generating an XCSP3 file), you can use the option -display as follows:

python Riddle.py -display

Remember that in this first chapter, XCSP3 files are given for well understanding what is rep-
resented by models (and how models are compiled), but if you think that it does not make things
clearer for you, you can decide to ignore them. As a user working with the PyCSP3 library and
some constraint solvers, you may never need to look at these intermediate XCSP3 files (although, by
experience, it may be helpful in identifying some mistakes in models and some bugs in solvers).

The variables in our model have been declared independently, but it is possible to declare them in
a one-dimensional array. This gives a new PyCSP3 model (version) in a file called ‘Riddle2.py’:

PyCSP3 Model 2

from pycsp3 import *

x[i] is the ith integer of the sequence
x = VarArray(size=4, dom=range (15))

satisfy(
x[0] + 1 == x[1],
x[1] + 1 == x[2],
x[2] + 1 == x[3],
x[0] + x[1] + x[2] + x[3] == 14

)

and the XCSP3 file obtained after executing:

python Riddle2.py

is:
<instance format="XCSP3" type="CSP">

<variables >
<array id="x" note="x[i] is the ith integer of the sequence" size="[4]">

0..14
</array >

</variables >
<constraints >

<intension > eq(add(x[0] ,1),x[1]) </intension >
<intension > eq(add(x[1] ,1),x[2]) </intension >
<intension > eq(add(x[2] ,1),x[3]) </intension >
<intension > eq(add(x[0],x[1],x[2],x[3]) ,14) </intension >

</constraints >
</instance >

Here, we declare a one-dimensional array of variables: its name (id) is x, its size (length) is 4, and
each of its variables has {0, 1, . . . , 14} as domain. Note that we use x[i] for referring to the (i + 1)th
variable of the array (since indexing starts at 0) and that any comment put in the line preceding the
declaration of a variable (or variable array) is automatically inserted in the XCSP3 file. The PyCSP3

function for declaring an array of variables is VarArray() that requires two named parameters size
and dom. For declaring a one-dimensional array of variables, the value of size must be an integer
(or a list containing only one integer), for declaring a two-dimensional array of variables, the value of
size must be a list containing exactly two integers, and so on.

In some situations, you may want to declare variables in an array with different domains. For a
one-dimensional array, you can give the name of a function that accepts an integer i and returns the

9

domain to be associated with the variable at index i in the array. For a two-dimensional array, you
can give the name of a function that accepts a pair of integers (i, j) and returns the domain to be
associated with the variable at indexes i, j in the array. And so on. For example, suppose that we
have analytically deduced that the two first variables of the array x must be assigned a value strictly
less than 6 and the two last variables of the array x must be assigned a value strictly less than 9. We
can write:

PyCSP3 Model 3

from pycsp3 import *

def domain_x(i):
return range (6) if i < 2 else range (9)

x[i] is the ith integer of the sequence
x = VarArray(size=4, dom=domain_x)

satisfy(
x[0] + 1 == x[1],
x[1] + 1 == x[2],
x[2] + 1 == x[3],
x[0] + x[1] + x[2] + x[3] == 14

)

With this new model version, the XCSP3 file obtained after compilation is:
<instance format="XCSP3" type="CSP">

<variables >
<array id="x" note="x[i] is the ith integer of the sequence" size="[4]">
<domain for="x[0] x[1]"> 0..5 </domain >
<domain for="x[2] x[3]"> 0..8 </domain >

</array >
</variables >
<constraints >

<intension > eq(add(x[0] ,1),x[1]) </intension >
<intension > eq(add(x[1] ,1),x[2]) </intension >
<intension > eq(add(x[2] ,1),x[3]) </intension >
<intension > eq(add(x[0],x[1],x[2],x[3]) ,14) </intension >

</constraints >
</instance >

Instead of calling named functions, we can use lambda functions. This gives:

PyCSP3 Model 4

from pycsp3 import *

x[i] is the ith integer of the sequence
x = VarArray(size=4, dom=lambda i: range (6) if i < 2 else range (9))

... # the rest of the code is similar to the previous model

Let us keep analyzing the code of our model. Because the three binary constraints are similar, one
may wonder if we couldn’t post these constraints together (in a list). This is indeed possible by using
a comprehension list:

10

PyCSP3 Model 5

from pycsp3 import *

x[i] is the ith integer of the sequence
x = VarArray(size=4, dom=range (15))

satisfy(
[x[i] + 1 == x[i + 1] for i in range (3)],

x[0] + x[1] + x[2] + x[3] == 14
)

and the XCSP3 file obtained after compilation is:
<instance format="XCSP3" type="CSP">

<variables >
<array id="x" note="x[i] is the ith integer of the sequence" size="[4]">

0..14
</array >

</variables >
<constraints >

<group >
<intension > eq(add (%0 ,%1) ,%2) </intension >
<args > x[0] 1 x[1] </args >
<args > x[1] 1 x[2] </args >
<args > x[2] 1 x[3] </args >

</group >
<intension > eq(add(x[0],x[1],x[2],x[3]) ,14) </intension >

</constraints >
</instance >

Because of the presence of the comprehension list, we obtain a group of constraints in XCSP3:
basically, we have a constraint template with several parameters identified by %, and one “concrete”
constraint per element <args> providing the effective arguments. For more information about groups
in XCSP3, see Chapter 10 in XCSP3 Specifications. Of course, you can use the classical control
structures of Python. So, an alternative way of writing the model is:

PyCSP3 Model 6

from pycsp3 import *

x[i] is the ith integer of the sequence
x = VarArray(size=4, dom=range (15))

for i in range (3):
satisfy(

x[i] + 1 == x[i + 1]
)

satisfy(
x[0] + x[1] + x[2] + x[3] == 14

)

Finally, it seems more appropriate to represent the last constraint as a sum constraint. We can
then call the PyCSP3 function Sum(), which is different from the Python function sum(), that builds
an object that can be compared, for example, with a value. This gives:

11

http://www.xcsp.org/format3.pdf

PyCSP3 Model 7

from pycsp3 import *

x[i] is the ith integer of the sequence
x = VarArray(size=4, dom=range (15))

satisfy(
[x[i] + 1 == x[i + 1] for i in range (3)],

Sum(x) == 14
)

and the XCSP3 file obtained after compilation is:
<instance format="XCSP3" type="CSP">

<variables >
<array id="x" note="x[i] is the ith integer of the sequence" size="[4]">

0..14
</array >

</variables >
<constraints >

<group >
<intension > eq(add (%0 ,%1) ,%2) </intension >
<args > x[0] 1 x[1] </args >
<args > x[1] 1 x[2] </args >
<args > x[2] 1 x[3] </args >

</group >
<sum >

<list > x[] </list >
<condition > (eq ,14) </condition >

</sum >
</constraints >

</instance >

1.1.2 Traveling the World
Once upon a time, there were three friends called Xavier, Yannick and Zachary, who wanted to travel
the world. However, in their times and countries, they were obliged to do their military service. So,
each friend had to decide if he travels after or before his due military service. Xavier and Yannick
wanted to travel together. Xavier and Zachary also wanted to travel together. However, because
Yannick and Zachary didn’t always get along very well, they preferred not traveling together. Can
the three friends be satisfied?

Figure 1.2: Three friends who want to travel the world. (image from maxpixel.net)

12

https://www.maxpixel.net/Three-People-Group-Women-Diversity-Ethnic-23733

The answer is ‘no’: the three friends cannot make decisions that satisfy all of them. Certainly, you
can deduce this, but imagine that to be quite sure, you want to check it with the help of a constraint
solver after having written the model. For the model, first, we just have to declare three variables
x, y, and z denoting the decisions made by the three friends Xavier, Yannick and Zachary. For each
variable, two values are possible: a (after the military service) and b (before the military service).
Concerning the constraints, we have to enumerate the combinations of values that satisfy each pair
of friends. We obtain a constraint network, which can be drawn under the form of a compatibility
graph. Figure 1.3 presents the compatibility graph of the small constraint network P depicted above:

◦ the set of variables of P is {x, y, z}, each variable having {a, b} as domain;

◦ the set of constraints of P is {(x, y) ∈ {(a, a), (b, b)}, (x, z) ∈ {(a, a), (b, b)}, (y, z) ∈ {(a, b), (b, a)}}.

a

b

x

a

b
y

a

b

z

Figure 1.3: The compatibility graph of a small constraint network.

Here, the constraints directly indicate what is authorized; we call such constraints extension
constraints (or table constraints). For example, we know that we can satisfy the binary constraint
involving the variables x and y by assigning both variables with either value a or value b. The
interested reader can observe that the constraint network is arc-consistent (AC) but not path-inverse
consistent (PIC). But don’t worry! It doesn’t matter here if you do not know anything about these
properties.

The PyCSP3 model for our problem, in a file called ‘WorldTraveling.py’, is:

PyCSP3 Model 8

from pycsp3 import *

a, b = "a", "b" # two symbols (after , before)

x = Var(a, b)
y = Var(a, b)
z = Var(a, b)

satisfy(
(x, y) in {(a, a), (b, b)},
(x, z) in {(a, a), (b, b)},
(y, z) in {(a, b), (b, a)}

)

For compiling it, we execute:

python WorldTraveling.py

and the XCSP3 file obtained after compilation is:

13

<instance format="XCSP3" type="CSP">
<variables >

<var id="x" type="symbolic"> a b </var >
<var id="y" type="symbolic"> a b </var >
<var id="z" type="symbolic"> a b </var >

</variables >
<constraints >

<extension >
<list > x y </list >
<supports > (a,a)(b,b) </supports >

</extension >
<extension >

<list > x z </list >
<supports > (a,a)(b,b) </supports >

</extension >
<extension >

<list > y z </list >
<supports > (a,b)(b,a) </supports >

</extension >
</constraints >

</instance >

Here, we declare three stand-alone symbolic variables (note how the domain of each of them
is simply composed of the two symbols "a" and "b"). And we declare three binary extension
constraints. In PyCSP3, we simply use the operator in to represent such constraints: a tuple of
variables representing the scope of the constraint is given at the left of the operator and a set of tuples
of values is given at the right of the operator. This is basically what we write in mathematical form.
Note that we use in when the constraint enumerates the allowed tuples (called supports), as in our
example, and not in when the constraint enumerates the forbidden tuples (called conflicts).

Now, suppose that instead of declaring symbolic variables, you prefer to declare integer variables.
By replacing "a" by 0 and "b" by 1, you can write:

PyCSP3 Model 9

from pycsp3 import *

x = Var(0, 1)
y = Var(0, 1)
z = Var(0, 1)

satisfy(
(x, y) in {(0, 0), (1, 1)},
(x, z) in {(0, 0), (1, 1)},
(y, z) in {(0, 1), (1, 0)}

)

which, when compiled, gives:
<instance format="XCSP3" type="CSP">

<variables >
<var id="x"> 0 1 </var >
<var id="y"> 0 1 </var >
<var id="z"> 0 1 </var >

</variables >
<constraints >

<extension >
<list > x y </list >
<supports > (0,0)(1,1) </supports >

</extension >
<extension >

<list > x z </list >
<supports > (0,0)(1,1) </supports >

14

</extension >
<extension >

<list > y z </list >
<supports > (0,1)(1,0) </supports >

</extension >
</constraints >

</instance >

Note that the scope of an extension constraint is expected to be given under the form of a tuple,
but can be given under the form of a list too. Similarly, the table of an extension constraint is
expected to be given under the form of a set, but can be given under the form a list too. This means
that, for example, it is possible to write:

[x, y] in [(0, 0), (1, 1)]

but personally, we prefer to stay closer to pure mathematical forms (but for efficiency reasons, we
may use lists for huge tables).

1.2 Academic Problems
Contrary to single problems, academic problems require the introduction of some elementary pieces
of data from the user: a fixed number of integers (and/or strings).

1.2.1 Queens Problem
The problem is stated as follows: can we put 8 queens on a chessboard such that no two queens attack
each other? Two queens attack each other iff they belong to the same row, the same column or the
same diagonal. An illustration is given by Figure 1.4.

By considering boards of various size, the problem can be generalized as follows: can we put n
queens on a board of size n × n such that no two queens attack each other? Contrary to previously
introduced single problems, we have to deal here with a family of problem instances, each of them
characterized by a specific value of n. We can try to solve the 8-queens instance, the 10-queens
instance, and even the 1000-queens instance.

8 zzzzzzzz
7 zzzzzzzz
6 zzzzzzzz
5 zzzzzzzz
4 zzzzzzzz
3 zzzzzzzz
2 zzzzzzzz
1 zzzzzzzz

a b c d e f g h

(a) Puzzle

8 zzzz5Qzzz
7 zzzzzz5Qz
6 z5Qzzzzzz
5 zzzzz5Qzz
4 zz5Qzzzzz
3 5Qzzzzzzz
2 zzz5Qzzzz
1 zzzzzzz5Q

a b c d e f g h

(b) Solution

Figure 1.4: Putting 8 queens on a chessboard

15

For such problems, we have to separate the description of the model from the description of the
data. In other words, we have to write a model with some kind of parameters. In PyCSP3, what you
have to do is:

1. clearly identify the parameters of the problem (names and structures)

2. use these parameters in your model by means of the predefined PyCSP3 variable called data

3. specify effective values of these parameters when you compile to XCSP3

In our case, we have only one integer parameter called n. If we associate a variable qi with the
(i+ 1)th row of the board, then we can simply post the following intension constraints:

qi 6= qj ∧ |qi − qj | 6= j − i,∀i, j : 0 ≤ i < j < n

Indeed, this way, we have the guarantee that queens are on different columns (since qi 6= qj) and on
different diagonals (since the column distance |qi−qj | is different from the row distance |i−j| = j− i).

This can be translated into a PyCSP3 model in a file ‘Queens.py’:

PyCSP3 Model 10

from pycsp3 import *

n = data

q[i] is the column of the ith queen (at row i)
q = VarArray(size=n, dom=range(n))

satisfy(
(q[i] != q[j]) & (abs(q[i] - q[j]) != j - i) for i, j in combinations(n, 2)

)

Note how the parameter n is given by the value of the predefined PyCSP3 variable data. This
is because there is only one parameter here; later, we shall see that for more than one parameter,
data is given under the form of a tuple. The intension constraints are given by a comprehension list
(actually a generator, since brackets are omitted here although we could have inserted them). There
is a constraint for any pair (i, j) such that 0 ≤ i < j < n. Here, for iterating over such pairs, we
use the (slightly extended) function combinations from package itertools. Instead, we could have
written :

for i in range(n) for j in range(i + 1, n)

Now, the question is: how can we solve a specific instance? The answer is: just compile the model
while indicating with the option -data either the value for n or the name of a JSON file containing
an object with a unique field n. In the former case, this gives for n = 4:

python Queens.py -data=4

and the XCSP3 file obtained after compilation is:
<instance format="XCSP3" type="CSP">

<variables >
<array id="q" note="q[i] is the column of the ith queen (at row i)" size="[4]">

0..3
</array >

</variables >
<constraints >

<group >
<intension > and(ne(%0 ,%1),ne(abs(sub (%0 ,%1)) ,%2)) </intension >
<args > q[0] q[1] 1 </args >
<args > q[0] q[2] 2 </args >

16

<args > q[0] q[3] 3 </args >
<args > q[1] q[2] 1 </args >
<args > q[1] q[3] 2 </args >
<args > q[2] q[3] 1 </args >

</group >
</constraints >

</instance >

In the latter case, just build a file ‘queens-4.json’ whose content is:
{

"n": 4
}

and execute:

python Queens.py -data=queens-4.json

In our situation where only one integer is needed (and more generally, for any academic problem),
it is a little bit of overkill to use JSON files.

Remember that once you have an XCSP3 file, you can run any solver that recognizes this format:
ACE, Choco, PicatSAT, OscaR, . . .

At this point, you have been told that it could be a good idea to post allDifferent constraints;
remember that an allDifferent constraint imposes that all involved variables (or expressions) must
take different values. It is known (you can try to make the mathematical proof) that it suffices to
post three constraints as in the following model:

PyCSP3 Model 11

from pycsp3 import *

n = data

q[i] is the column of the ith queen (at row i)
q = VarArray(size=n, dom=range(n))

satisfy(
all queens are put on different columns
AllDifferent(q),

no two queens on the same upward diagonal
AllDifferent(q[i] + i for i in range(n)),

no two queens on the same downward diagonal
AllDifferent(q[i] - i for i in range(n))

)

After compilation, we obtain:
<instance format="XCSP3" type="CSP">

<variables >
<array id="q" note="q[i] is the column of the ith queen (at row i)" size="[4]">

0..3
</array >

</variables >
<constraints >

<allDifferent note="all queens are put on different columns">
q[]

</allDifferent >
<allDifferent note="no two queens on the same upward diagonal">

17

add(q[0],0) add(q[1],1) add(q[2],2) add(q[3],3)
</allDifferent >
<allDifferent note="no two queens on the same downward diagonal">

sub(q[0],0) sub(q[1],1) sub(q[2],2) sub(q[3],3)
</allDifferent >

</constraints >
</instance >

Remark 2 In PyCSP3, most of the global constraints are posted by calling a function whose first
letter is uppercase, as for example AllDifferent(), Sum(), and Cardinality().

Maybe, you think that it is annoying of having several files for various model variants (as a side
remark, have you observed how many frameworks generate hundreds and even thousands of files; this
is crazy!). In fact, you can put different model variants in the same file by using the PyCSP3 function
variant() that accepts a string as parameter (or nothing). When you compile, you can then indicate
the name of the variant. Putting the two variants seen earlier in the same file ‘Queens.py’ gives:

PyCSP3 Model 12

from pycsp3 import *

n = data

q[i] is the column of the ith queen (at row i)
q = VarArray(size=n, dom=range(n))

if not variant ():
satisfy(

all queens are put on different columns
AllDifferent(q),

no two queens on the same upward diagonal
AllDifferent(q[i] + i for i in range(n)),

no two queens on the same downward diagonal
AllDifferent(q[i] - i for i in range(n))

)
elif variant("bin"):

satisfy(
(q[i] != q[j]) & (abs(q[i] - q[j]) != j - i) for i, j in combinations(n, 2)

)

To compile the main model (variant), just type:

python Queens.py -data=4

To compile the model variant "bin", just type:

python Queens.py -variant=bin -data=4

1.2.2 Board Coloration
The (chess)board coloration problem is to color all squares of a board composed of n rows and m
columns such that the four corners of any rectangle in the board must not be assigned the same color.
Importantly, we want to minimize the number of used colors.

This time, we then need two integer parameters n and m. These values will be given by the
predefined PyCSP3 variable data that is expected to be a tuple (if data are correctly given at compile
time, of course). After a very rough analysis, we can decide to use n ×m as an upper bound of the
number of used colors. This gives a PyCSP3 model in a file ‘BoardColoration.py’:

18

Figure 1.5: Coloring Boards. (image by Ylanite Koppens on Pixabay)

PyCSP3 Model 13

from pycsp3 import *

n, m = data

x[i][j] is the color at row i and column j
x = VarArray(size=[n, m], dom=range(n * m))

satisfy(
at least 2 corners of different colors for any rectangle inside the board
NValues(x[i1][j1], x[i1][j2], x[i2][j1], x[i2][j2]) > 1

for i1, i2 in combinations(n, 2)
for j1, j2 in combinations(m, 2)

)

minimize(
minimizing the greatest used color index (and so, the number of colors)
Maximum(x)

)

The user is expected to give two integer values, automatically put in data under the form of a
tuple. This is why we have the possibility of using tuple unpacking in our model. Of course, this is
equivalent to write:
n, m = data[0], data [1]

Here, we declare a two-dimensional array of variables: its name is x, its size is n×m and each of its
variables has {0, 1, . . . , n×m− 1} as domain. We then need to post several notAllEqual constraints.
Actually, this constraint is a special case of the nValues constraint: we want that the number of
different values taken by some variables (the scope of the constraint) is strictly greater than 1. This
is given in the model by an expression involving the PyCSP3 function NValues().

Finally, the objective function corresponds to the minimization of the maximum value taken by
any variable in the two-dimensional array x. Because domains are all similar, this is indeed equivalent
to minimize the number of used colors. For an optimization problem, you can call either the PyCSP3

function minimize() or the PyCSP3 function maximize(). You can use different kinds of parameters:

◦ a stand-alone variable

◦ a general arithmetic expression, like in u * 3 + v where u and v are two variables

◦ a sum over a list (array) of variables by using the function Sum(), like in Sum(x)

◦ a dot product, like in [u, v, w] * [2, 4, 3] where u, v and w are three variables

◦ a minimum by using the function Minimum(), like in Minimum(x)

◦ a maximum by using the function Maximum(), like in Maximum(x)

19

https://pixabay.com/fr/photos/pions-figures-d-%C3%A9checs-color%C3%A9-3467512

◦ a number of different values by using the function NValues(), like in NValues(x)

As we shall see later, it is even possible to build still more general (arithmetic) expressions involving
functions Sum(), Minimum(), etc.

To solve a specific instance, as usually, we have first to compile the model while indicating with the
option -data either the values for n and m (between brackets) or the name of a JSON file containing
an object with two integer fields. In the former case, this gives for n = 3 and m = 4:

python BoardColoration.py -data=[3,4]

With some operating systems (shells), you may need to espace brackets, which gives:

python BoardColoration.py -data=\[3,4\]

The XCSP3 file obtained after compilation is:
<instance format="XCSP3" type="COP">

<variables >
<array id="x" size="[3][4]" note="x[i][j] is the color at row i and col j">

0..11
</array >

</variables >
<constraints >

<group note="at least 2 corners of different colors for any rectangle">
<nValues >

<list > %... </list >
<condition > (gt ,1) </condition >

</nValues >
<args > x[0][0] x[0][1] x[1][0] x[1][1] </args >
<args > x[0][0] x[0][2] x[1][0] x[1][2] </args >
... // ellipsis
<args > x[1][1] x[1][2] x[2][2] x[2][3] </args >

</group >
</constraints >
<objectives >

<minimize type="maximum"> x[][] </minimize >
</objectives >

</instance >

Of course, because tuple unpacking is used for data in our model, the order is important: the first
value is for n and the second one for m. If ever we use a JSON file for the data, it is also important
to have n before m:

{
"n": 3,
"m": 4

}

However, you can relax this requirement by avoiding tuple unpacking for data, and instead write
in the model something like:
n, m = data.n, data.m

It means that data is now expected to be a named tuple (and not simply a classical tuple). To
benefit from named tuples, you have to either indicate names when specifying data, as for example,
in:

python BoardColoration.py -data=[m=4,n=3]

or use a JSON file (whatever is the order of the fields of the root object in the file).

This being said, we prefer personnally to use tuple unpacking for data because it is more concise.

20

As a matter of fact, this problem has many symmetries. It is known that we can break variable sym-
metries by posting a lexicographic constraint between any two successive rows and any two successive
columns. For posting lexicographic constraints, we can use the PyCSP3 functions LexIncreasing()
and LexDecreasing(). Besides, we can use two optional named parameters strict and matrix whose
default values are False. When matrix is set to True, it means that the constraint must be applied
on each row and each column of the specified two-dimensional array. On the other hand, it is relevant
to tag this constraint because it clearly informs us that it is inserted for breaking symmetries: tagging
is made possible by putting in a comment line an expression of the form tag(), with a token (or a
sequence of tokens separated by a white-space) between parentheses. The model is now:

PyCSP3 Model 14

from pycsp3 import *

n, m = data

x[i][j] is the color at row i and column j
x = VarArray(size=[n, m], dom=range(n * m))

satisfy(
at least 2 corners of different colors for any rectangle inside the board
[NValues(x[i1][j1], x[i1][j2], x[i2][j1], x[i2][j2]) > 1

for i1, i2 in combinations(n, 2)
for j1, j2 in combinations(m, 2)],

tag(symmetry -breaking)
LexIncreasing(x, matrix=True)

)

minimize(
minimizing the greatest used color index (and so, the number of colors)
Maximum(x)

)

After compilation, we have the following additional element in the generated XCSP3 file:
<lex class="symmetry -breaking">

<matrix > x[][] </matrix >
<operator > le </operator >

</lex >

Note the presence of the attribute class that results from the insertion of the expression tag().
Easily, a solver can now solve this instance with or without symmetry breaking. Indeed, at time of
parsing, it is quite easy to discard XML elements with a specified tag (class): this is currently made
possible with the available parsers in Java and C++ for XCSP3. The interest is that we have only
one file, which can be used for testing different model variations.

1.2.3 Magic Sequence
A magic sequence of order n is a sequence of integers x0, . . . , xn−1 between 0 and n − 1, such that
each value i ∈ 0..n− 1 occurs exactly xi times in the sequence. For example,

6 2 1 0 0 0 1 0 0 0

is a magic sequence of order 10 since 0 occurs 6 times, 1 occurs twice, . . . and 9 occurs 0 times.

One can mathematically prove that every solution respects:

x0 + x1 + x2 + x3 + · · ·+ xn−1 = n

21

and

−x0 + 0x1 + x2 + 2x3 + · · ·+ (n− 2)xn−1 = 0

So, it may be a good idea to post these additional constraints for improving the filtering process of
the search space while making it clear that they are redundant (i.e., not modifying the set of solutions)
by using an appropriate tag. This gives a PyCSP3 model in a file ‘MagicSequence.py’:

PyCSP3 Model 15

from pycsp3 import *

n = data

x[i] is the ith value of the sequence
x = VarArray(size=n, dom=range(n))

satisfy(
each value i occurs exactly x[i] times in the sequence
Cardinality(x, occurrences ={i: x[i] for i in range(n)}),

tag(redundant -constraints)
[

Sum(x) == n,

Sum((i - 1) * x[i] for i in range(n)) == 0
]

)

On the one hand, the cardinality constraint is exactly what we need here. Here, the PyCSP3

function Cardinality() we use simply states that each value i in 0..n − 1 must occur exactly x[i]
times; a required named parameter called occurrences is given as value a Python dictionary for
storing that information. On the other hand, we have put together the two additional constraints in
a list, permitting to tag these two constraints with the token “redundant-constraints”.

Now, if we execute:

python MagicSequence.py -data=6

we obtain the following XCSP3 instance:
<instance format="XCSP3" type="CSP">

<variables >
<array id="x" note="x[i] is the ith value of the sequence" size="[6]">

0..5
</array >

</variables >
<constraints >

<cardinality note="each value i occurs exactly x[i] times in the sequence">
<list > x[] </list >
<values > 0 1 2 3 4 5 </values >
<occurs > x[] </occurs >

</cardinality >
<block class="redundant -constraints">

<sum >
<list > x[] </list >
<condition > (eq ,6) </condition >

</sum >
<sum >

<list > x[] </list >
<coeffs > -1 0 1 2 3 4 </coeffs >
<condition > (eq ,0) </condition >

</sum >

22

</block >
</constraints >

</instance >

1.2.4 Golomb Ruler
This problem (and its variants) is said to have many practical applications including sensor placements
for x-ray crystallography and radio astronomy. A Golomb ruler is defined as a set of n integers
0 = a1 < a2 < ... < an such that the n × (n − 1)/2 differences aj − ai, 1 ≤ i < j ≤ n, are distinct.
Such a ruler is said to contain n marks (or ticks) and to be of length an. The objective is to find
optimal rulers (i.e., rulers of minimum length). An optimal ruler for n = 4 is illustrated below:

Figure 1.6: An Optimal Golomb Ruler with 4 Ticks. (image from commons.wikimedia.org)

Dimitromanolakis has computed relatively short Golomb rulers and thus showed with computer
aid that the optimal ruler for n ≤ 65, 000 has length less than n2.

A simple model involves a single constraint allDifferent:

PyCSP3 Model 16

from pycsp3 import *

n = data

x[i] is the position of the ith tick
x = VarArray(size=n, dom=range(n * n))

satisfy(
all distances are different
AllDifferent(abs(x[i] - x[j]) for i, j in combinations(n, 2))

)

minimize(
minimizing the position of the rightmost tick
Maximum(x)

)

Another model variant involves auxiliary variables and ternary constraints. This variant shows
how we can handle holes (“undefined” variables) in variable arrays. This variant is:

PyCSP3 Model 17

from pycsp3 import *

n = data

def domain_y(i, j):
return range(1, n * n) if i < j else None

23

https://commons.wikimedia.org/wiki/File:Golomb_Ruler-4.svg

x[i] is the position of the ith tick
x = VarArray(size=n, dom=range(n * n))

y[i][j] is the distance between x[i] and x[j] for i strictly less than j
y = VarArray(size=[n, n], dom=domain_y)

satisfy(
all distances are different
AllDifferent(y),

linking variables from both arrays
[x[j] == x[i] + y[i][j] for i, j in combinations(n, 2)]

)

minimize(
minimizing the position of the rightmost tick
Maximum(x)

)

Here, we declare a two-dimensional array of variables, called y, even if only the part in this array
above the main diagonal really contains variables. This is handled by the auxiliary function domain_y()
that returns an actual domain for a pair (i, j) when i < j, and None otherwise. This way, we can
simply post a constraint allDifferent by specifying the array y (even if y contains some “undefined”
cells/variables).

Of course, it is possible to use a lambda function when defining domains. Concerning symmetry
breaking, we can decide to force x[0] to be equal to 0, and to impose a strict increasing order on
variables of x. When we want the values of a sequence of variables to be in increasing or decreasing
order, we can call the PyCSP3 functions Increasing() or Decreasing(); the named parameter strict
can be used to indicate that the order must be strict. We obtain now:

PyCSP3 Model 18

from pycsp3 import *

n = data

x[i] is the position of the ith tick
x = VarArray(size=n, dom=range(n * n))

y[i][j] is the distance between x[i] and x[j] for i strictly less than j
y = VarArray(size=[n, n], dom=lambda i, j: range(1, n * n) if i < j else None)

satisfy(
all distances are different
AllDifferent(y),

linking variables from both arrays
[x[j] == x[i] + y[i][j] for i, j in combinations(n, 2)],

tag(symmetry -breaking)
[x[0] == 0, Increasing(x, strict=True)]

)

minimize(
minimizing the position of the rightmost tick
Maximum(x)

)

For n = 4, we obtain:

24

<instance format="XCSP3" type="COP">
<variables >

<array id="x" note="x[i] is the position of the ith tick" size="[4]">
0..16

</array >
<array id="y" note="y[i][j] is the distance between x[i] and x[j] for i strictly

less than j" size="[4][4]">
1..16

</array >
</variables >
<constraints >

<allDifferent note="all distances are different">
y[0][1..3] y[1][2..3] y[2][3]

</allDifferent >
<group note="linking variables from both arrays">

<intension > eq(%0,add (%1 ,%2)) </intension >
<args > x[1] x[0] y[0][1] </args >
<args > x[2] x[0] y[0][2] </args >
<args > x[3] x[0] y[0][3] </args >
<args > x[2] x[1] y[1][2] </args >
<args > x[3] x[1] y[1][3] </args >
<args > x[3] x[2] y[2][3] </args >

</group >
<block class="symmetry -breaking">

<intension > eq(x[0] ,0) </intension >
<ordered >

<list > x[] </list >
<operator > lt </operator >

</ordered >
</block >

</constraints >
<objectives >

<minimize note="minimizing the position of the rightmost tick" type="maximum">
x[]

</minimize >
</objectives >

</instance >

Technically, the undefined variables of the array y in the PyCSP3 model are not identified as such
in the XCSP3 instance (see the element <array> for y). However, although not explicitly identified
as undefined, they can be discarded by solvers because they are involved nowhere (neither in the
constraints nor in the objective); see how the constraint <allDifferent> only involves the variables
in the upper half of the two-dimensional array y.

1.3 Structured Problems
Some problems need more than elementary data, that is to say, more than a few elementary pieces of
data such as integers. In this document, we call them structured problems.

1.3.1 Sudoku
This well-known problem is stated as follows: fill in a grid using digits ranging from 1 to 9 such that:

◦ all digits occur on each row

◦ all digits occur on each column

◦ all digits occur in each 3× 3 block (starting at a position multiple of 3)

An illustration is given by Figure 1.7.
Because there are several clues, and because their number cannot be anticipated, we need a param-

eter clues that represents a two-dimensional array of integer values. When clues[i][j] is 0, it means

25

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6
Puzzle

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6
Solution

4 6 7 3 8
5 7 9 1 4

1 9 4 8 2 5
9 7 3 8 5 2 4

3 7 2 6 8
6 8 1 4 9 5 3
7 4 6 2 5 1

6 5 1 9 3
3 8 5 4 2

Figure 1.7: Solving a Sudoku Grid (example from /www.texample.net/tikz)

that the cell is empty, whereas when it contains a digit between 1 and 9, it means that it represents
a fixed value (clue). A PyCSP3 model is given by the following file ‘Sudoku.py’:

PyCSP3 Model 19

from pycsp3 import *

clues = data # if not 0, clues[i][j] is a value imposed at row i and col j

x[i][j] is the value at row i and col j
x = VarArray(size=[9, 9], dom=range(1, 10))

satisfy(
imposing distinct values on each row and each column
AllDifferent(x, matrix=True),

imposing distinct values on each block tag(blocks)
[AllDifferent(x[i:i + 3, j:j + 3]) for i in [0, 3, 6] for j in [0, 3, 6]],

imposing clues tag(clues)
[x[i][j] == clues[i][j] for i in range (9) for j in range (9)

if clues and clues[i][j] > 0]
)

First, note how the named parameter matrix is used to ensure that all digits are different on each
row and each column of the two-dimensional array x; this is the matrix version of allDifferent.
Second, note how the notation x[i : i+ 3, j : j+ 3] extracts a list of variables corresponding to a block
of size 3× 3 in x. This is similar to notations used in package NumPy and in library CPpy. Finally,
each clue is naturally imposed under the form of a unary intension constraint.

Suppose now that we have a file ‘grid.json’ containing:
{

"clues": [
[0, 4, 0, 0, 0, 0, 0, 0, 0],
[5, 3, 9, 0, 0, 1, 0, 6, 0],
[0, 0, 1, 0, 0, 2, 0, 5, 0],
[4, 0, 7, 2, 0, 9, 0, 0, 6],
[0, 0, 6, 0, 0, 0, 5, 0, 0],
[8, 0, 0, 6, 0, 3, 1, 0, 7],
[0, 8, 0, 7, 0, 0, 2, 0, 0],
[0, 6, 0, 3, 0, 0, 4, 1, 8],
[0, 0, 0, 0, 0, 0, 0, 7, 0]

]

26

 http://www.texample.net/tikz/examples/sudoku/

}

then, we can execute:

python Sudoku.py -data=grid.json

and we obtain the following XCSP3 instance (simplified here as not all clues are shown):
<instance format="XCSP3" type="CSP">

<variables >
<array id="x" note="x[i][j] is the value at row i and col j" size="[9][9]">

1..9
</array >

</variables >
<constraints >

<allDifferent note="imposing distinct values on each row and each column">
<matrix > x[][] </matrix >

</allDifferent >
<group note="imposing distinct values on each block" class="blocks">

<allDifferent > %... </allDifferent >
<args > x[0..2][0..2] </args >
<args > x[0..2][3..5] </args >
<args > x[0..2][6..8] </args >
<args > x[3..5][0..2] </args >
<args > x[3..5][3..5] </args >
<args > x[3..5][6..8] </args >
<args > x[6..8][0..2] </args >
<args > x[6..8][3..5] </args >
<args > x[6..8][6..8] </args >

</group >
<instantiation note="imposing clues" class="clues">

<list > x[0][1] x[8][7] </list > // only two of them inserted here for conciseness
<values > 4 7 </values >

</instantiation >
</constraints >

</instance >

Once again, we have used tags. This way, it will be easy at parsing time to discard blocks or clues,
if wished. Suppose now that we want to generate an instance without any clue. Of course, we can
build a grid only containing the value 0, but this is a little bit tedious. Actually, you just need to use
a JSON file like this:

{
"clues": null

}

An alternative is simply to execute:

python Sudoku.py -data=None

or

python Sudoku.py -data=null

or even

python Sudoku.py

For these three last commands, the value None is set to the predefined PyCSP3 variable data.

27

Figure 1.8: Palumbo Fruit Company Warehouse. (image from /commons.wikimedia.org)

1.3.2 Warehouse Location
In the Warehouse Location Problem (WLP), a company considers opening warehouses at some candi-
date locations in order to supply its existing stores. Each possible warehouse has the same maintenance
cost, and a capacity designating the maximum number of stores that it can supply. Each store must
be supplied by exactly one open warehouse. The supply cost to a store depends on the warehouse.
The objective is to determine which warehouses to open, and which of these warehouses should sup-
ply the various stores, such that the sum of the maintenance and supply costs is minimized. See
CSPLib–Problem 034 for more information.

An example of data is the file ‘warehouse.json’ containing:
{

"fixedCost ": 30,
"warehouseCapacities ": [1, 4, 2, 1, 3],
"storeSupplyCosts ": [

[100, 24, 11, 25, 30], [28, 27, 82, 83, 74],
[74, 97, 71, 96, 70], [2, 55, 73, 69, 61],
[46, 96, 59, 83, 4], [42, 22, 29, 67, 59],
[1, 5, 73, 59, 56], [10, 73, 13, 43, 96],
[93, 35, 63, 85, 46], [47, 65, 55, 71, 95]

]
}

A PyCSP3 model of this problem is given by the following file ‘Warehouse.py’:

PyCSP3 Model 20

from pycsp3 import *

wcost , capacities , costs = data # wcost is the fixed cost when opening a warehouse
nWarehouses , nStores = len(capacities), len(costs)

w[i] is the warehouse supplying the ith store
w = VarArray(size=nStores , dom=range(nWarehouses))

c[i] is the cost of supplying the ith store
c = VarArray(size=nStores , dom=lambda i: costs[i])

o[j] is 1 if the jth warehouse is open
o = VarArray(size=nWarehouses , dom={0, 1})

satisfy(
capacities of warehouses must not be exceeded
[Count(w, value=j) <= capacities[j] for j in range(nWarehouses)],

28

https://commons.wikimedia.org/wiki/File:Palumbo_Fruit_Company_Warehouse_-_Payette_Idaho.jpg
https://www.csplib.org/Problems/prob034/

the warehouse supplier of the ith store must be open
[o[w[i]] == 1 for i in range(nStores)],

computing the cost of supplying the ith store
[costs[i][w[i]] == c[i] for i in range(nStores)]

)

minimize(
minimizing the overall cost
Sum(c) + Sum(o) * wcost

)

Concerning data, the root object in the JSON file is expected to have three fields. We then expect
to get a named tuple of size 3 that can be unpacked. An alternative is to write something like:
wcost = data.fixedCost # for each open warehouse
capacities = data.warehouseCapacities
costs = data.storeSupplyCosts
nWarehouses , nStores = len(capacities), len(costs)

In our model, we associate a specific domain with each variable of the array c by means of a lambda
function. Note that it is possible to give a list, costs[i], instead of a set, set(costs[i]), as the
list will be automatically converted to a set. For dealing with warehouse capacities, we use the count
constraint by calling the PyCSP3 function Count(): the number of variables in a given list (here, w)
that take the value specified by the named parameter value must be less than a constant. For linking
stores with warehouses, we use the element constraint: the variable in the array o at index w[i] must
be 1 because this variable denotes the warehouse supplying the ith store, and it must be open. Note
that the index is not a constant but a variable of our model. Similarly, we use the element constraint
for computing the actual costs; this time the array contains values (and not variables) and the target
to reach is given by a variable. Finally, the objective function corresponds to minimizing two partial
sums.

After executing:

python Warehouse.py -data=warehouse.json

we obtain the following XCSP3 instance (some parts are omitted; see the presence of ellipsis):
<instance format="XCSP3" type="COP">

<variables >
<array id="w" note="w[i] is the warehouse supplying the ith store" size="[10]">

0..4
</array >
<array id="c" note="c[i] is the cost of supplying the ith store" size="[10]">

<domain for="c[0]"> 11 24 25 30 100 </domain >
<domain for="c[1]"> 27 28 74 82 83 </domain >
... // ellipsis

</array >
<array id="o" note="o[j] is 1 if the jth warehouse is open" size="[5]">

0 1
</array >

</variables >
<constraints >

<block note="capacities of warehouses must not be exceeded">
<count >

<list > w[] </list >
<values > 0 </values >
<condition > (le ,1) </condition >

</count >
... // ellipsis

</block >
<group note="the warehouse supplier of the ith store must be open">

<element >

29

<list > o[] </list >
<index > %0 </index >
<value > 1 </value >

</element >
<args > w[0] </args >
<args > w[1] </args >
... // ellipsis

</group >
<block note="computing the cost of supplying the ith store">

<element >
<list > 100 24 11 25 30 </list >
<index > w[0] </index >
<value > c[0] </value >

</element >
... // ellipsis

</block >
</constraints >
<objectives >

<minimize note="minimizing the overall cost" type="sum">
<list > c[] o[] </list >
<coeffs > 1 1 1 1 1 1 1 1 1 1 30 30 30 30 30 </coeffs >

</minimize >
</objectives >

</instance >

In the model above, we have introduced three arrays of variables, allowing us to write a rather
simple objective. However, a more compact model is possible because one can write more complex
forms of objectives. This gives:

PyCSP3 Model 21

from pycsp3 import *

wcost , capacities , costs = data # wcost is the fixed cost when opening a warehouse
nWarehouses , nStores = len(capacities), len(costs)

w[i] is the warehouse supplying the ith store
w = VarArray(size=nStores , dom=range(nWarehouses))

satisfy(
capacities of warehouses must not be exceeded
Count(w, value=j) <= capacities[j] for j in range(nWarehouses)

)

minimize(
minimizing the overall cost
Sum(costs[i][w[i]] for i in range(nStores)) + NValues(w) * wcost

)

When compiling, in order to remain in the perimeter of XCSP3-core (see Chapter 4), some auxiliary
variables may be introduced. Here, this is the case for WLP, and the reader is invited to observe that
the result of the compilation (i.e., XCSP3 files) for both model variants (depicted above) is rather
similar.

1.3.3 Black Hole (Solitaire)
FromWikiPedia: “Black Hole is a solitaire card game. Invented by David Parlett, this game’s objective
is to compress the entire deck into one foundation. The cards are dealt to a board in piles of three.
The leftover card, dealt first or last, is placed as a single foundation called the Black Hole. This card
usually is the Ace of Spades. Only the top cards of each pile in the tableau are available for play and

30

in order for a card to be placed in the Black Hole, it must be a rank higher or lower than the top card
on the Black Hole. This is the only allowable move in the entire game. The game ends if there are no
more top cards that can be moved to the Black Hole. The game is won if all of the cards end up in
the Black Hole.” An illustration is given by Figure 1.9.

Figure 1.9: A Deal of Black Hole Solitaire. (image from commons.wikimedia.org)

We may want to play with various sizes of piles and various number of cards per suit. An example
of data is given by the file ‘blackhole-4.json’ containing:

{
"nCardsPerSuit ": 4,
"piles": [[1 ,4 ,13] ,[15 ,9 ,6] ,[14 ,2 ,12] ,[7 ,8 ,5] ,[11 ,10 ,3]]

}

A PyCSP3 model of this problem is given by the following file ‘Blackhole.py’:

PyCSP3 Model 22

from pycsp3 import *

m, piles = data
nCards = 4 * m

x[i] is the value j of the card at position i of the stack
x = VarArray(size=nCards , dom=range(nCards))

y[j] is the position i of the card whose value is j
y = VarArray(size=nCards , dom=range(nCards))

table = {(i, j) for i in range(nCards) for j in range(nCards)
if i % m == (j + 1) % m or j % m == (i + 1) % m}

satisfy(
linking variables of x and y
Channel(x, y),

the Ace of Spades is initially put on the stack

31

https://commons.wikimedia.org/wiki/File:Pysol-black-hole-solitaire-deal-1000-with-public-domain-tabletile.png

y[0] == 0,

cards must be played in the order of the piles
[Increasing ([y[j] for j in pile], strict=True) for pile in piles],

each new card put on the stack must be at a higher or lower rank
[(x[i], x[i + 1]) in table for i in range(nCards - 1)]

)

Note how the channel constraint is used to make a channeling between the two arrays x and y (we
have x[i] = j ⇔ y[j] = i), how the value of the first variable of y is imposed by a unary intension
constraint, how we guarantee to take cards from each pile in a strict increasing order with increasing
constraints and how extension constraints are posted after having precomputed a table.

Because the same table constraint is imposed on successive pairs of variables, we can use the meta-
constraint slide, introduced in Section 3.21. It suffices to replace the last argument of satisfy()
with:

Slide ((x[i], x[i + 1]) in table for i in range(nCards - 1))

With this meta-constraint slide, after executing:

python Blackhole.py -data=blackhole.json

we obtain the following XCSP3 instance:
<instance format="XCSP3" type="CSP">

<variables >
<array id="x" note="x[i] is the value j of the card at position i of the stack"

size="[16]">
0..15

</array >
<array id="y" note="y[j] is the position i of the card whose value is j" size="

[16]">
0..15

</array >
</variables >
<constraints >

<channel note="linking variables of x and y">
<list > x[] </list >
<list > y[] </list >

</channel >
<intension note="the Ace of Spades is initially put on the stack">

eq(y[0] ,0)
</intension >
<group note="cards must be played in the order of the piles">

<ordered >
<list > %0 %1 %2 </list >
<operator > lt </operator >

</ordered >
<args > y[1] y[4] y[13] </args >
<args > y[15] y[9] y[6] </args >
<args > y[14] y[2] y[12] </args >
<args > y[7..8] y[5] </args >
<args > y[11] y[10] y[3] </args >

</group >
<slide note="each new card put on the stack must be at a higher or lower rank">

<list > x[] </list >
<extension >

<list > %0 %1 </list >
<supports > (0,1)(0,3)(0,5)(0,7)(0,9)(0,11)(0,13) (0,15)(1,0)(1,2)(1,4)(1,6)

(1,8)(1,10) (1 ,12)(1,14)(2,1)(2,3)(2,5)(2,7)(2,9)(2 ,11)(2,13) (2 ,15)(3,0)
(3,2)(3,4)(3,6)(3,8)(3 ,10)(3,12) (3 ,14)(4,1)(4,3)(4,5)(4,7)(4,9)(4 ,11)
(4,13) (4 ,15)(5,0)(5,2)(5,4)(5,6)(5,8)(5,10) (5 ,12)(5,14)(6,1)(6,3)(6,5)

32

(6,7)(6,9)(6,11) (6 ,13)(6,15)(7,0)(7,2)(7,4)(7,6)(7,8)(7,10) (7 ,12)(7,14)
(8,1)(8,3)(8,5)(8,7)(8,9)(8,11) (8 ,13)(8,15)(9,0)(9,2)(9,4)(9,6)(9,8)(9 ,10)
(9,12) (9 ,14)(10 ,1) (10,3)(10 ,5)(10,7)(10 ,9) (10 ,11) (10 ,13) (10 ,15) (11,0)
(11 ,2) (11,4)(11 ,6) (11,8) (11 ,10) (11 ,12) (11 ,14) (12,1) (12,3)(12,5) (12,7)
(12 ,9) (12 ,11) (12 ,13) (12 ,15) (13 ,0)(13,2) (13,4)(13,6) (13,8) (13 ,10) (13 ,12)
(13 ,14) (14 ,1)(14,3) (14 ,5)(14,7) (14,9) (14 ,11) (14 ,13) (14 ,15) (15,0)(15 ,2)
(15 ,4) (15,6)(15 ,8) (15 ,10) (15 ,12) (15 ,14) </supports >

</extension >
</slide >

</constraints >
</instance >

Here, the main interest of using slide is that the generated XCSP3 file is made compacter (while
emphasizing the sliding structure). However, in our illustration, because the sliding form is not circular
and because two successive constraints only share one variable, any solver reasoning individually with
the sliding constraints will reach the same efficiency (i.e., will reach the same level of filtering of the
search space) as reasoning with the meta-constraint.

If you are worried about using the PyCSP3 function Slide() in the model, you can let the model
as it was given initially, and in case you are however interested in the more compact sliding form, you
can use the option -recognizeSlides as in the following command:

python Blackhole.py -data=blackhole-4.json -recognizeSlides

1.3.4 Rack Configuration

Figure 1.10: A Rack. (image from freesvg.org)

The rack configuration problem consists of plugging a set of electronic cards into racks with elec-
tronic connectors. Each card plugged into a rack uses a connector. In order to plug a card into a
rack, the rack must be of a rack model. Each card is characterized by the power it requires. Each
rack model is characterized by the maximal power it can supply, its size (number of connectors), and
its price. The problem is to decide how many of the available racks are actually needed such that:

◦ every card is plugged into one rack

◦ the total power demand and the number of connectors required by the cards does not exceed
that available for a rack

◦ the total price is minimized.

See CSPLib–Problem 031 for more information.
An example of data is given by the file ‘rack.json’ containing:
{

"nRacks ": 10,
"models ": [[150, 8, 150], [200, 16, 200]],
"cardTypes ": [[20, 20], [40, 8], [50, 4], [75, 2]]

}

33

https://freesvg.org/vector-image-of-racks
https://www.csplib.org/Problems/prob031/

A PyCSP3 model for this problem is given by the following file ‘Rack.py’:

PyCSP3 Model 23

from pycsp3 import *

nRacks , models , cardTypes = data
models.append ([0, 0, 0]) # we add first a dummy model (0,0,0)
powers , sizes , costs = zip(* models)
cardPowers , cardDemands = zip(* cardTypes)
nModels , nTypes = len(models), len(cardTypes)

m[i] is the model used for the ith rack
m = VarArray(size=nRacks , dom=range(nModels))

p[i] is the power of the model used for the ith rack
p = VarArray(size=nRacks , dom=powers)

s[i] is the size (number of connectors) of the model used for the ith rack
s = VarArray(size=nRacks , dom=sizes)

c[i] is the cost (price) of the model used for the ith rack
c = VarArray(size=nRacks , dom=costs)

nc[i][j] is the number of cards of type j put in the ith rack
nc = VarArray(size=[nRacks , nTypes],

dom=lambda i, j: range(min(max(sizes), cardDemands[j]) + 1))

table = {(i, powers[i], sizes[i], costs[i]) for i in range(nModels)}

satisfy(
linking rack models with powers , sizes and costs
[(m[i], p[i], s[i], c[i]) in table for i in range(nRacks)],

connector -capacity constraints
[Sum(nc[i]) <= s[i] for i in range(nRacks)],

power -capacity constraints
[nc[i] * cardPowers <= p[i] for i in range(nRacks)],

demand constraints
[Sum(nc[:, j]) == cardDemands[j] for j in range(nTypes)],

tag(symmetry -breaking)
[Decreasing(m), imply(m[0] == m[1], nc [0][0] >= nc [1][0])]

)

minimize(
minimizing the total cost being paid for all racks
Sum(c)

)

From data, we build first some auxiliary lists that is useful for writing easily our model. Note that
using the Python function zip() is simpler and compacter than writing for example:
cardPowers , cardDemands = [row[0] for row in cardTypes], [row[1] for row in cardTypes]

After declaring five arrays of variables, a quaternary table constraint is first posted. See how it is
easy to link variables of 4 arrays with a simple table. Then, three lists of sum constraints are posted.
In the second list, we use a dot product, and in the third list, we use the notation nc[:, j] to extract
the jth column of the array nc, as in NumPy.

As usual, for generating an XCSP3 instance, we just need to execute:

34

python Rack.py -data=rack.json

One drawback with the previous model is that it is difficult to understand the role of each piece of
data, when looking independently at the JSON file. One remedy is then to choose a clearer structure
as in this file ‘rack2.json’:

{
"nRacks ": 10,
"rackModels ": [

{"power ": 150, "nConnectors ": 8, "price": 150},
{"power ": 200, "nConnectors ": 16, "price": 200}

],
"cardTypes ": [

{"power ": 20, "demand ": 20},
{"power ": 40, "demand ": 8},
{"power ": 50, "demand ": 4},
{"power ": 75, "demand ": 2}

]
}

In PyCSP3, it is quite easy to change the representation (structure) of data. It suffices to update
the way the predefined PyCSP3 variable data is used in the model. In our case, with this new
representation, we only need to replace:
models.append ([0, 0, 0]) # we add first a dummy model (0,0,0)

with:
models.append(models [0]. __class__(0, 0, 0)) # we add first a dummy model (0,0,0)

Again we add a dummy rack model to those defined in the JSON file. To do that, and in order to
avoid breaking the homogeneity of the data, we get the class of the used named tuples to build and
add a new one. As any JSON object is automatically converted to a named tuple, we still have the
possibility to use the function zip() in our model.

35

Chapter 2

Data, Variables and Objectives

In this chapter, we give some additional details and illustrations about data, variables and objectives,
although many examples can already be found in the other chapters.

2.1 Specifying Data
In this section, we describe the following options:

◦ -data

◦ -dataparser

◦ -dataexport

◦ -dataformat

◦ -output

Except for “single” problems, each problem usually represents a large (often, infinite) family of cases,
called instances, that one may want to solve. All these instances are uniquely identified by some
specific data.

First, recall that the command to be run for generating an XCSP3 instance (file), given a model
and some data is:

python <model_file> -data=<data_values>

where <model_file> (is a Python file that) represents a PyCSP3 model, and <data_values>
represents some specific data. In our context, an elementary value is a value of one of these built-in
data types: integer (int), real (float), string (str) and boolean (bool). Specific data can be given as:

1. a single elementary value, as in -data=5

2. a list of elementary values, between square (or round) brackets1 and with comma used as a
separator, as in -data=[9,0,0,3,9]

3. a list of named elementary values, between square (or round) brackets and with comma used as
a separator, as in -data=[v=9,b=0,r=0,k=3,l=9]

4. a JSON file, as in -data=Bibd-9-3-9.json

5. a text file (i.e., a non-JSON file in any arbitrary format) while providing with the option
-dataparser some Python code to load it, as in -data=puzzle.txt -dataparser=ParserPuzzle.py

1According to the operating system, one might need to escape brackets.

36

Then, data can be directly used in PyCSP3 models by means of a predefined variable
called data. The value of the predefined PyCSP3 variable data is set as follows:

1. if the option -data is not specified, or if it is specified as -data=null or -data=None, then the
value of data is None. See, for example, Section 1.3.1.

2. if a single elementary value is given (possibly, between brackets), then the value of data is
directly this value. See, for example, Section 1.2.4.

3. if a JSON file containing a root object with only one field is given, then the value of data is
directly this value. See, for example, Section 1.3.1.

4. if a list of (at least two) elementary values is given, then the value of data is a tuple containing
those values in sequence. See, for example, Section 1.2.2.

5. if a list of (at least two) named elementary values is given, then the value of data is a named
tuple. See, for example, Section 1.2.2.

6. if a JSON file containing a root object with at least two fields is given, then the value of data
is a named tuple. Actually, any encountered JSON object in the file is (recursively) converted
into a named tuple. See, for example, Section 1.3.2 and Section 1.3.4.

Although various cases have already been illustrated in Chapter 1, we introduce below a few
additional examples.

All-Interval Series. Given the twelve standard pitch-classes (c, c#, d, . . .), represented by numbers
0, 1, . . . , 11, find a series in which each pitch-class occurs exactly once and in which the musical intervals
between neighboring notes cover the full set of intervals from the minor second (1 semitone) to the
major seventh (11 semitones). That is, for each of the intervals, there is a pair of neighboring pitch-
classes in the series, between which this interval appears.

Figure 2.1: Elliott Carter often bases his all-interval sets on the list generated by Bauer-Mendelberg
and Ferentz and uses them as a "tonic" sonority (image from commons.wikimedia.org)

The problem of finding such a series can be easily formulated as an instance of a more general
arithmetic problem. Given a positive integer n, find a sequence x = 〈x0, x1, . . . , xn−1〉, such that:

1. x is a permutation of {0, 1, ..., n− 1};
2. the interval sequence y = 〈|x1−x0|, |x2−x1|, ...|xn−1−xn−2|〉 is a permutation of {1, 2, ..., n−1}.

A sequence satisfying these conditions is called an all-interval series of order n; the problem of finding
such a series is the all-interval series problem of order n. For example, for n = 8, a solution is:

1 7 0 5 4 2 6 3

A PyCSP3 model of this problem is given by the following file ‘AllInterval.py’:

37

https://commons.wikimedia.org/wiki/File:Carter_all-interval_sets.png

PyCSP3 Model 24

from pycsp3 import *

n = data

x[i] is the ith note of the series
x = VarArray(size=n, dom=range(n))

satisfy(
notes must occur once , and so form a permutation
AllDifferent(x),

intervals between neighbouring notes must form a permutation
AllDifferent(abs(x[i] - x[i + 1]) for i in range(n - 1)),

)

Here, the required data is a single integer value. So, to generate the XCSP3 instance of AllInterval
for order 12, we just execute:

python AllInterval.py -data=12

Balanced Incomplete Block Designs. From CSPLib: “Balanced Incomplete Block Design (BIBD)
generation is a standard combinatorial problem from design theory, originally used in the design of
statistical experiments but since finding other applications such as cryptography. It is a special case
of Block Design, which also includes Latin Square problems. BIBD generation is described in most
standard textbooks on combinatorics. A BIBD is defined as an arrangement of v distinct objects
into b blocks such that each block contains exactly k distinct objects, each object occurs in exactly
r different blocks, and every two distinct objects occur together in exactly λ blocks. Another way of
defining a BIBD is in terms of its incidence matrix, which is a v by b binary matrix with exactly r
ones per row, k ones per column, and with a scalar product of λ between any pair of distinct rows. A
BIBD is therefore specified by its parameters (v, b, r, k, λ).”

An example of a solution for (7, 7, 3, 3, 1) is:

0 1 1 0 0 1 0
1 0 1 0 1 0 0
0 0 1 1 0 0 1
1 1 0 0 0 0 1
0 0 0 0 1 1 1
1 0 0 1 0 1 0
0 1 0 1 1 0 0

Hence, we need five integers v, b, r, k, l (for λ) for specifying a unique instance; possibly, b and
r can be set to 0, so that these values are automatically computed according to a classical BIBD
template. A PyCSP3 model of this problem is given by the following file ‘Bibd.py’:

PyCSP3 Model 25

from pycsp3 import *

v, b, r, k, l = data
b = (l * v * (v - 1)) // (k * (k - 1)) if b == 0 else b
r = (l * (v - 1)) // (k - 1) if r == 0 else r

x[i][j] is the value of the matrix at row i and column j
x = VarArray(size=[v, b], dom={0, 1})

38

http://www.csplib.org/Problems/prob028

satisfy(
constraints on rows
[Sum(row) == r for row in x],

constraints on columns
[Sum(col) == k for col in columns(x)],

scalar constraints with respect to lambda
[row1 * row2 == l for row1 , row2 in combinations(x, 2)]

)

To generate an XCSP3 instance (file), we can for example execute:

python Bibd.py -data=[9,0,0,3,9]

As mentioned earlier, with some command interpreters (shells), you may have to escape the char-
acters ’[’ and ’]’, which gives:

python Bibd.py -data=\[9,0,0,3,9\]

You can also use round brackets instead of square brackets:

python Bibd.py -data=(9,0,0,3,9)

If it causes some problem with the command interpreter (shell), you have to escape the characters
’(’ and ’)’, which gives:

python Bibd.py -data=\(9,0,0,3,9\)

Unless specified otherwise with the option -output, the filename of the generated XCSP3 instance
is ‘Bibd-9-0-0-3-9.xml’. This means that if we execute:

python Bibd.py -data=[9,0,0,3,9] -output=My-Bibd

the generated filename is My-Bibd.xml (if not present as a suffix, ‘.xml’ is automatically added).

Suppose that you would prefer to have a JSON file for storing these data values. You can execute:

python Bibd.py -data=[9,0,0,3,9] -datexport

You then obtain the following JSON file ‘Bibd-9-0-0-3-9.json’
{

"v":9,
"b":0,
"r":0,
"k":3,
"l":9

}

And now, to generate the same XCSP3 instance (file) as above, you can execute:

python Bibd.py -data=Bibd-9-0-0-3-9.json

Remark 3 At the Windows command line, different escape characters may be needed (for example,
depending whether you use Windows Powershell or not). However, note that you can always run a
command from a batch script file (or use a JSON file).

39

Filenames with Formatted Data. As shown above, when data are given under the form of
elementary values on the command line, they are integrated in the filename of the generated instance.
However, sometimes, it may be interesting to format a little bit such filenames. This is possible by
using the format -dataformat. The principle is that the string passed to this option will serve to
apply formatting to the values in -data. For example,

python Bibd.py -data=[9,0,0,3,9] -dataformat={:02d}-{:01d}-{:01d}-{:02d}-{:02d}

will generate an XCSP3 file with filename ‘Bibd-09-0-0-03-09.xml’
If the same pattern must be applied to all pieces of data, we can write:

python Bibd.py -data=[9,0,0,3,9] -dataformat={:02d}

so as to obtain an XCSP3 file with filename ‘Bibd-09-00-00-03-09.xml’

Balanced Academic Curriculum Problem (BACP). From CSPLib: “The goal of BACP is to
design a balanced academic curriculum by assigning periods to courses in a way that the academic
load of each period is balanced, i.e., as similar as possible. An academic curriculum is defined by a
set of courses and a set of prerequisite relationships among them. Courses must be assigned within a
maximum number of academic periods. Each course is associated to a number of credits or units that
represent the academic effort required to successfully follow it.

The curriculum must obey the following regulations:

◦ minimum academic load: a minimum number of academic credits per period is required to
consider a student as full time

◦ maximum academic load: a maximum number of academic credits per period is allowed in order
to avoid overload

◦ minimum number of courses: a minimum number of courses per period is required to consider
a student as full time

◦ maximum number of courses: a maximum number of courses per period is allowed in order to
avoid overload

The goal is to assign a period to every course in a way that the minimum and maximum academic load
for each period, the minimum and maximum number of courses for each period, and the prerequisite
relationships are satisfied. An optimal balanced curriculum minimizes the maximum academic load
for all periods.”

When analyzing this problem, we identify its parameters as being the number of periods (an
integer), the minimum and the maximum number of credits (two integers), the minimum and the
maximum number of courses (two integers), the credits for each course (a one-dimensional array
of integers) and the prerequisites (a two-dimensional array of integers, with each row indicating a
prerequisite). An example of data is given by the following JSON file ‘Bacp_example.json’:

40

http://www.csplib.org/Problems/prob030

{
"nPeriods ": 4,
"minCredits ": 2,
"maxCredits ": 5,
"minCourses ": 2,
"maxCourses ": 3,
"credits ": [2,3,1,3,2,3,3,2,1],
"prequisites ": [[2,0],[4,1],[5,2],[6,4]]

}

A PyCSP3 model of this problem is given by the following file ‘Bacp.py’:

PyCSP3 Model 26

from pycsp3 import *

nPeriods , minCredits , maxCredits , minCourses , maxCourses , credits , prereq = data
nCourses = len(credits)

s[c] is the period (schedule) for course c
s = VarArray(size=nCourses , dom=range(nPeriods))

co[p] is the number of courses at period p
co = VarArray(size=nPeriods , dom=range(minCourses , maxCourses + 1))

cr[p] is the number of credits at period p
cr = VarArray(size=nPeriods , dom=range(minCredits , maxCredits + 1))

cp[c][p] is 0 if the course c is not planned at period p,
the number of credits for c otherwise
cp = VarArray(size=[nCourses , nPeriods], dom=lambda c, p: {0, credits[c]})

def table(c):
return {(0,) * p + (credits[c],) + (0,) * (nPeriods - p - 1) + (p,)

for p in range(nPeriods)}

satisfy(
channeling between arrays cp and s
[(*cp[c], s[c]) in table(c) for c in range(nCourses)],

counting the number of courses in each period
[Count(s, value=p) == co[p] for p in range(nPeriods)],

counting the number of credits in each period
[Sum(cp[:, p]) == cr[p] for p in range(nPeriods)],

handling prerequisites
[s[c1] < s[c2] for (c1, c2) in prereq]

)

minimize(
minimizing the maximum number of credits in periods
Maximum(cr)

)

The command to execute for compiling is then:

python Bacp.py -data=Bacp_example.json

Because tuple unpacking is used, it is important to note that the fields of the root object in the
JSON file must be given in this exact order. If it is not the case, as for example:

41

{
"nPeriods ": 4,
"prequisites ": [[2,0],[4,1],[5,2],[6,4]],
"minCredits ": 2,
"maxCredits ": 5,
"credits ": [2,3,1,3,2,3,3,2,1],
"minCourses ": 2,
"maxCourses ": 3

}

there will be a problem when unpacking data. If you wish a safer model (because, for example,
you have no guarantee about the way the data are generated), you must specifically refer to the fields
of the named tuple instead:
from pycsp3 import *

nPeriods = data.nPeriods
minCredits , maxCredits = data.minCredits , data.maxCredits
minCourses , maxCourses = data.minCourses , data.maxCourses
credits , prereq = data.credits , data.prerequisites
nCourses = len(credits)

Now, let us suppose that you would like to use the data from this MiniZinc file ‘bacp-data.mzn’:
include "curriculum.mzn.model";
n_courses = 9;
n_periods = 4;
load_per_period_lb = 2;
load_per_period_ub = 5;
courses_per_period_lb = 2;
courses_per_period_ub = 3;
course_load = [2, 3, 1, 3, 2, 3, 3, 2,1,];
constraint prerequisite (2, 0);
constraint prerequisite (4, 1);
constraint prerequisite (5, 2);
constraint prerequisite (6, 4);

We need to write a piece of code in Python for building the variable data that will used in
our model. After importing everything (*) from pycsp3.problems.data.parsing, we can use some
PyCSP3 functions such as next_line(), number_in(), remaining_lines(),. . . Here, we also use
the classical function split() of module re to parse information concerning prerequisites. Note
that you have to add relevant fields to the predefined dictionary2 data, as in the following file
‘Bacp_ParserZ.py’:
from pycsp3.problems.data.parsing import *

nCourses = number_in(next_line ())
data["nPeriods"] = number_in(next_line ())
data["minCredits"] = number_in(next_line ())
data["maxCredits"] = number_in(next_line ())
data["minCourses"] = number_in(next_line ())
data["maxCourses"] = number_in(next_line ())
data["credits"] = numbers_in(next_line ())
data["prerequisites"] = [[int(v) - 1

for v in re.split(r’constraint prerequisite \(| ,|\);’, line) if len(v) > 0]
for line in remaining_lines(skip_curr=True)]

To generate the XCSP3 instance (file), you have to execute:

python Bacp.py -data=bacp.mzn -dataparser=Bacp_ParserZ.py

If you want the same data put in a JSON file, execute:
2At this stage, data is a dictionary. Later, it will be automatically converted to a named tuple.

42

python Bacp.py -data=bacp-data.mzn -dataparser=Bacp_ParserZ.py -dataexport

You obtain a file called ‘bacp-data.json’ equivalent to the one introduced earlier. If you want to
specify the name of the output JSON file, give it as a value to the option -dataexport, as e.g., in:

python Bacp.py -data=bacp-data.mzn -dataparser=Bacp_ParserZ.py -dataexport=instance0

The generated JSON file is then called ‘instance0.json’.

Special Rules when Loading JSON Files. The rules that are used when loading a JSON file
in order to set the value of the PyCSP3 predefined variable data are as follows.

1. For any field f of the root object in the JSON file, we obtain a field f in the generated named
tuple data such that:

◦ if f is a JSON list (or recursively, a list of lists) containing only integers, the type of data.f
is ‘pycsp3.tools.curser.ListInt’ instead of ‘list’; ‘ListInt’ being a subclass of ‘list’. The main
interest is that data.f can be directly used as a vector for the global constraint element.
See Mario Problem, page 97, for an illustration.

◦ if f is an object, data.f is a named tuple with the same fields as f. See Rack Configuration
Problem in Section 1.3.4 for an illustration.

2. The rules above apply recursively.

Special Rule when Building Arrays of Variables. When we define a list (array) x of variables
with VarArray(), the type of x is ‘pycsp3.tools.curser.ListVar’ instead of ‘list’. The main interest is
that x can be directly used as a vector for the global constraint element.

Special Values null and None. When the value null occurs in a JSON file, it becomes None in
PyCSP3 after loading the data file. An illustration is given at the end of Section 1.3.1.

Loading Several JSON Files. It is possible to load data fom several JSON files. It suffices to
indicate a list of JSON filenames between brackets. For example, let ‘file1.json’ be:

{
"a": 4,
"b": 12

}

let ‘file2.json’ be:
{

"c": 10,
"d": 1

}

and let ‘Test.py’ be:
from pycsp3 import *

a, b, c, d = data

print(a, b, c, d)

...

then, by executing:

python Test.py -data=[file1.json,file2.json]

we obtain the expected values in the four Python variables, because the order of fields is guaranteed
(as if the two JSON files haved been concatenated); behind the scene, and OrderedDict is used, and
the method ‘update()’ is called.

43

Combining JSON Files and Named Elementary Values. It may be useful to load data from
JSON files, while updating some (named) elementary values. It means that we can indicate between
brackets JSON filenames as well as named elementary values. The rule is simple: any field of the
variable data is given as value the last statement concerning it when loading.

For example, the command:

python Test.py -data=[file1.json,file2.json,c=5]

defines the variable data from the two JSON files, except that the variable c is set to 5.

However, the command:

python Test.py -data=[c=5,file1.json,file2.json]

is not appropriate because the value of c will be overriden when considering ‘file2.json’.

Just remember that named elementary values must be given after JSON files.

Loading Several Text Files. It is also possible to load data fom several text (non-JSON) files. It
suffices to indicate a list of filenames between brackets, which then will be concatenated just before
soliciting an appropriate parser. For example, let ‘file1.txt’ be:

5
2 4 12 3 8

let ‘file2.txt’ be:
3 3
0 1 1
1 0 1
0 0 1

then, at time the file ‘Test2_Parser.py’ is executed after typing:

python Test2.py -data=[file1.txt,file2.txt] -dataparser=Test2_Parser.py

we can read a sequence of text lines as if a single file was initially given with content:
5
2 4 12 3 8
3 3
0 1 1
1 0 1
0 0 1

It is even possible to add arbitrary lines to the intermediate concatenated file. For example,

python Test2.py -data=[file1.txt,file2.txt,10] -dataparser=Test2_Parser.py

adds a last line containing the value 10. Because whitespace are not tolerated, one may need to
surround additional lines with quotes (or double quotes). For example, at time ‘Test2_Parser.py’ is
executed after typing:

python Test2.py -data=[file1.txt,file2.txt,10,"3 5",partial] -dataparser=Test2_Parser.py

the sequence of text lines is as follows:
5
2 4 12 3 8
3 3
0 1 1
1 0 1
0 0 1
10
3 5
partial

44

Default Data. Except for single problems, data must be specified by the user in order to generate
specific problem instances. If data are not specified, an error is raised. However, when writting the
model, it is always possible to indicate some default data, notably by using the bahaviour of the
Python operator or. For setting a JSON file as being the default data file, we must call the function
default_data(). Handling default data is illustrated with BIBD and BACP problems.

For BIBD, If we replace:
v, b, r, k, l = data

by
v, b, r, k, l = data or (9,0,0,3,9)

then, we can generate the default instance with:

python Bibd.py

For BACP, if we replace:
nPeriods , minCredits , maxCredits , minCourses , maxCourses , credits , prereq = data

by
nPeriods , minCredits , maxCredits , minCourses , maxCourses , credits , \

prereq = data or default_data(Bacp_example.json)

then, we can generate the default instance with:

python Bacp.py

Loading a JSON Data File. If for some reasons, it is convenient to load some data independently
of the option -data, on can call the function load_json_data(). This function accepts a parameter
that is the filename of a JSON file (possibly given by an URL), and returns a named tuple containing
loaded data.

2.2 Declaring Variables

2.2.1 Stand-alone Variables
Stand-alone variables can be declared by means of the PyCSP3 function Var(). To define the domain
of a variable, we can simply list values, or use range(). For example:
w = Var(range (15))
x = Var(0, 1)
y = Var(0, 2, 4, 6, 8)
z = Var("a", "b", "c")

declares four variables corresponding to:

◦ w ∈ {0, 1, . . . , 14}
◦ x ∈ {0, 1}
◦ y ∈ {0, 2, 4, 6, 8}
◦ z ∈ {a, b, c}
Values can be directly listed as above, or given in a set as follows:

w = Var(set(range (15)))
x = Var({0, 1})
y = Var({0, 2, 4, 6, 8})
z = Var({"a", "b", "c"})

45

It is also possible to name the parameter dom when defining the domain:
w = Var(dom=range (15)) # or equivalently , w = Var(dom=set(range (15)))
x = Var(dom={0, 1})
y = Var(dom={0, 2, 4, 6, 8})
z = Var(dom={"a", "b", "c"})

Finally, it is of course possible to use generators and comprehension sets. For example, for y, we
can write:
y = Var(i for i in range (10) if i % 2 == 0)

or equivalently:
y = Var({i for i in range (10) if i % 2 == 0})

or still equivalently:
y = Var(dom={i for i in range (10) if i % 2 == 0})

Remark 4 In PyCSP3, which is currently targeted to XCSP3-core, we can only define integer and
symbolic variables with finite domains, i.e., variables with a finite set of integers or symbols (strings).

2.2.2 Arrays of Variables
The PyCSP3 function for declaring an array of variables is VarArray() that requires two named
parameters size and dom. For declaring a one-dimensional array of variables, the value of size must
be an integer (or a list containing only one integer), for declaring a two-dimensional array of variables,
the value of size must be a list containing exactly two integers, and so on. The named parameter
dom indicates the domain of each variable in the array.

The signature of the function VarArray() is:
def VarArray(*, size , dom):

An illustration is given by:
x = VarArray(size=10, dom={0, 1})
y = VarArray(size=[5, 20], dom=range (10))
z = VarArray(size=[4, 3, 4], dom={1, 5, 10, 20})

We have:

◦ x, a one-dimensional array of 10 variables with domain {0, 1}
◦ y, a two-dimensional array of 5× 20 variables with domain {0, 1, . . . , 9}
◦ z, a three-dimensional array of 4× 3× 4 variables with domain {1, 5, 10, 20}
Indexing starts at 0. For example, x[2] is the third variable of x, and y[1] is the second row of y.

Technically, variable arrays are objects that are instances of ListVar, a subclass of list; additional
functionalities of such objects are useful, for example, when posting the element constraint.

In some situations, you may want to declare variables in an array with different domains. For a
one-dimensional array, you can give the name of a function that accepts an integer i and returns the
domain to be associated with the variable at index i in the array. For a two-dimensional array, you
can give the name of a function that accepts a pair of integers (i, j) and returns the domain to be
associated with the variable at indexes i, j in the array. And so on.

For example, suppose that the domain of all variables of the first column of y is range(5) instead
of range(10). We can write:
def domain_y(i,j):

return range (5) if j == 0 else range (10)

y = VarArray(size=[5, 20], dom=domain_y)

46

We can also use a lambda function:
y = VarArray(size=[5, 20], dom=lambda i,j: range (5) if j == 0 else range (10))

Sometimes, not all variables in an array are relevant. For example, you may only want to use the
variables in the lower part of a two-dimensional array (matrix). In that case, the value None must be
used. An illustration is given below:

Golomb Ruler. This problem was introduced in Section 1.2.4. Here is a snippet of the PyCSP3

model:
y[i][j] is the distance between x[i] and x[j] for i strictly less than j
y = VarArray(size=[n, n], dom=lambda i, j: range(1, n * n) if i < j else None)

In the array y, the lower part (below the main downward diagonal) only contains None. For
example, y[1][0] is equal to None. This is taken into consideration when the XCSP3 file is generated
by compilation.

Sometimes, one may want to be able to refer to variables in arrays in an individual manner. It
suffices to use facilities offered by Python, as shown in the following model.

Allergy. Four friends (two women named Debra and Janet, and two men named Hugh and Rick)
found that each of them is allergic to something different: eggs, mold, nuts and ragweed. We would
like to match each one’s surname (Baxter, Lemon, Malone and Fleet) with his or her allergy. We
know that:

◦ Rick isn’t allergic to mold

◦ Baxter is allergic to eggs

◦ Hugh isn’t surnamed Lemon or Fleet

◦ Debra is allergic to ragweed

◦ Janet (who isn’t Lemon) isn’t allergic to eggs or mold

A PyCSP3 model of this problem is given by the following file ‘Allergy.py’:

PyCSP3 Model 27

from pycsp3 import *

Debra , Janet , Hugh , Rick = friends = ["Debra", "Janet", "Hugh", "Rick"]

foods[i] is the friend allergic to the ith food
eggs , mold , nuts , ragweed = foods = VarArray(size=4, dom=friends)

surnames[i] is the friend with the ith surname
baxter , lemon , malone , fleet = surnames = VarArray(size=4, dom=friends)

satisfy(
AllDifferent(foods),
AllDifferent(surnames),

mold != Rick ,
eggs == baxter ,
lemon != Hugh ,
fleet != Hugh ,
ragweed == Debra ,
lemon != Janet ,
eggs != Janet ,

47

mold != Janet
)

Note how we define an array of variables, and unpack its elements. This way, we can reason
with either the array or individual variables. Any comment put in the line preceding the declaration
of a variable (or variable array) is automatically inserted in the XCSP3 file, except for cases where
individual variables and arrays are declared on the same line, as in the model above.

2.3 Specifying Objectives
For specifying an objective to optimize, you must call one of the two functions:
def minimize(term):

def maximize(term):

The argument term can be:

◦ a variable, as in minimize(v)

◦ an expression, as in minimize(v + w * w)

◦ a sum, as in minimize(Sum(x))

◦ a dot product, as in minimize([u,v,w] * [3, 2, 5])

◦ a generator, as in minimize(Sum((x[i] > 1) * c[i] for i in range(n)))

◦ a minimum, as in minimize(Minimum(x))

◦ a maximum, as in minimize(Maximum(x))

◦ a number of distinct values, as in minimize(NValues(x))

◦ . . .
An illustration is given by the three different variants of the following problem.

RLFAP. From Cabon et al. [9]: “When radio communication links are assigned the same or closely
related frequencies, there is a potential for interference. Consider a radio communication network,
defined by a set of radio links. The Radio Link Frequency Assignment Problem (RLFAP) [9] is to
assign, from limited spectral resources, a frequency to each of these links in such a way that all the
links may operate together without noticeable interference. Moreover, the assignment has to comply
to certain regulations and physical constraints of the transmitters. Among all such assignments, one
will naturally prefer those which make good use of the available spectrum, trying to save the spectral
resources for a later extension of the network.

48

Formal Definition: we are given a set X of unidirectional radio links. For each link i ∈ X, a
frequency fi has to be chosen from a finite set Di of frequencies available for the transmitter which
yield unary constraints of type:

fi ∈ Di (2.1)

Depending on the type of the problem (bulk or updating problem), some links may already have
a pre-assigned frequency which define unary constraints of the type

fi = pi (2.2)

Binary constraints are defied on pairs of links {i, k}. These constraints may be either of type:

|fi − fj | > dij (2.3)

or of type:
|fi − fj | = dij (2.4)

Depending on the instance considered, some of the constraints may actually be soft constraints
which may be violated at some cost. A mobility cost m is defied for changing pre-assigned values,
defined by constraints of type 2.2 and an interference cost c is defined for violation of soft constraints
of type 2.3. Constraints of type 2.1 and 2.4 are always hard. The complete set of constraints C is
therefore partitioned in a set H of hard constraints and a set S of soft constraints. Several variants
can be defined:

1. Minimum span (SPAN): if all the constraints in C can be satisfied together, one can try to
minimize the largest frequency used in the assignment.

2. Minimum cardinality (CARD): if all the constraints in C can be satisfied together, one can try
to minimize the number of different frequencies used in the assignment.

3. Maximum Feasibility (MAX): if all the constraints in C cannot be satisfied simultaneously, one
should try to find an assignment that satisfies all constraints in H and that minimizes the sum
of all the violation costs (interference cost and mobility cost) for constraints in S.”

As an illustration of data specifying an instance of this problem, we have:
{

"domains ": [
[16, 30, 44, 58, 72, 86, 100, 114, 128, 142, 156, 254, 268, ...],
[30, 58, 86, 114, 142, 268, 296, 324, 352, 380, 414, 442, 470, ...],
...

],
"vars": [

{" domain ": 0, "value": null , "mobility ": null },
{" domain ": 1, "value": 58, "mobility ": 0 },
...

],
"ctrs":[

{"x": 13, "y": 14, "operator ": ">", "limit": 238, "weight ": 0 },
{"x": 13, "y": 16, "operator ": "=", "limit": 186, "weight ": 1 },
...

],
"mobilityCosts ": [0, 0, 0, 0, 0],
"interferenceCosts ": [0, 1000, 100, 10, 1]

}

The fields mobility and weight are indexes for getting the actual cost in the two arrays mobilityCosts
and interferenceCosts. For more details, we refer the reader to [9].

49

PyCSP3 Model 28

from pycsp3 import *

domains , variables , constraints , mobilityCosts , interferenceCosts = data
n = len(variables)

f[i] is the frequency of the ith radio link
f = VarArray(size=n, dom=lambda i: domains[variables[i]. domain])

satisfy(
managing pre -assigned frequencies
[f[i] == v for i, (_, v, mob) in enumerate(variables)

if v and not (variant("max") and mob)],

hard constraints on radio -links
[expr(op, abs(f[i] - f[j]), k) for (i, j, op , k, wgt) in constraints

if not (variant("max") and wgt)]
)

if variant("span"):
minimize(

minimizing the largest frequency
Maximum(f)

)
elif variant("card"):

minimize(
minimizing the number of used frequencies
NValues(f)

)
elif variant("max"):

minimize(
minimizing the sum of violation costs
Sum(ift(f[i] == v, 0, mobilityCosts[mob])

for i, (_, v, mob) in enumerate(variables) if v and mob)
+ Sum(ift(expr(op, abs(f[i] - f[j]), k), 0, interferenceCosts[wgt])

for (i, j, op, k, wgt) in constraints if wgt)
)

Constraints of types 2.2 and 2.3 are considered to be hard when the variant is not “max” or the
index (for mobility/interference cost) is not 0. Note that we use the PyCSP3 function expr() to post
the binary constraint on pairs of links; the first parameter is a string denoting an operator that can
be chosen among "<", "<=", ">=", ">", "=", "==", "!=", "lt", "le", "ge", "gt", "eq", "ne", . . .
In our context, the code
expr(op, abs(f[i] - f[j]), k)

is equivalent to:
abs(f[i] - f[j]) == k if op == "=" else abs(f[i] - f[j]) > k

Concerning the objective, we have three kinds of minimization. Note how we can combine several
partial computations (here, sums), when dealing with the variant “max”. Remember that the PyCSP3

ternary function ift() (if-then-else) returns either the second parameter or the third parameter
according to the fact the first parameter evaluates to True or False.

50

Chapter 3

Twenty Popular Constraints

In this chapter, we introduce twenty popular constraints, those from XCSP3-core that are recognized
by many constraint solvers. Figure 3.1 shows their classification.

Semantics. Concerning the semantics of constraints, here are a few important remarks:

◦ when presenting the semantics, we distinguish between a variable x and its assigned value x
(note the bold face on the symbol x).

◦ in many constraints, quite often, we need to introduce numerical conditions (comparisons) com-
posed of an operator � in {<,≤, >,≥,=, 6=,∈, /∈} and a right-hand side operand k that can
be a value (constant), a variable of the model, an interval or a set; the left-hand side being
indirectly defined by the constraint. The numerical condition is a kind of terminal operation to
be applied after the constraint has “performed some computation”. In Python, the operator �
is from {<,<=, >,>=,==, !=, in, not in} and an interval is given by a range object. A few
examples of constraints involving numerical conditions are:
Sum(x) > 10,
Count(x, value = 1) in range(10),
NValues(x) in {2, 4, 6},
Minimum(x) == y

Of course, we can also write 10 < Sum(x) and y == Minimum(x), but for simplicity of the presen-
tation, we shall always assume that numerical conditions are on the right side. For the semantics
of a numerical condition (�, k), and depending on the form of k (a value, a variable, an interval
or a set), we shall indiscriminately use k to denote the value of the constant k, the value of the
variable k, the interval l..u represented by k, or the set {a1, . . . , ap} represented by k.

Important. To add constraints to a model, one has to call the PyCSP3 function satisfy() while
passing as parameter(s):

◦ a stand-alone constraint

◦ a list of constraints

◦ a generator of constraints

◦ a sequence of (lists of) constraints (with commas used as a separator between constraints)

We say that constraints are posted (to the model), and every call to satisfy() is said to be a
posting operation.

51

Constraints over Integer Variables

Generic Constraints

Constraint intension

Constraint extension

Language-based Constraints

Constraint regular

Constraint mdd

Comparison-based Constraints

Constraints allDifferent, allDifferentList, allEqual

Constraints increasing, decreasing

Constraints lexIncreasing, lexDecreasing

Counting Constraints

Constraint sum

Constraint count

Constraint nValues

Constraint cardinality

Connection Constraints

Constraint maximum

Constraint minimum

Constraint element

Constraint channel

Packing and Scheduling Constraints

Constraint noOverlap

Constraint cumulative

Other Constraints

Constraint circuit

Constraint slide

Figure 3.1: Popular constraints over integer variables.

52

3.1 Constraint intension

An intension constraint corresponds to a Boolean expression, which is usually called predicate. For
example, the constraint x + y = z corresponds to an equation, which is an expression evaluated to
false or true according to the values assigned to the variables x, y and z. However, note that for
equality, we need to use ‘==’ in Python (the operator ‘=’ used for assignment cannot be redefined),
and so, the previous constraint must be written x+ y == z in PyCSP3. To build predicates, classical
arithmetic, relational and logical operators (and functions) are available; they are presented in Table
1.2 and Table 1.3. In Table 1.1, you can find a few examples of intension constraints. Note that the
integer values 0 and 1 are respectively equivalent to the Boolean values false and true This allows us
to combine Boolean expressions with arithmetic operators (for example, addition) without requiring
any type conversions. For example, it is valid to write (x < 5) + (y < z) == 1 for stating that exactly
one of the Boolean expressions x < 5 and y < z must be true, although it may be possible (and/or
relevant) to write it differently.

Below, P denotes a predicate expression with r formal parameters (not shown here, for sim-
plicity), X = 〈x0, x1, . . . , xr−1〉 denotes a sequence of r variables, the scope of the constraint, and
P (x0,x1, . . . ,xr−1) denotes the value (0/false or 1/true) returned by P for a specific instantiation of
the variables of X.

Semantics 1

intension(X,P), with X = 〈x0, x1, . . . , xr−1〉 and P a predicate iff
P (x0,x1, . . . ,xr−1) = true (1) // recall that 1 is equivalent to true

Zebra Puzzle. The Zebra puzzle (sometimes referred to as Einstein’s puzzle) is defined as follows.
There are five houses in a row, numbered from left to right. Each of the five houses is painted a
different color, and has one inhabitant. The inhabitants are all of different nationalities, own different
pets, drink different beverages and have different jobs.

Figure 3.2: In which house lives the zebra? (image from /commons.wikimedia.org)

We know that:

◦ colors are yellow, green, red, white, and blue

◦ nations of inhabitants are italy, spain, japan, england, and norway

◦ pets are cat, zebra, bear, snails, and horse

◦ drinks are milk, water, tea, coffee, and juice

◦ jobs are painter, sculptor, diplomat, pianist, and doctor

53

https://commons.wikimedia.org/wiki/File:Zebra_(PSF).png

◦ The painter owns the horse

◦ The diplomat drinks coffee

◦ The one who drinks milk lives in the white house

◦ The Spaniard is a painter

◦ The Englishman lives in the red house

◦ The snails are owned by the sculptor

◦ The green house is on the left of the red one

◦ The Norwegian lives on the right of the blue house

◦ The doctor drinks milk

◦ The diplomat is Japanese

◦ The Norwegian owns the zebra

◦ The green house is next to the white one

◦ The horse is owned by the neighbor of the diplomat

◦ The Italian either lives in the red, white or green house

A PyCSP3 model of this problem is given by the following file ‘Zebra.py’:

PyCSP3 Model 29

from pycsp3 import *

houses = range (5) # each house has a number from 0 (left) to 4 (right)

colors[i] is the house of the ith color
yellow , green , red , white , blue = colors = VarArray(size=5, dom=houses)

nations[i] is the house of the inhabitant with the ith nationality
italy , spain , japan , england , norway = nations = VarArray(size=5, dom=houses)

jobs[i] is the house of the inhabitant with the ith job
painter , sculptor , diplomat , pianist , doctor = jobs = VarArray(size=5, dom=houses)

pets[i] is the house of the inhabitant with the ith pet
cat , zebra , bear , snails , horse = pets = VarArray(size=5, dom=houses)

drinks[i] is the house of the inhabitant with the ith preferred drink
milk , water , tea , coffee , juice = drinks = VarArray(size=5, dom=houses)

satisfy(
AllDifferent(colors),
AllDifferent(nations),
AllDifferent(jobs),
AllDifferent(pets),
AllDifferent(drinks),

painter == horse ,
diplomat == coffee ,
white == milk ,
spain == painter ,
england == red ,
snails == sculptor ,
green + 1 == red ,
blue + 1 == norway ,

54

doctor == milk ,
japan == diplomat ,
norway == zebra ,
abs(green - white) == 1,
horse in {diplomat - 1, diplomat + 1},
italy in {red , white , green}

)

In this model, there are many equations. We also use the operator in for expressing a choice
between several values. Note how we define arrays of variables and unpack them so as to simplify the
task of posting constraints. For example, colors is an array of 5 variables, the first one colors[0]
being given yellow as alias, the second one colors[1] being given green as alias, and so on.

Important. Note that we use the operators |, & and ˆ for logically combining (sub-)expressions.
We can’t use the Python operators and, or and not (because they cannot be redefined). For example,
instead of writing:
horse in {diplomat - 1, diplomat + 1}

we could have written:
(horse == diplomat - 1) | (horse == diplomat + 1)

However, if instead of |, we ever use or:
(horse == diplomat - 1) or (horse == diplomat + 1) # ERROR: ’or’ cannot be used

we have a problem: only the first part of the disjunction is generated in XCSP3 (because of the
short-circuit evaluation of or by Python). Also, be careful about parentheses. If ever you write:
horse == diplomat - 1 | horse == diplomat + 1 # ERROR: not what you certainly mean

this is equivalent to:
horse == (diplomat - 1 | horse) == diplomat + 1

which is not what we wish (besides, in PyCSP3, we cannot build expressions for intention constraints
with chaining comparison).

3.2 Constraint extension

An extension constraint is often referred to as a table constraint. It is defined by enumerating in
a set the tuples of values that are allowed (tuples are called supports) or forbidden (tuples are called
conflicts) for a sequence of variables. A positive table constraint is then defined by a scope (a sequence
or tuple of variables) 〈scope〉 and a table (a set of tuples of values) 〈table〉 as follows:

〈scope〉 ∈ 〈table〉

When the table constraint is negative (i.e., enumerates forbidden tuples), we have:

〈scope〉 /∈ 〈table〉

With X denoting a scope (sequence or tuple of variables), and S and C denoting sets of supports
and conflicts, we have the following semantics for non-unary positive table constraints:

55

Semantics 2

extension(X,S), with X = 〈x0, x1, . . . , xr−1〉 and S a set of supports, iff
〈x0,x1, . . . ,xr−1〉 ∈ S

Prerequisite : ∀τ ∈ S, |τ | = |X| ≥ 2

and this one for non-unary negative table constraints:

Semantics 3

extension(X,C), with X = 〈x0, x1, . . . , xr−1〉 and C a set of conflicts, iff
〈x0,x1, . . . ,xr−1〉 /∈ C

Prerequisite : ∀τ ∈ C, |τ | = |X| ≥ 2

In PyCSP3, we can directly write table constraints in mathematical forms, by using tuples, sets and
the operators in and not in. The scope is given by a tuple of variables on the left of the constraining
expression and the table is given by a set of tuples of values on the right of the constraining expression.
Although not recommended (except for huge tables), it is possible to write scopes and tables under
the form of lists.

Traffic Lights. From CSPLib: “Consider a four way traffic junction with eight traffic lights. Four
of the traffic lights are for the vehicles and can be represented by the variables v1 to v4 with domains
{r, ry, g, y} (for red, red-yellow, green and yellow). The other four traffic lights are for the pedestrians
and can be represented by the variables p1 to p4 with domains {r, g}. The constraints on these
variables can be modeled by quaternary constraints on (vi, pi, vj , pj) for 1 ≤ i ≤ 4, j = (1 + i) mod 4
which allow just the tuples {(r, r, g, g), (ry, r, y, r), (g, g, r, r), (y, r, ry, r)}.”

Figure 3.3: How to adjust traffic lights? (image from freesvg.org)

PyCSP3 Model 30

from pycsp3 import *

R, RY, G, Y = "red", "red -yellow", "green", "yellow"

table = {(R, R, G, G), (RY , R, Y, R), (G, G, R, R), (Y, R, RY, R)}

56

http://www.csplib.org/Problems/prob016
https://freesvg.org/traffic-lights-selection-vector-image

v[i] is the color for the ith vehicle traffic light
v = VarArray(size=4, dom={R, RY, G, Y})

p[i] is the color for the ith pedestrian traffic light
p = VarArray(size=4, dom={R, G})

satisfy(
(v[i], p[i], v[(i + 1) % 4], p[(i + 1) % 4]) in table for i in range (4)

)

Note how we naturally build a set of tuples (with symbolic values, here). Four quaternary table
constraints are posted in this model.

Traveling Tournament with Predefined Venues. From CSPLib: “The Traveling Tournament
Problem with Predefined Venues (TTPPV) was introduced in [31] and consists of finding an optimal
compact single round robin schedule for a sport event. Given a set of n teams, each team has to
play against every other team exactly once. In each round, a team plays either at home or away,
however no team can play more than two (or three) consecutive times at home or away. The sum of
the traveling distance of each team has to be minimized. The particularity of this problem resides on
the venue of each game that is predefined, i.e. if team a plays against b it is already known whether
the game is going to be held at a’s home or at b’s home. The original instances assume symmetric
circular distances: for i ≤ j, di,j = dj,i = min(j − i, i− j + n).”

Figure 3.4: Traveling Tournament (image from freesvg.org)

An example of data is given by the following JSON file:
{

"nTeams ": 8,
"predefinedVenues ": [

[0,1,1,0,0,0,0,1],
[0,0,0,1,0,1,0,1],
...

]
}

A PyCSP3 model of this problem is given by the following file:

PyCSP3 Model 31

from pycsp3 import *

nTeams , pv = data
nRounds = nTeams - 1

def cdist(i, j): # circular distance between i and j
return min(abs(i - j), nTeams - abs(i - j))

def table_end(i):

57

http://www.csplib.org/Problems/prob068
https://freesvg.org/vector-graphics-of-hockey-tournament-icon

when playing at home (whatever the opponent , travel distance is 0)
return {(1, ANY , 0)} | {(0, j, cdist(i, j)) for j in range(nTeams) if j != i}

def table_intern(i):
return ({(1, 1, ANY , ANY , 0)} |

{(0, 1, j, ANY , cdist(j, i)) for j in range(nTeams) if j != i} |
{(1, 0, ANY , j, cdist(i, j)) for j in range(nTeams) if j != i} |
{(0, 0, j, k, cdist(j, k)) for j in range(nTeams) for k in range(nTeams)

if different_values(i, j, k)})

def automaton ():
q, q01 , q02 , q11 , q12 = "q", "q01", "q02", "q11", "q12"
t = [(q, 0, q01), (q, 1, q11), (q01 , 0, q02), (q01 , 1, q11), (q11 , 0, q01),

(q11 , 1, q12), (q02 , 1, q11), (q12 , 0, q01)]
return Automaton(start=q, transitions=t, final={q01 , q02 , q11 , q12})

o[i][k] is the opponent (team) of the ith team at the kth round
o = VarArray(size=[nTeams , nRounds], dom=range(nTeams))

h[i][k] is 1 iff the ith team plays at home at the kth round
h = VarArray(size=[nTeams , nRounds], dom={0, 1})

t[i][k] is the traveled distance by the ith team at the kth round.
An additional round is considered for returning at home.
t = VarArray(size=[nTeams , nRounds + 1], dom=range(nTeams // 2 + 1))

satisfy(
a team cannot play against itself
[o[i][k] != i for i in range(nTeams) for k in range(nRounds)],

ensuring predefined venues
[pv[i][o[i][k]] == h[i][k] for i in range(nTeams) for k in range(nRounds)],

ensuring symmetry of games: if team i plays against j, then j plays against i
[o[:, k][o[i][k]] == i for i in range(nTeams) for k in range(nRounds)],

each team plays once against all other teams
[AllDifferent(row) for row in o],

at most 2 consecutive games at home , or consecutive games away
[h[i] in automaton () for i in range(nTeams)],

handling traveling for the first game
[(h[i][0], o[i][0], t[i][0]) in table_end(i) for i in range(nTeams)],

handling traveling for the last game
[(h[i][-1], o[i][-1], t[i][-1]) in table_end(i) for i in range(nTeams)],

handling traveling for two successive games
[(h[i][k], h[i][k + 1], o[i][k], o[i][k + 1], t[i][k + 1]) in table_intern(i)

for i in range(nTeams) for k in range(nRounds - 1)]
)

minimize(
minimizing summed up traveled distance
Sum(t)

)

Two functions, called table_end() and table_intern(), are introduced here to build short tables,
i.e., tables that contain the special symbol ’*’, denoted in PyCSP3 by the constant ANY. When the
symbol ’*’ is present, it means that any value from the domain of the corresponding variable can be
present at its position. For more information about short tables, see e.g., [26, 41]. Remember that

58

the symbol | can be used in Python to perform the union of two sets, and that we use the notation
o[:, k] to extract the kth column of the array o, as in NumPy. Some regular constraints (based on
automatas) are also posted, but we shall discuss them in the next section.

Subgraph Isomorphism Problem. An instance of the subgraph isomorphism problem is defined
by a pattern graph Gp = (Vp, Ep) and a target graph Gt = (Vt, Et): the objective is to determine
whether Gp is isomorphic to some subgraph(s) in Gt. Finding a solution to such a problem instance
means then finding a subisomorphism function, that is an injective mapping f : Vp → Vt such that all
edges of Gp are preserved: ∀(v, v′) ∈ Ep, (f(vp), f(v′p)) ∈ Et. Here, we refer to the partial, and not
the induced subgraph isomorphism problem.

1

2 3

4

(a) Pattern Graph

a

b c

d

e

(b) Target Graph

Figure 3.5: An Instance of the Subgraph Isomorphism Problem

An example of data is given by the following JSON file:
{

"nPatternNodes ": 180,
"nTargetNodes ": 200,
"patternEdges ":[[0,1], [0,3], [0,17], ...],
"targetEdges ":[[0,34], [0,65], [0,129], ...]

}

A PyCSP3 model of this problem is given by the following file:

PyCSP3 Model 32

from pycsp3 import *

n, m, p_edges , t_edges = data

useful auxiliary structures
table = {(i, j) for i, j in t_edges} | {(j, i) for i, j in t_edges}
p_loops = [i for (i, j) in p_edges if i == j]
t_loops = [i for (i, j) in t_edges if i == j]
p_degrees = [len([edge for edge in p_edges if i in edge]) for i in range(n)]
t_degrees = [len([edge for edge in t_edges if i in edge]) for i in range(m)]
conflicts = [{j for j in range(m) if t_degrees[j] < p_degrees[i]} for i in range(n)]

x[i] is the target node to which the ith pattern node is mapped
x = VarArray(size=n, dom=range(m))

satisfy(
ensuring injectivity
AllDifferent(x),

preserving edges
[(x[i], x[j]) in table for (i, j) in p_edges],

being careful of self -loops
[x[i] in t_loops for i in p_loops],

59

tag(redundant -constraints)
[x[i] not in t for i, t in enumerate(conflicts)]

)

In this model, some binary extension constraints are posted for preserving edges, and some unary
extension constraints are posted for handling self-loops as well as for reducing domains by reasoning
from node degrees. Note that for a unary extension constraint, we use the form: x in S (and x not
in S) where x is a variable of the model and S a set of values. For a negative table constraint, if ever
the length of the table is 0, then, no constraint is posted.

3.3 Constraint regular

Definition 1 (DFA) A deterministic finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0, F) where Q
is a finite set of states, Σ is a finite set of symbols called the alphabet, δ : Q× Σ→ Q is a transition
function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states.

Given an input string (a finite sequence of symbols taken from the alphabet Σ), the automaton
starts in the initial state q0, and for each symbol in sequence of the string, applies the transition
function to update the current state. If the last state reached is a final state then the input string is
accepted by the automaton. The set of strings that the automaton A accepts constitutes a language,
denoted by L(A), which is technically a regular language. When the automaton is non-deterministic,
we can find two transitions (qi, a, qj) and (qi, a, qk) such that qj 6= qk.

A regular constraint [13, 34] ensures that the sequence of values assigned to the variables of
its scope must belong to a given regular language (i.e., forms a word that can be recognized by
a deterministic, or non-deterministic, finite automaton). For such constraints, a DFA is then used
to determine whether or not a given tuple is accepted. This can be an attractive approach when
constraint relations can be naturally represented by regular expressions in a known regular language.
For example, in rostering problems, regular expressions can represent valid patterns of activities. The
semantics is:

Semantics 4

regular(X,A), with X = 〈x0, x1, . . . , xr−1〉 and A a finite automaton, iff
x0x1 . . .xr−1 ∈ L(A)

In PyCSP3, we can directly write regular constraints in mathematical forms, by using tuples,
automatas and the operator in. The scope of a constraint is given by a tuple of variables on the
left of the constraining expression and an automaton is given on the right of the constraining expres-
sion. Automatas in PyCSP3 are objects of Class Automaton that are built by calling the following
constructor:

def __init__(self , *, start , transitions , final):

Three named parameters are required:

◦ start is the name of the initial state (a string)

◦ transitions is a set (or list) of 3-tuples

◦ final is the set (or list) of the names of final states (strings)

Note that the set of states and the alphabet can be inferred from transitions.

astart b c d e

0

1 1 0

0

1

0

60

As an example, the constraint defined on scope 〈x1, x2, . . . , x7〉 from the simple automation de-
picted above is given in PyCSP3 by:
a, b, c, d, e = "a", "b", "c", "d", "e"
t = {(a,0,a), (a,1,b), (b,1,c), (c,0,d), (d,0,d), (d,1,e), (e,0,e)}
automaton = Automaton(start=a, transitions=t, final=e)

satisfy(
(x1 , x2 , x3, x4, x5, x6, x7) in automaton ,

...
)

This gives, after compiling to XCSP3:
<regular >

<list > x1 x2 x3 x4 x5 x6 x7 </list >
<transitions >

(a,0,a)(a,1,b)(b,1,c)(c,0,d)(d,0,d)(d,1,e)(e,0,e)
</transitions >
<start > a </start >
<final > e </final >

</regular >

Traveling Tournament with Predefined Venues. This problem was introduced in Section 3.2.
Here is a snippet of the PyCSP3 model:
def automaton ():

q, q01 , q02 , q11 , q12 = "q", "q01", "q02", "q11", "q12"
t = [(q, 0, q01), (q, 1, q11), (q01 , 0, q02), (q01 , 1, q11), (q11 , 0, q01),

(q11 , 1, q12), (q02 , 1, q11), (q12 , 0, q01)]
return Automaton(start=q, transitions=t, final ={q01 , q02 , q11 , q12})

satisfy(
at most 2 consecutive games at home , or consecutive games away
[h[i] in automaton () for i in range(nTeams)],

...
)

3.4 Constraint mdd

The constraint mdd [15, 16, 17, 33] ensures that the sequence of values assigned to the variables it
involves follows a path going from the root of the described MDD (Multi-valued Decision Diagram)
to the unique terminal node. Because the graph is directed, acyclic, with only one root node and only
one terminal node, we just need to introduce the set of transitions.

Below, L(M) denotes the language recognized by a MDD M .

Semantics 5

mdd(X,M), with X = 〈x0, x1, . . . , xr−1〉 and M a MDD, iff
x0x1 . . .xr−1 ∈ L(M)

In PyCSP3, we can directly write mdd constraints in mathematical forms, by using tuples, MDDs
and the operator in. The scope of a constraint is given by a tuple of variables on the left of the
constraining expression and an MDD is given on the right of the constraining expression. MDDs in
PyCSP3 are objects of Class MDD that are built by calling the following constructor:

def __init__(self , transitions):

61

The named parameter transitions is required: this is a list (not a set) of 3-tuples. As said above,
the root and terminal nodes (and the full set of states) can be inferred from transitions, if the MDD
is well constructed.

r

n1 n2 n3

n4 n5

t

u

v

w

0 1 2

2 2 0

0 0

As an example, the constraint of scope 〈u, v, w〉 is defined from the simple MDD depicted above
(with root node r and terminal node t) as:
r, n1, n2, n3, n4, n5, t = "r", "n1", "n2", "n3", "n4", "n5", "t"
tr = [(r,0,n1), (r,1,n2), (r,2,n3), (n1 ,2,n4),

(n2 ,2,n4), (n3 ,0,n5), (n4 ,0,t), (n5 ,0,t)]

satisfy(
(u, v, w) in MDD(tr),

...
)

3.5 Constraint allDifferent

The constraint allDifferent, see [37, 40, 21], ensures that the variables in a specified list X must
all take different values. A variant, called allDifferentExcept in the literature [3, 18], enforces
variables to take distinct values, except those that are assigned to some specified values (often, the
single value 0). This is the role of the set E below.

Semantics 6

allDifferent(X,E), with X = 〈x0, x1, . . .〉, iff
∀(i, j) : 0 ≤ i < j < |X|,xi 6= xj ∨ xi ∈ E ∨ xj ∈ E

allDifferent(X) iff allDifferent(X, ∅)

In PyCSP3, to post a constraint allDifferent, we must call the function AllDifferent() whose
signature is:

def AllDifferent(term , *others , excepting=None , matrix=None):

The two parameters term and others are positional, and allow us to pass the terms either in se-
quence (individually) or under the form of a list. The optional named parameter excepting indicates
the value (or the set of values) that must be ignored, and the optional named parameter matrix indi-
cates if a constraint allDifferent must be imposed on both rows and columns of a two-dimensional
list (matrix). More accurately, the terms can be given as:

◦ a list of variables, as in AllDifferent(x)

62

◦ a sequence of individual variables, as in AllDifferent(u, v, w)

◦ a generator of variables, as in AllDifferent(x[i] for in range(n) if i%2 > 0)

◦ a sequence of individual expressions, as in AllDifferent(x[1] + 1, x[2] + 2, x[3] + 3)

◦ a generator of expressions, as in AllDifferent(x[i] + i for in range(n))

Below, we introduce some additional models involving the allDifferent constraint.

Send-More-Money. From Wikipedia: Cryptarithmetic is a type of mathematical game consisting
of a mathematical equation among unknown numbers, whose digits are represented by letters. The
goal is to identify the value of each letter. The classic example, published in the July 1924 issue of
Strand Magazine by Henry Dudeney is:

S E N D
+ M O R E
= M O N E Y

A PyCSP3 model for this specific example is given by:

PyCSP3 Model 33

from pycsp3 import *

letters[i] is the digit of the ith letter involved in the equation
s, e, n, d, m, o, r, y = letters = VarArray(size=8, dom=range (10))

satisfy(
letters are given different values
AllDifferent(letters),

words cannot start with 0
[s > 0, m > 0],

respecting the mathematical equation
[s, e, n, d] * [1000, 100, 10, 1]

+ [m, o, r, e] * [1000, 100, 10, 1]
== [m, o, n, e, y] * [10000 , 1000, 100, 10, 1]

)

It is important to note that not only variables but also general expressions can be involved in the
allDifferent constraint, as shown in Section 1.2.1 and the following model.

Costas Arrays. From CSPLib: “A costas array is a pattern of n marks on an n×n grid, one mark
per row and one per column, in which the n× (n−1)/2 (displacement) vectors between the marks are
all-different. Such patterns are important as they provide a template for generating radar and sonar
signals with ideal ambiguity functions.”

A PyCSP3 model of this problem is given by the following file ‘CostasArray.py’:

63

https://en.wikipedia.org/wiki/Verbal_arithmetic
http://www.csplib.org/Problems/prob076/

PyCSP3 Model 34

from pycsp3 import *

n = data

x[i] is the row where is put the ith mark (on the ith column)
x = VarArray(size=n, dom=range(n))

satisfy(
all marks are on different rows (and columns)
AllDifferent(x),

all displacement vectors between the marks must be different
[AllDifferent(x[i] - x[i + d] for i in range(n - d)) for d in range(1, n - 1)]

)

Now, assuming that x is a two-dimensional list (array) of variables, the matrix variant of allDifferent
is imposed on x by: AllDifferent(x, matrix=True). If x = [[u1, u2, u3, u4], [v1, v2, v3, v4], [w1, w2, w3, w4]],
then the posted constraint is equivalent to having posted:

◦ AllDifferent(u1, u2, u3, u4)

◦ AllDifferent(v1, v2, v3, v4)

◦ AllDifferent(w1, w2, w3, w4)

◦ AllDifferent(u1, v1, w1)

◦ AllDifferent(u2, v2, w2)

◦ AllDifferent(u3, v3, w3)

◦ AllDifferent(u4, v4, w4)

The matrix variant of allDifferent was introduced in Section 1.3.1. Here is another illustration.

Futoshiki. From Wikipedia: “Futoshiki is a logic puzzle game from Japan, which was developed by
Tamaki Seto in 2001. The puzzle is played on a square grid, and the objective is to place the numbers
such that each row and column contains only one of each digit. Some digits may be given at the start,
and inequality constraints are initially specified between some of the squares, such that one must be
higher or lower than its neighbor.”

An example of data is given by the following JSON file:

Figure 3.6: The 12 Costas arrays of order 4. (image from commons.wikimedia.org)

64

https://en.wikipedia.org/wiki/Futoshiki
https://commons.wikimedia.org/wiki/File:CostasArray44.png

(a) Puzzle (b) Solution

Figure 3.7: Solving a Futoshiki Puzzle. (images from commons.wikimedia.org)

{
"size": 3,
"nbHints ": [{"row":0, "col":0, "number ":2}],
"opHints ": [

{"row":0, "col":1, "lessThan ":true , "horizontal ":true},
{"row":2, "col":0, "lessThan ":true , "horizontal ":true}

]
}

A PyCSP3 model of this problem is given by the following file ‘Futoshiki.py’:

PyCSP3 Model 35

from pycsp3 import *

n, nbHints , opHints = data # n is the order of the grid

x[i][j] is the number put at row i and column j
x = VarArray(size=[n, n], dom=range(1, n + 1))

satisfy(
different values on each row and each column
AllDifferent(x, matrix=True),

respecting number hints
[x[i][j] == k for (i, j, k) in nbHints],

respecting operator hints
[y < z if lt else y > z

for (y, z, lt) in [(x[i][j], x[i][j + 1] if hr else x[i + 1][j], lt)
for (i, j, lt, hr) in opHints]]

)

Because objects from the JSON file are automatically converted to named tuples, note how we can
use tuple unpacking when iterating overs lists of such objects.

Here is now an illustration concerning the “except” variant of allDifferent.

Progressive Party. This problem will be introduced in Section 3.17. Here is a snippet of the
PyCSP3 model:
s[b][p] is the scheduled (visited) boat by the crew of boat b at period p
s = VarArray(size=[nBoats , nPeriods], dom=range(nBoats))

65

https://commons.wikimedia.org/wiki/File:Futoshiki1.svg

satisfy(
...

a guest crew cannot revisit a host
[AllDifferent(s[b], excepting=b) for b in range(nBoats)],

...
}

Because the crew can stay several periods on his boat, while visiting different boats on other
periods, we need allDifferent with the named parameter excepting.

3.6 Constraint allDifferentList

The constraint allDifferentList admits as parameters two (or more) lists of integer variables, and
ensures that the tuple of values taken by variables of the first list is different from the tuple of values
taken by variables of the second list. If more than two lists are given, all tuples must be different. A
variant enforces tuples to take distinct values, except those that are assigned to some specified tuples
(often, the single tuple containing only 0).

Semantics 7

allDifferentList(X , E), with X = 〈X1, X2, . . .〉, E the set of discarded tuples, iff
∀(i, j) : 1 ≤ i < j ≤ |X |,Xi 6= Xj ∨Xi ∈ E ∨Xj ∈ E

allDifferentList(X) iff allDifferentList(X , ∅)

Prerequisite : |X | ≥ 2 ∧ ∀i : 1 ≤ i < |X |, |Xi| = |Xi+1| ≥ 2 ∧ ∀τ ∈ E, |τ | = |X1|

In PyCSP3, to post a constraint allDifferentList, we must call the function AllDifferentList()
whose signature is:

def AllDifferentList(term , *others , excepting=None):

The two parameters term and others are positional, and allow us to pass the terms either in
sequence (individually) or under the form of a matrix. The optional named parameter excepting
indicates the tuple (or the set of tuples) that must be ignored.

Crossword Generation. “Given a grid with imposed black cells (spots) and a dictionary, the
problem is to fulfill the grid with the words contained in the dictionary.” An illustration is given by
Figure 3.8.

An example of data is given by the following JSON file ‘grid-ogd.json’:
{

"spots": [
[0,0,0,0,0,1],
[0,1,0,0,0,0],
[0,0,0,1,0,0],
[0,0,1,0,0,0],
[0,0,0,0,1,0],
[1,0,0,0,0,0]],

"dictFileName ": "ogd"
}

The grid is specified by the field spots of the root object in the JSON file; when present, the value
1 means the presence of a spot (black cell). The name of the dictionary to be used is also given (it is

66

(a) Crossword Grid

A L O H A

X R I C H

I C E H A

O R W E I

M A M A F

G E N O A

(b) Solution

Figure 3.8: Making a Crossword Puzzle.

clearly unreasonable to include the content of the dictionary in the JSON file if we expect to generate
several instances from the same dictionary).

A PyCSP3 model of this problem is given by the following file ‘Crossword.py’:

PyCSP3 Model 36

from pycsp3 import *

spots , dict_name = data
words = dict() # we load/build the dictionary of words
for line in open(dict_name):

code = alphabet_positions(line.strip (). lower ())
words.setdefault(len(code), []). append(code)

def find_holes(tab , transposed):
def build_hole(row , col , length , horizontal):

if horizontal:
return Hole(row , slice(col , col + length), length)

return Hole(slice(col , col + length), row , length)

Hole = namedtuple("Hole", "i j r") # i and j are indexes (one being a slice)
p, q = len(tab), len(tab [0])
t = []
for i in range(p):

start = -1
for j in range(q):

if tab[i][j] == 1:
if start != -1 and j - start >= 2:

t.append(build_hole(i, start , j - start , not transposed))
start = -1

elif start == -1:
start = j

elif j == q - 1 and q - start >= 2:
t.append(build_hole(i, start , q - start , not transposed))

return t

holes = find_holes(spots , False) + find_holes(columns(spots), True)
arities = sorted(set(arity for (_, _, arity) in holes))
n, m, nHoles = len(spots), len(spots [0]), len(holes)

x[i][j] is the letter , number from 0 to 25, at row i and column j (when no spot)
x = VarArray(size=[n, m], dom=lambda i, j: range (26) if spots[i][j] == 0 else None)

67

satisfy(
fill the grid with words
[x[i, j] in words[r] for (i, j, r) in holes],

tag(distinct -words)
[AllDifferentList(x[i, j] for (i, j, r) in holes if r == arity)

for arity in arities]
)

One can then execute:

python Crossword.py -data=grid-ogd.json

However, if one wants to use another dictionary, for example the dictionary (in a file called) ‘words’,
one can execute:

python Crossword.py -data=[grid-ogd.json,dictFileName=’words’]

Finally, one can find irrelevant the fact of having both the grid and the dictionary specified in the
JSON file. One may prefer to have a JSON file ‘grid.json’ depicting the grid:

{
"spots": [

[0,0,0,0,0,1],
[0,1,0,0,0,0],
[0,0,0,1,0,0],
[0,0,1,0,0,0],
[0,0,0,0,1,0],
[1,0,0,0,0,0]]

}

and execute:

python Crossword.py -data=[grid.json,dictFileName=’ogd’]

or

python Crossword.py -data=[grid.json,dictFileName=’words’]

3.7 Constraint allEqual

The constraint allEqual ensures that all involved variables take the same value.

Semantics 8

allEqual(X), with X = 〈x0, x1, . . .〉, iff
∀(i, j) : 0 ≤ i < j < |X|,xi = xj

In Python, we can call the function AllEqual() with a list of variables as parameter.

Domino. As an illustration, let us consider the problem Domino that was introduced in [42] to em-
phasize the sub-optimality of a generic constraint propagation algorithm (called AC3). Each instance,
characterized by two integers n and d, is binary and corresponds to an undirected constraint graph
with a cycle. More precisely, n denotes the number of variables, each with {0, . . . , d− 1} as domain,
and there exist:

◦ n− 1 equality constraints: xi = xi+1,∀i ∈ {0, . . . , n− 2}

68

Figure 3.9: Filtering as a Domino (cascade) effect. (image from pngimg.com)

◦ a trigger constraint: (x0 + 1 = xn−1) ∨ (x0 = xn−1 = d− 1)

Those who are interested in the way domains of variables can be filtered (i.e., reduced) in this
problem will observe a kind of Domino (cascade) effect [42, 27]. A PyCSP3 model of this problem is
given by the following file ‘Domino.py’:

PyCSP3 Model 37

from pycsp3 import *

n, d = data

x[i] is the value of the ith domino
x = VarArray(size=n, dom=range(d))

satisfy(
AllEqual(x),

(x[0] + 1 == x[-1]) | ((x[0] == x[-1]) & (x[0] == d - 1))
)

Of course, it is possible to replace the constraint allEqual by:
[x[i] == x[i + 1] for i in range(n - 1)],

The constraint allEqual is mainly introduced for its ease of use.

3.8 Constraints increasing and decreasing

The constraint ordered ensures that the variables of a specified list of variables X are ordered in
sequence, according to a specified relational operator � ∈ {<,≤,≥, >}. An optional list of integers
or variables L indicates the minimum distance between any two successive variables of X.

Semantics 9

ordered(X,L,�), with X = 〈x0, x1, . . .〉, L = 〈l0, l1, . . .〉 and � ∈ {<,≤,≥, >}, iff
∀i : 0 ≤ i < |X| − 1,xi + li � xi+1

ordered(X,�), with X = 〈x0, x1, . . .〉 and � ∈ {<,≤,≥, >}, iff
∀i : 0 ≤ i < |X| − 1,xi � xi+1

Prerequisite : |X| = |L|+ 1

In PyCSP3, to post a constraint ordered, we must call either the function Increasing() or the
function Decreasing(), whose signatures are:

69

https://pngimg.com/download/54995

def Increasing(term , *others , strict=False , lengths=None):
def Decreasing(term , *others , strict=False , lengths=None):

The two parameters term and others are positional, and allow us to pass the variables either in
sequence (individually) or under the form of a list. The optional named parameter strict indicates
if the relation must be strict or not, and the optional named parameter lengths is for specifying
minimum distances. In other words, assuming that x = [u, v, w] is a simple list of variables, ordering
variables of x can be imposed by:

◦ Increasing(x, strict=True)
ensuring u < v < w

◦ Increasing(x)
ensuring u ≤ v ≤ w
◦ Decreasing(x)

ensuring u ≥ v ≥ w
◦ Decreasing(x, strict=True)

ensuring u > v > w

The constraints increasing and decreasing are mainly an ease of use, as it is possible to post
equivalent intension constraints. For example, Increasing(x, strict=True) can be equivalently
written as:

[x[i] < x[i + 1] for i in range(len(x) - 1)]

Steiner Triple Systems. From CSPLib: “The ternary Steiner problem of order n consists of
finding a set of n × (n − 1)/6 triples of distinct integer elements in {1, 2, . . . , n} such that any two
triples have at most one common element. It is a hypergraph problem coming from combinatorial
mathematics where n modulo 6 has to be equal to 1 or 3. One possible solution for n = 7 is
{{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}. This is a particular case of the more
general Steiner system.”

A PyCSP3 model of this problem is given by the following file ‘Steiner3.py’:

PyCSP3 Model 38

from pycsp3 import *

n = data
nTriples = (n * (n - 1)) // 6
table = {(i1 , i2, i3, j1, j2, j3)

for (i1, i2, i3 , j1 , j2 , j3) in product(range(1, n + 1), repeat =6)
if different_values(i1, i2, i3) and different_values(j1 , j2 , j3)

and len({i for i in {i1 , i2 , i3} if i in {j1 , j2 , j3}}) <= 1}

x[i] is the ith triple of value
x = VarArray(size=[nTriples , 3], dom=range(1, n + 1))

satisfy(
each triple must be formed of strictly increasing integers
[Increasing(triple , strict=True) for triple in x],

each pair of triples must share at most one value
[(triple1 + triple2) in table for (triple1 , triple2) in combinations(x, 2)]

)

70

http://www.csplib.org/Problems/prob044

Figure 3.10: The Fano plane is a Steiner triple system. The triples (blocks) correspond to the 7 lines,
each containing 3 points. Every pair of points belongs to a unique line.

3.9 Constraints lexIncreasing and lexDecreasing

The constraint ordered can be naturally lifted to lists, by considering the lexicographic order. Because
this constraint is very popular, it is called lex, instead of ordered over lists of integer variables. The
constraint lex, see [12, 20], ensures that the tuple formed by the values assigned to the variables of a
first specified list X1 is related to the tuple formed by the values assigned to the variables of a second
specified list X2 with respect to a specified lexicographic order operator � ∈ {<lex,≤lex,≥lex, >lex}.
If more than two lists of variables are specified, the entire sequence of tuples must be ordered; this
captures then lexChain [11].

Semantics 10

lex(X ,�), with X = 〈X0, X1, . . .〉 and � ∈ {<lex,≤lex,≥lex, >lex}, iff
∀i : 0 ≤ i < |X | − 1,Xi �Xi+1

Prerequisite : |X | ≥ 2 ∧ ∀i : 0 ≤ i < |X | − 1, |Xi| = |Xi+1| ≥ 2

In PyCSP3, to post a constraint lex, we must call either the function LexIncreasing() or the
function lexDecreasing(), whose signatures are:
def LexIncreasing(term , *others , strict=False , matrix=False):
def LexDecreasing(term , *others , strict=False , matrix=False):

The two parameters term and others are positional, and allow us to pass the lists either in sequence
(individually) or under the form of a two-dimensional list. The optional named parameter strict
indicates if the relation must be strict or not, and the optional named parameter matrix indicates if
a lexicographic order must be imposed on both rows and columns of a two-dimensional list (matrix).
In other words, assuming that x, y and z are simple lists of variables, ordering lexicographically x, y
and z can be imposed by:

◦ LexIncreasing(x1, x2, x3, strict=True)
ensuring x <lex y <lex z

◦ LexIncreasing(x1, x2, x3)
ensuring x ≤lex y ≤lex z

◦ LexDecreasing(x1, x2, x3)
ensuring x ≥lex y ≥lex z

◦ LexDecreasing(x1, x2, x3, strict=True)
ensuring x >lex y >lex z

71

Now, assuming that x is a two-dimensional list of variables, the matrix variant of lex with ≤lex (for
example) as operator is imposed on x by: LexIncreasing(x, matrix=True). If x = [[p, q, r], [u, v, w]],
then the posted constraint is equivalent to having posted:

◦ (p, q, r) ≤lex (u, v, w)

◦ (p, u) ≤lex (q, v) ≤lex (r, w)

Social Golfers. “The coordinator of a local golf club has come to you with the following problem.
In their club, there are 32 social golfers, each of whom play golf once a week, and always in groups
of 4. They would like you to come up with a schedule of play for these golfers, to last as many
weeks as possible, such that no golfer plays in the same group as any other golfer on more than one
occasion. The problem can easily be generalized to that of scheduling G groups of K golfers over at
most W weeks, such that no golfer plays in the same group as any other golfer twice (i.e. maximum
socialisation is achieved). For the original problem, the values of G and K are respectively 8 and 4.”
See CSPLib.

Figure 3.11: A golfer who apparently needs socialization. (image from www.publicdomainpictures.net)

A PyCSP3 model of this problem is given by the following file ‘SocialGolfers.py’:

PyCSP3 Model 39

from pycsp3 import *

nGroups , size, nWeeks = data
nPlayers = nGroups * size

g[w][p] is the group admitting on week w the player p
g = VarArray(size=[nWeeks , nPlayers], dom=range(nGroups))

satisfy(
ensuring that two players don’t meet more than one time
[(g[w1][p1] != g[w1][p2]) | (g[w2][p1] != g[w2][p2])

for w1, w2 in combinations(nWeeks , 2) for p1, p2 in combinations(nPlayers , 2)],

respecting the size of the groups
[Cardinality(g[w], occurrences ={i: size for i in range(nGroups)})

for w in range(nWeeks)],

tag(symmetry -breaking)
LexIncreasing(g, matrix=True)

)

72

http://www.csplib.org/Problems/prob010
https://www.publicdomainpictures.net/pictures/140000/velka/angry-golf-man.jpg

We have the guarantee of keeping at least one solution if the instance is satisfiable, when the
matrix lex constraint is posted.

3.10 Constraint sum

The constraint sum is one of the most important constraint. This constraint may involve (integer or
variable) coefficients, and is subject to a numerical condition (�, k). For example, a form of sum,
sometimes called subset-sum or knapsack [39, 35] involves the operator in, and ensures that the
computed sum belongs to a specified interval. Below, we introduce the semantics while considering a
main list X of variables and a list C of coefficients:

Semantics 11

sum(X,C, (�, k)), with X = 〈x0, x1, . . .〉, and C = 〈c0, c1, . . .〉, iff
(
∑|X|−1

i=0 ci × xi)� k

Prerequisite : |X| = |C| ≥ 2

In PyCSP3, to post a constraint sum, we must call the function Sum() whose signature is:
def Sum(term , *others):

The two parameters term and others are positional, and allow us to pass the terms either in
sequence (individually) or under the form of a list. More accurately, the terms can be given as:

◦ a list of variables, as in Sum(x)

◦ a sequence of individual variables, as in Sum(u, v, w)

◦ a generator of variables, as in Sum(x[i] for in range(n) if i%2 > 0)

◦ a generator of variables, with coefficients, as in Sum(x[i] * costs[i] for in range(n))

◦ a generator of expressions, as in Sum(x[i] > 0 for in range(n))

◦ a generator of expressions, with coefficients, as in Sum((x[i] + y[i]) * costs[i] for in
range(n))

Note that arguments are flattened, meaning that variables (and expressions) are collected from
arguments to form a simple list even if multi-dimensional structures (lists) are involved, and while
discarding any occurrence of the value None. For example, flattening [[u, v], [None, w]] gives
[u, v, w].

The object obtained when calling Sum() must be restricted by a condition (typically, defined by a
relational operator and a limit).

Magic Sequence. This problem was introduced in Section 1.2.3. Here is a snippet of the PyCSP3

model:
satisfy(

...

tag(redundant -constraints)
[

Sum(x) == n,

Sum((i - 1) * x[i] for i in range(n)) == 0
]

)

73

The first sum constraint involves a simple list x of variables whereas the second one involves terms
that are products of variables and coefficients.

Importantly, it is possible to combine several objects Sum with operators + and − (and to compare
them, which is equivalent to a subtraction). This is illustrated below, with a general model for crypto-
arithmetic puzzles (in Section 3.5, we introduced a specific model dedicated to ‘send+more=money’).

Crypto Puzzle. In crypto-arithmetic problems, digits (values between 0 and 9) are represented by
letters. Different letters stand for different digits, and different occurrences of the same letter denote
the same digit. The problem is then represented as an arithmetic operation between words. The task
is to find out which letter stands for which digit, so that the result of the given arithmetic operation
is true.

For example,

N O
+ N O
= Y E S

C R O S S
+ R O A D S
= D A N G E R

D O N A L D
+ G E R A L D
= R O B E R T

A PyCSP3 model of this problem is given by the following file ‘CryptoPuzzle.py’:

PyCSP3 Model 40

from pycsp3 import *

word1 , word2 , word3 = words = [w.lower() for w in data]
letters = set(alphabet_positions(word1 + word2 + word3))
n = len(word1) ; assert len(word2) == n and len(word3) in {n, n + 1}

x[i] is the value assigned to the ith letter (if present) of the alphabet
x = VarArray(size=26, dom=lambda i: range (10) if i in letters else None)

auxiliary lists of variables associated with the three words
x1 , x2 , x3 = [[x[i] for i in reversed(alphabet_positions(word))] for word in words]

satisfy(
all letters must be assigned different values
AllDifferent(x),

the most significant letter of each word cannot be equal to 0
[x1[-1] != 0, x2[-1] != 0, x3[-1] != 0],

ensuring the crypto -arithmetic sum
Sum((x1[i] + x2[i]) * 10 ** i for i in range(n))

== Sum(x3[i] * 10 ** i for i in range(len(x3)))
)

The PyCSP3 function alphabet_positions() returns a tuple composed with the position in the
alphabet of all letters of a specified string. For example, alphabet_positions("about") returns (0,
1, 14, 20, 19). Note how two objects Sum are involved. Of course the crypto-arithmetic sum could
also have been written as:

Sum((x1[i] + x2[i]) * 10 ** i for i in range(n))
- Sum(x3[i] * 10 ** i for i in range(len(x3))) == 0

To well understand the way the constraint sum is constructed, note that executing:

python CryptoPuzzle.py -data=[SEND,MORE,MONEY]

yields the following XCSP3 file:

74

<instance format="XCSP3" type="CSP">
<variables >

<array id="x" note="x[i] is the value assigned to the ith letter (if present) of
the alphabet" size="[26]"> 0..9 </array >

</variables >
<constraints >

<allDifferent note="all letters must be assigned different values">
x[3..4] x[12..14] x[17..18] x[24]

</allDifferent >
<group note="the most significant letter of each word cannot be equal to 0">

<intension > ne(%0,0) </intension >
<args > x[18] </args >
<args > x[12] </args >
<args > x[12] </args >

</group >
<sum note="ensuring the crypto -arithmetic sum">

<list > add(x[3],x[4]) add(x[13],x[17]) add(x[4],x[14]) add(x[18],x[12])
x[24] x[4] x[13..14] x[12] </list >

<coeffs > 1 10 100 1000 -1 -10 -100 -1000 -10000 </coeffs >
<condition > (eq ,0) </condition >

</sum >
</constraints >

</instance >

Finally, it is possible to use dot product to build a weighted sum. It means that it suffices to use
the operator ∗ between two lists involving variables, integers or expressions to obtain an object Sum as
e.g., in [u, v, w] * [2, 4, 3] which represents u ∗ 2 + v ∗ 4 +w ∗ 3. An illustration is given below.

Template Design. From CSPLib: “This problem arises from a colour printing firm which produces
a variety of products from thin board, including cartons for human and animal food and magazine
inserts. Food products, for example, are often marketed as a basic brand with several variations
(typically flavours). Packaging for such variations usually has the same overall design, in particular
the same size and shape, but differs in a small proportion of the text displayed and/or in colour.
For instance, two variations of a cat food carton may differ only in that on one is printed ’Chicken
Flavour’ on a blue background whereas the other has ’Rabbit Flavour’ printed on a green background.
A typical order is for a variety of quantities of several design variations. Because each variation is
identical in dimension, we know in advance exactly how many items can be printed on each mother
sheet of board, whose dimensions are largely determined by the dimensions of the printing machinery.
Each mother sheet is printed from a template, consisting of a thin aluminium sheet on which the
design for several of the variations is etched. Each design of carton is made from an identically sized
and shaped piece of board. Several cartons can be printed on each mother sheet (in slots), and several
different designs can be printed at once, on the same mother sheet. The problem is to decide, firstly,
how many distinct templates to produce, and secondly, which variations, and how many copies of
each, to include on each template, in order to minimize the amount of waste produced.” More details,
and an example, are given on CSPLib.

Figure 3.12: Cat Food Cartons. (image from www.vecteezy.com)

75

http://www.csplib.org/Problems/prob002
https://www.vecteezy.com/vector-art/294802-set-of-canned-pet-food

An example of data is given by the following JSON file:
{

"nSlots ": 9,
"demands ": [250, 255, 260, 500, 500, 800, 1100]

}

A PyCSP3 model of this problem is given by the following file ‘TemplateDesign.py’:

PyCSP3 Model 41

from pycsp3 import *
from math import ceil , floor

nSlots , demands = data
nTemplates = nVariations = len(demands)

def variation_interval(v):
return range(ceil(demands[v] * 0.95) , floor(demands[v] * 1.1) + 1)

d[i][j] is the number of occurrences of the jth variation on the ith template
d = VarArray(size=[nTemplates , nVariations], dom=range(nSlots + 1))

p[i] is the number of printings of the ith template
p = VarArray(size=nTemplates , dom=range(max(demands) + 1))

satisfy(
all slots of all templates are used
[Sum(d[i]) == nSlots for i in range(nTemplates)],

respecting printing bounds for each variation
[p * d[:, j] in variation_interval(j) for j in range(nVariations)]

)

minimize(
minimizing the number of used templates
Sum(p[i] > 0 for i in range(nTemplates))

)

The two arguments of satisfy() correspond to two lists of sum constraints; the second list involves
dot products, each one built from the array (list) of variables p and the jth column of the two-
dimensional array (list) d, and imposed to belong to a certain interval.

3.11 Constraint count

The constraint count1, imposes that the number of variables from a specified list of variables X that
take their values from a specified set V respects a numerical condition (�, k). This constraint captures
known constraints (usually) called atLeast, atMost, exactly and among. To simplify, we assume for
the semantics that V is a set of integer values.

Semantics 12

count(X,V, (�, k)), with X = 〈x0, x1, . . .〉, iff
|{i : 0 ≤ i < |X| ∧ xi ∈ V }| � k

In PyCSP3, to post a constraint count, we must call the function Count() whose signature is:
1initially introduced in CHIP [4] and Sicstus [14]

76

def Count(term , *others , value=None , values=None):

The two parameters term and others are positional, and allow us to pass the main list of variables
X either in sequence (individually) or under the form of a list. The two named parameters allow us
to specify either a single value (unique target for counting) or a set of values. Exactly one of these
two parameters must be different from None. Assuming that x is a list of variables, here are a few
examples:

◦ Count(x, values={1, 5, 8}) == k
stands for ’k variables from x must take their values among those in {1, 5, 8}’
◦ Count(x, value=0) > 1

stands for ’at least 2 variables from x must be assigned to the value 0’

◦ Count(x, value=1) <= k
stands for ’at most k variables from x must be assigned to the value 1’

◦ Count(x, value=z) == k
stands for ’exactly k variables from x must be assigned to the value z’

Warehouse Location. This problem was introduced in Section 1.3.2. Here is a snippet of the
PyCSP3 model:
satisfy(

capacities of warehouses must not be exceeded
[Count(w, value=j) <= capacities[j] for j in range(nWarehouses)],

...
)

Each count constraint imposes that the number of variables in w that take the value j is at most
equal to the capacity of the jth warehouse.

Pizza Voucher Problem. From the Intelligent Systems CMPT 417 course at Simon Fraser Uni-
versity. “The problem arises in the University College Cork student dorms. There is a large order
of pizzas for a party, and many of the students have vouchers for acquiring discounts in purchasing
pizzas. A voucher is a pair of numbers e.g. (2, 4), which means if you pay for 2 pizzas then you can
obtain for free up to 4 pizzas as long as they each cost no more than the cheapest of the 2 pizzas you
paid for. Similarly a voucher (3, 2) means that if you pay for 3 pizzas you can get up to 2 pizzas for
free as long as they each cost no more than the cheapest of the 3 pizzas you paid for. The aim is to
obtain all the ordered pizzas for the least possible cost. Note that not all vouchers need to be used.”

Figure 3.13: A Nice Pizza Slice. (image from freesvg.org)

An example of data is given by the following JSON file:
{

"pizzaPrices ": [50, 60, 90, 70, 80, 100, 20, 30, 40, 10],
"vouchers ":[

{" payPart ":1,"freePart ":2},

77

https://freesvg.org/pizza-slice-vector-image

{" payPart ":2,"freePart ":3},
...

]
}

A PyCSP3 model of this problem is given by the following file ‘PizzaVoucher.py’:

PyCSP3 Model 42

from pycsp3 import *

prices , vouchers = data
nPizzas , nVouchers = len(prices), len(vouchers)

v[i] is the voucher used for the ith pizza. 0 means that no voucher is used.
A negative (resp., positive) value i means that the ith pizza contributes
to the the pay (resp., free) part of voucher |i|.
v = VarArray(size=nPizzas , dom=range(-nVouchers , nVouchers + 1))

p[i] is the number of paid pizzas wrt the ith voucher
p = VarArray(size=nVouchers , dom=lambda i: {0, vouchers[i]. payPart })

f[i] is the number of free pizzas wrt the ith voucher
f = VarArray(size=nVouchers , dom=lambda i: range(vouchers[i]. freePart + 1))

satisfy(
counting paid pizzas
[Count(v, value=-i - 1) == p[i] for i in range(nVouchers)],

counting free pizzas
[Count(v, value=i + 1) == f[i] for i in range(nVouchers)],

a voucher , if used , must contribute to have at least one free pizza.
[iff(f[i] == 0, p[i] != vouchers[i]. payPart) for i in range(nVouchers)],

a free pizza must be cheaper than any pizza paid wrt the used voucher
[imply(v[i] < 0, v[i] != -v[j]) for i in range(nPizzas)

for j in range(nPizzas) if i != j and prices[i] < prices[j]]
)

minimize(
minimizing summed up costs of pizzas
Sum((v[i] <= 0) * prices[i] for i in range(nPizzas))

)

3.12 Constraint nValues

The constraint nValues [5], ensures that the number of distinct values taken by the variables of a
specified list X respects a numerical condition (�, k). A variant, called nValuesExcept [5] discards
some specified values of a set E (often, the single value 0).

Semantics 13

nValues(X,E, (�, k)), with X = 〈x0, x1, . . .〉, iff
|{xi : 0 ≤ i < |X|} \ E| � k

nValues(X, (�, k)) iff nValues(X, ∅, (�, k))

In PyCSP3, to post a constraint nValues, we must call the function NValues() whose signature is:

78

def NValues(term , *others , excepting=None):

The two parameters term and others are positional, and allow us to pass the variables either in
sequence (individually) or under the form of a list. The optional named parameter excepting allows
us to specify a value (integer) or a list of values. The object obtained when calling NValues() must
be restricted by a condition (typically, defined by a relational operator and a limit).

Board Coloration. This problem was introduced in Section 1.2.2. The constraint nValues was
introduced for capturing notAllEqual.

RLFAP. This problem was introduced in Section 2.3. The function NValues() was used to specify
the objective of one variant of the problem.

3.13 Constraint cardinality

The constraint cardinality, also called globalCardinality or gcc in the literature, see [38, 25],
ensures that the number of occurrences of each value in a specified set V , taken by the variables of a
specified listX, is equal to a specified value (or variable), or belongs to a specified interval (information
given by a set O). A Boolean option closed, when set to true, means that all variables of X must
be assigned a value from V .

For simplicity, for the semantics below, we assume that V only contains values and O only contains
variables. Note that cl means that closed is true.

Semantics 14

cardinality(X,V,O), with X = 〈x0, x1, . . .〉, V = 〈v0, v1, . . .〉, O = 〈o0, o1, . . .〉,
iff ∀j : 0 ≤ j < |V |, |{i : 0 ≤ i < |X| ∧ xi = vj}| = oj

cardinalitycl(X,V,O) iff cardinality(X,V,O) ∧ ∀i : 0 ≤ i < |X|,xi ∈ V

Prerequisite : |X| ≥ 2 ∧ |V | = |O| ≥ 1

The form of the constraint obtained by only considering variables in the sets X, V and O is called
distribute in MiniZinc. In that case, for the semantics, me must additionally guarantee:

∀(i, j) : 0 ≤ i < j < |V |,vi 6= vj .

In PyCSP3, to post a constraint cardinality, we must call the function Cardinality() whose
signature is:

def Cardinality(term , *others , occurrences, closed=False):

The two parameters term and others are positional, and allow us to pass the variables either
in sequence (individually) or under the form of a list. The value of the required named parameter
occurrences must be a dictionary: each entry (k, v) in the dictionary means that the number of
occurrences of k is given by v. The optional named parameterclosed , when set to true, means that
all variables specified by the two positional parameters must be assigned a value that corresponds to
a key in the dictionary.

Labeled Dice. From Jim Orlin’s Blog: “There are 13 words as follows: buoy, cave, celt, flub, fork,
hemp, judy, junk, limn, quip, swag, visa, wish. There are 24 different letters that appear in the 13
words. The question is: can one assign the 24 letters to 4 different cubes so that the four letters of
each word appears on different cubes. There is one letter from each word on each cube. The puzzle
was created by Humphrey Dudley”

79

https://jimorlin.wordpress.com/2009/02/17/colored-letters-labeled-dice-a-logic-puzzle/

A PyCSP3 model of this problem is given by the following file ‘LabeledDice.py’:

PyCSP3 Model 43

from pycsp3 import *

words = ["buoy", "cave", "celt", "flub", "fork", "hemp",
"judy", "junk", "limn", "quip", "swag", "visa"]

x[i] is the cube where the ith letter of the alphabet is put
x = VarArray(size=26, dom=lambda i: range(1, 5)

if i in alphabet_positions("".join(words)) else None)

satisfy(
the four letters of each word appears on different cubes
[AllDifferent(x[i] for i in alphabet_positions(w)) for w in words],

each cube is assigned 6 letters
Cardinality(x, occurrences ={i: 6 for i in range(1, 5)})

)

The PyCSP3 function alphabet_positions() returns a tuple composed with the position in the
alphabet of all letters of a specified string. For example, alphabet_positions("about") returns (0,
1, 14, 20, 19). The posted cardinality constraint ensures that we have 6 letters per cube (using
an index i for cubes, ranging from 1 to 4).

Magic Sequence. This problem was introduced in Section 1.2.3. Here is a snippet of the PyCSP3

model:
x[i] is the ith value of the sequence
x = VarArray(size=n, dom=range(n))

satisfy(
each value i occurs exactly x[i] times in the sequence
Cardinality(x, occurrences ={i: x[i] for i in range(n)}),

...
)

Here, one can see that variables are used for counting the number of occurrences, and besides, this
is a special case where these variables are from the main list (first parameter x).

Sports Scheduling. From CSPLib: “The problem is to schedule a tournament of n teams over n−1
weeks, with each week divided into n/2 periods, and each period divided into two slots indicating the
two involved teams (for example, one playing at home, and the other away). A tournament must
satisfy the following three conditions:

◦ every team plays every other team.

◦ every team plays once a week;

◦ every team plays at most twice in the same period over the tournament;

”
A PyCSP3 model of this problem is given by the following file ‘SportsScheduling.py’:

80

Figure 3.14: Sports Scheduling. (image from commons.wikimedia.org)

PyCSP3 Model 44

from pycsp3 import *

nTeams = data or 8
nWeeks , nPeriods , nMatches = nTeams - 1, nTeams // 2, (nTeams - 1) * nTeams // 2

def match_number(t1, t2):
return nMatches - ((nTeams - t1) * (nTeams - t1 - 1)) // 2 + (t2 - t1 - 1)

table = {(t1 , t2, match_number(t1, t2)) for t1 , t2 in combinations(range(nTeams), 2)}

m[w][p] is the number of the match at week w and period p
m = VarArray(size=[nWeeks , nPeriods], dom=range(nMatches))

x[w][p] is the first team for the match at week w and period p
x = VarArray(size=[nWeeks , nPeriods], dom=range(nTeams))

y[w][p] is the second team for the match at week w and period p
y = VarArray(size=[nWeeks , nPeriods], dom=range(nTeams))

satisfy(
all matches are different (no team can play twice against another team)
AllDifferent(m),

linking variables through ternary table constraints
[(x[w][p], y[w][p], m[w][p]) in table for w in range(nWeeks)

for p in range(nPeriods)],

each week , all teams are different (each team plays each week)
[AllDifferent(x[w] + y[w]) for w in range(nWeeks)],

each team plays at most two times in each period
[Cardinality(x[:, p] + y[:, p], occurrences ={t: range(1, 3)

for t in range(nTeams)}) for p in range(nPeriods)]
)

Here, we can see that the interval 1..2 (given by range(1,3)) is used to control the number of
occurrences of each team in each period, when posting cardinality constraints. Note that we could
add some symmetry breaking constraints to the model.

81

https://commons.wikimedia.org/wiki/File:Sports_portal_bar_icon.png

3.14 Constraint maximum

The constraint maximum ensures that the maximum value among those assigned to the variables of a
specified list X respects a numerical condition (�, k).

Semantics 15

maximum(X, (�, k)), with X = 〈x0, x1, . . .〉, iff
max{xi : 0 ≤ i < |X|} � k

In PyCSP3, to post a constraint maximum, we must call the function Maximum() whose signature is:
def Maximum(term , *others)

The two parameters term and others are positional, and allow us to pass the variables either in
sequence (individually) or under the form of a list. The object obtained when calling Maximum() must
be restricted by a condition (typically, defined by a relational operator and a limit).

Open Stacks. From Steven Prestwich: “A manufacturer has a number of orders from customers
to satisfy. Each order is for a number of different products, and only one product can be made at a
time. Once a customer’s order is started a stack is created for that customer. When all the products
that a customer requires have been made the order is sent to the customer, so that the stack is closed.
Because of limited space in the production area, the number of stacks that are simultaneously open
should be minimized.”

An example of data is given by the following JSON file:
{

"orders ": [
[0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,0],
[1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
...

]
}

Each row of orders corresponds to a customer order indicating with 0 or 1 if the jth product is
needed. A PyCSP3 model of this problem is given by the following file ‘OpenStacks.py’:

PyCSP3 Model 45

from pycsp3 import *

orders = data
n, m = len(orders), len(orders [0]) # n orders (customers), m possible products

def table(t):
return {(ANY , te, 0) for te in range(t)} |

{(ts, ANY , 0) for ts in range(t + 1, m)} |
{(ts, te, 1) for ts in range(t + 1) for te in range(t, m)}

p[j] is the period (time) of the jth product
p = VarArray(size=m, dom=range(m))

s[i] is the starting time of the ith stack
s = VarArray(size=n, dom=range(m))

e[i] is the ending time of the ith stack
e = VarArray(size=n, dom=range(m))

o[i][t] is 1 iff the ith stack is open at time t

82

o = VarArray(size=[n, m], dom={0, 1})

satisfy(
all products are scheduled at different times
AllDifferent(p),

computing starting times of stacks
[Minimum(p[j] for j in range(m) if orders[i][j] == 1) == s[i] for i in range(n)],

computing ending times of stacks
[Maximum(p[j] for j in range(m) if orders[i][j] == 1) == e[i] for i in range(n)],

inferring when stacks are open
[(s[i], e[i], o[i][t]) in table(t) for i in range(n) for t in range(m)],

)

minimize(
minimizing the number of stacks that are simultaneously open
Maximum(Sum(o[:, t]) for t in range(m))

)

Note that each list of variables is given to Maximum() under the form of a comprehension list
(generator). The PyCSP3 function Maximum() is also used for building the expression to be minimized.

3.15 Constraint minimum

The constraint minimum ensures that the minimum value among those assigned to the variables of a
specified list X respects a numerical condition (�, k).

Semantics 16

minimum(X, (�, k)), with X = 〈x0, x1, . . .〉, iff
min{xi : 0 ≤ i < |X|} � k

In PyCSP3, to post a constraint minimum, we must call the function Minimum() whose signature is:
def Minimum(term , *others)

The two parameters term and others are positional, and allow us to pass the variables either in
sequence (individually) or under the form of a list. The object obtained when calling Minimum() must
be restricted by a condition (typically, defined by a relational operator and a limit).

Open Stacks. See the model introduced in the previous section.

3.16 Constraint element

The constraint element [24] ensures that the element of a specified list X at a specified index i has a
specified value v. The semantics is X[i] = v, or equivalently:

Semantics 17

element(X, i, v), with X = 〈x0, x1, . . .〉, iff
xi = v

83

It is important to note that i must be an integer variable (and not a constant). In Python, to
post an element constraint, we use the facilities offered by the language, meaning that we can write
expressions involving relational and indexing ([]) operators.

There are three variants of element:

◦ variant 1: X is a list of variables, i is an integer variable and v is an integer variable

◦ variant 2: X is a list of variables, i is an integer variable and v is an integer (constant)

◦ variant 3: X is a list of integers, i is an integer variable and v is an integer variable

Although the variant 3 can be reformulated as a binary extensional constraint, it is often used
when modeling.

The Sandwich Case. From beCool (UCLouvain): Someone in the university ate Alice’s sandwich
at the cafeteria. We want to find out who the culprit is. The witnesses are unanimous about the
following facts:

1. Three persons were in the cafeteria at the time of the crime: Alice, Bob, and Sascha.

2. The culprit likes Alice.

3. The culprit is taller than Alice.

4. Nobody is taller than himself.

5. If A is taller than B, then B is not taller than A.

6. Bob likes no one that Alice likes.

7. Alice likes everybody except Bob.

8. Sascha likes everyone that Alice likes.

9. Nobody likes everyone.

This is a single problem (no external data is required). A PyCSP3 model of this problem is given
by the following file ‘Sandwich.py’:

PyCSP3 Model 46

from pycsp3 import *

alice , bob , sascha = persons = 0, 1, 2

culprit is among alice (0), bob (1) and sascha (2)
culprit = Var(persons)

liking[i][j] is 1 iff the ith guy likes the jth guy
liking = VarArray(size=[3, 3], dom={0, 1})

taller[i][j] is 1 iff the ith guy is taller than the jth guy
taller = VarArray(size=[3, 3], dom={0, 1})

satisfy(
the culprit likes Alice
liking[culprit][alice] == 1,

the culprit is taller than Alice
taller[culprit][alice] == 1,

nobody is taller than himself
[taller[p][p] == 0 for p in persons],

the ith guy is taller than the jth guy iff the reverse is not true

84

[taller[p1][p2] != taller[p2][p1] for p1 in persons for p2 in persons if p1 != p2],

Bob likes no one that Alice likes
[imply(liking[alice][p], ~liking[bob][p]) for p in persons],

Alice likes everybody except Bob
[liking[alice][p] == 1 for p in persons if p != bob],

Sascha likes everyone that Alice likes
[imply(liking[alice][p], liking[sascha][p]) for p in persons],

nobody likes everyone
[Count(liking[p], value =0) >= 1 for p in persons]

)

The variant 2 of element is illustrated by:
liking[culprit][alice] == 1,

as it basically encodes “the variable at index culprit in the column 0 (alice) of the 2-dimensional
array of variables liking must be equal to 1”.

Warehouse Location. This problem was introduced in Section 1.3.2. Here is a snippet of the
PyCSP3 model:
satisfy(

...

computing the cost of supplying the ith store
[costs[i][w[i]] == c[i] for i in range(nStores)]

)

The variant 3 of element is illustrated by:
costs[i][w[i]] == c[i]

as it basically encodes “the variable at index w[i] in the ith row of the 2-dimensional array of integers
costs must be equal to c[i]”.

Interestingly, it is also possible to use a variant of element on matrices, i.e., by using two indexes
given by integer variables. The semantics is M[i][j] = v, or equivalently:

Semantics 18

element(M, 〈i, j〉, v), with M = [〈x1,1, x1,2, . . . , x1,m〉, 〈x2,1, x2,2, . . . , x2,m〉, . . .], iff
xi,j = v

It is important to note that i and j must be two integer variables (and not constants). In Python,
to post an element constraint on matrices, we use the facilities offered by the language, meaning that
we can write expressions involving relational and indexing ([]) operators.

There are three variants of element on matrices:

◦ variant 1: M is a matrix of variables, i and j are integer variables and v is an integer variable

◦ variant 2: M is a matrix of variables, i and j are integer variables and v is an integer (constant)

◦ variant 3: M is a matrix of integers, i and j are integer variables and v is an integer variable

Although the variant 3 can be reformulated as a ternary extensional constraint, it is often used
when modeling.

85

Quasigroup Existence. From CSPLib: “A quasigroup of order n is a n × n multiplication table
in which each element occurs once in every row and column (i.e., is a Latin square), while satisfying
some specific properties. Hence, the result a ∗ b of applying the multiplication operator ∗ on a (left
operand) and b (right operand) is given by the value in the table at row a and column b. Classical
variants of quasigroup existence correspond to taking into account the following properties:

◦ QG3: quasigroups for which (a ∗ b) ∗ (b ∗ a) = a

◦ QG4: quasigroups for which (b ∗ a) ∗ (a ∗ b) = a

◦ QG5: quasigroups for which ((b ∗ a) ∗ b) ∗ b = a

◦ QG6: quasigroups for which (a ∗ b) ∗ b = a ∗ (a ∗ b)
◦ QG7: quasigroups for which (b ∗ a) ∗ b = a ∗ (b ∗ a)

For each of these problems, we may additionally demand that the quasigroup is idempotent. That is,
a ∗ a = a for every element a.”

A PyCSP3 model of this problem is given by the following file ‘Quasigroup.py’:

PyCSP3 Model 47

from pycsp3 import *

n = data

x[i][j] is the value at row i and column j of the quasi -group
x = VarArray(size=[n, n], dom=range(n))

satisfy(
ensuring a Latin square
AllDifferent(x, matrix=True),

ensuring idempotence tag(idempotence)
[x[i][i] == i for i in range(n)]

)

if variant("v3"):
satisfy(

x[x[i][j], x[j][i]] == i for i in range(n) for j in range(n)
)

elif variant("v4"):
satisfy(

x[x[j][i], x[i][j]] == i for i in range(n) for j in range(n)
)

elif variant("v5"):
satisfy(

x[x[x[j][i], j], j] == i for i in range(n) for j in range(n)
)

elif variant("v6"):
satisfy(

x[x[i][j], j] == x[i, x[i][j]] for i in range(n) for j in range(n)
)

elif variant("v7"):
satisfy(

x[x[j][i], j] == x[i, x[j][i]] for i in range(n) for j in range(n)
)

The variant 2 of element on matrices is illustrated by:
x[x[i][j], x[j][i]] == i

as it basically encodes “the variable in the matrix x at row index x[i][j] (a variable) and column
index x[j][i] (a variable) must be equal to the integer i”. Note how we can write complex operations

86

http://www.csplib.org/Problems/prob003/

involving several (partial forms of) element constraints; when compiling, auxiliary variables may
possibly be introduced (the interested reader can look at the generated XCSP3 files).

Traveling Salesman Problem (TSP). From Wikipedia: “Given a list of cities and the distances
between each pair of cities, what is the shortest possible route that visits each city and returns to the
origin city?”

An example of data is given by the following JSON file:
{

"distances ": [
[0, 5, 6, 6, 6],
[5, 0, 9, 8, 4],
[6, 9, 0, 1, 7],
[6, 8, 1, 0, 6],
[6, 4, 7, 6, 0]

]
}

Figure 3.15: A Solution for a TSP instance. (image from commons.wikimedia.org)

A PyCSP3 model of this problem is given by the following file ‘TravelingSalesman.py’:

PyCSP3 Model 48

from pycsp3 import *

distances = data
nCities = len(distances)

c[i] is the ith city of the tour
c = VarArray(size=nCities , dom=range(nCities))

d[i] is the distance between the cities i and i+1 chosen in the tour
d = VarArray(size=nCities , dom=distances)

satisfy(
Visiting each city only once
AllDifferent(c)

)

if not variant ():
satisfy(

computing the distance between any two successive cities in the tour
distances[c[i]][c[(i + 1) % nCities]] == d[i] for i in range(nCities)

)

87

https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://commons.wikimedia.org/wiki/File:GLPK_solution_of_a_travelling_salesman_problem.svg

elif variant("table"):
table = {(i, j, distances[i][j]) for i in range(nCities) for j in range(nCities)}

satisfy(
computing the distance between any two successive cities in the tour
(c[i], c[(i + 1) % nCities], d[i]) in table for i in range(nCities)

)

minimize(
minimizing the traveled distance
Sum(d)

)

The variant 3 of element on matrices is illustrated by:
distances[c[i]][c[(i + 1) % nCities]] == d[i]

as it basically encodes “the integer in the matrix distances at row index c[i] (a variable) and col-
umn index c[(i + 1) % nCities] (a variable) must be equal to the variable d[i]”. The variant
“table” shows which ternary table constraints are equivalent to the element constraints on matri-
ces (of integers). Note that writing dom=distances is equivalent (and more compact) to writing
dom={v for row in distances for v in row}.

3.17 Constraint channel

The first variant of the constraint channel is defined on a single list of variables, and ensures that
if the ith variable of the list is assigned the value j, then the jth variable of the same list must be
assigned the value i.

Semantics 19

channel(X), with X = 〈x0, x1, . . .〉, iff
∀i : 0 ≤ i < |X|,xi = j ⇒ xj = i

A second classical variant of channel, sometimes called inverse or assignment in the literature,
is defined from two separate lists (of the same size) of variables. It ensures that the value assigned to
the ith variable of the first list gives the position of the variable of the second list that is assigned to
i, and vice versa.

Semantics 20

channel(X,Y), with X = 〈x0, x1, . . .〉 and Y = 〈y0, y1, . . .〉, iff
∀i : 0 ≤ i < |X|,xi = j ⇔ yj = i

Prerequisite: 2 ≤ |X| = |Y |

It is also possible to use this form of channel, with two lists of different sizes. The constraint then
imposes restrictions on all variables of the first list, but not on all variables of the second list. The
syntax is the same, but the semantics is the following (note that the equivalence has been replaced by
an implication):

88

Semantics 21

channel(X,Y), with X = 〈x0, x1, . . .〉 and Y = 〈y0, y1, . . .〉, iff
∀i : 0 ≤ i < |X|,xi = j ⇒ yj = i

Prerequisite: 2 ≤ |X| < |Y |

Finally, a third variant of channel is obtained by considering a list of 0/1 variables to be channeled
with an integer variable. This third form of constraint channel ensures that the only variable of the
list that is assigned to 1 is at an index (position) that corresponds to the value assigned to the
stand-alone integer variable.

Semantics 22

channel(X, v), with X = {x0, x1, . . .}, iff
∀i : 0 ≤ i < |X|,xi = 1⇔ v = i

∃i : 0 ≤ i < |X| ∧ xi = 1

In PyCSP3, to post a constraint channel, we must call the function Channel() whose signature is:
def Channel(list1 , list2=None , *, start_index1 =0, start_index2 =0):

For the first variant, in addition to the positional parameter list1, one may use the the optional
attribute start_index1 that gives the number used for indexing the first variable in this list (0, by
default). For the second variant, two lists must be specified, and optionally the two named parameters
can be used. For the third variant, the positional parameter list2 must be a variable (or a list only
containing one variable).

Black Hole. This problem was introduced in Section 1.3.3. Here is a snippet of the PyCSP3 model:
...

x[i] is the value j of the card at position i of the stack
x = VarArray(size=nCards , dom=range(nCards))

y[j] is the position i of the card whose value is j
y = VarArray(size=nCards , dom=range(nCards))

satisfy(
Channel(x, y),

...
)

The constraint channel (second variant) links the dual roles of variables from arrays x and y.

Progressive Party. From CSPLib: “The problem is to timetable a party at a yacht club. Certain
boats are to be designated hosts, and the crews of the remaining boats in turn visit the host boats for
several successive half-hour periods. The crew of a host boat remains on board to act as hosts while
the crew of a guest boat together visits several hosts. Every boat can only hold a limited number of
people at a time (its capacity) and crew sizes are different. The total number of people aboard a boat,
including the host crew and guest crews, must not exceed the capacity. A guest boat cannot revisit a
host and guest crews cannot meet more than once. The problem facing the rally organizer is that of
minimizing the number of host boats.”

An example of data is given by the following JSON file:

89

http://www.csplib.org/Problems/prob013/

Figure 3.16: Progressive Party at a Yacht Club. (image from pngimg.com)

{
"nPeriods ": 5,
"boats": [

{" capacity ": 6, "crewSize ": 2},
{" capacity ": 8, "crewSize ": 2},
...

]
}

A PyCSP3 model of this problem is given by the following file ‘ProgressiveParty.py’:

PyCSP3 Model 49

from pycsp3 import *

nPeriods , boats = data
nBoats = len(boats)
capacities , crews = zip(* boats)

h[b] indicates if the boat b is a host boat
h = VarArray(size=nBoats , dom={0, 1})

s[b][p] is the scheduled (visited) boat by the crew of boat b at period p
s = VarArray(size=[nBoats , nPeriods], dom=range(nBoats))

g[b1][p][b2] is 1 if s[b1][p] = b2
g = VarArray(size=[nBoats , nPeriods , nBoats], dom={0, 1})

satisfy(
identifying host boats (when receiving)
[iff(s[b][p] == b, h[b]) for b in range(nBoats) for p in range(nPeriods)],

identifying host boats (when visiting)
[imply(s[b1][p] == b2, h[b2]) for b1 in range(nBoats) for b2 in range(nBoats)

if b1 != b2 for p in range(nPeriods)],

channeling variables from arrays s and g
[Channel(g[b][p], s[b][p]) for b in range(nBoats) for p in range(nPeriods)],

boat capacities must be respected
[g[:, p, b] * crews <= capacities[b] for b in range(nBoats)

for p in range(nPeriods)],

a guest crew cannot revisit a host
[AllDifferent(s[b], excepting=b) for b in range(nBoats)],

guest crews cannot meet more than once
[Sum(s[b1][p] == s[b2][p] for p in range(nPeriods)) <= 2

for b1, b2 in combinations(range(nBoats), 2)]
}

minimize(

90

https://pngimg.com/download/5422

minimizing the number of host boats
Sum(h)

)

This is the third variant of channel that is used here: g[b][p] is an array of 0/1 variables while
s[b][p] is a stand-alone integer variable. Below, note how the symbol ’:’ is used to take a complete
slice of a 3-dimensional array of variables, when posting constraints about boat capacities. Instead,
we could have written:

[[g[i][p][b] for i in range(nBoats)] * crews <= capacities[b]
for b in range(nBoats) for p in range(nPeriods)],

Concerning the last list of sum constraints, as the Boolean expression s[b1][p] == s[b2][p] is
considered to return integers, 0 for false and 1 for true, it is possible to perform a summation.

3.18 Constraint noOverlap

We start with the one dimensional form of noOverlap [25] that corresponds to disjunctive [10] and
ensures that some objects (e.g., tasks), defined by their origins (e.g., starting times) and lengths (e.g.,
durations), must not overlap. The semantics is given by:

Semantics 23

noOverlap(X,L), with X = 〈x0, x1, . . .〉 and L = 〈l0, l1, . . .〉, iff
∀(i, j) : 0 ≤ i < j < |X|,xi + li ≤ xj ∨ xj + lj ≤ xi

Prerequisite : |X| = |L| ≥ 2

In PyCSP3, to post a constraint noOverlap, we must call the function NoOverlap() whose signature
is:

def NoOverlap(*, origins , lengths , zero_ignored=False):

Note that all parameters must be named (see ’*’ at first position), and that the parameter
zero_ignored is optional (value False by default). If ever we are in a situation where there ex-
ist some zero-length object(s), then if the parameter zero_ignored is set to False, it indicates that
zero-length objects cannot be packed anywhere (cannot overlap with other objects). Arguments given
to origins and lengths when calling the function NoOverlap() are expected to be lists of the same
length; origins must be given a list of variables whereas lengths must be given either a list of
variables or a list of integers.

Flow Shop Scheduling. From WikiPedia: “There are n machines and m jobs. Each job contains
exactly n operations. The ith operation of the job must be executed on the ith machine. No machine
can perform more than one operation simultaneously. For each operation of each job, execution time
is specified. Operations within one job must be performed in the specified order. The first operation
gets executed on the first machine, then (as the first operation is finished) the second operation on
the second machine, and so on until the nth operation. Jobs can be executed in any order, however.
Problem definition implies that this job order is exactly the same for each machine. The problem is
to determine the optimal such arrangement, i.e. the one with the shortest possible total job execution
makespan.”

To specify a problem instance, we just need a two-dimensional array of integers for recording
durations, as in the following JSON file:

91

Figure 3.17: Example of (no-wait) flow-shop scheduling with five jobs on two machines A and B. A
comparison of total makespan is given for two different job sequences. (image from commons.wikimedia.org)

{
"durations ":[

[26,59,78,88,69],
[38,62,90,54,30],
...

]
}

A PyCSP3 model of this problem is given by the following file ‘FlowShopScheduling.py’:

PyCSP3 Model 50

from pycsp3 import *

durations = data # durations[i][j] is the duration of operation/machine j for job i
horizon = sum(sum(t) for t in durations) + 1
n, m = len(durations), len(durations [0])

s[i][j] is the start time of the jth operation for the ith job
s = VarArray(size=[n, m], dom=range(horizon))

satisfy(
operations must be ordered on each job
[Increasing(s[i], lengths=durations[i]) for i in range(n)],

no overlap on resources
[NoOverlap(origins=s[:, j], lengths=durations[:, j]) for j in range(m)]

)

minimize(
minimizing the makespan
Maximum(s[i][-1] + durations[i][-1] for i in range(n))

)

In this model, for each operation (or equivalently, machine) j, we collect the list of variables from
the jth column of s and the list of integers from the jth column of durations when posting a constraint
noOverlap. Remember that the notation [:, j] stands for the jth column of a two-dimensional array
(list).

The k-dimensional form of noOverlap corresponds to diffn [4] and ensures that, given a set of
n-dimensional boxes; for any pair of such boxes, there exists at least one dimension where one box is
after the other, i.e., the boxes do not overlap. The semantics is:

92

https://commons.wikimedia.org/wiki/File:No-wait_flow_shop_example.png

Semantics 24

noOverlap(X ,L), with X = 〈(x1,1, . . . , x1,n), (x2,1, . . . , x2,n), . . .〉 and
L = 〈(l1,1, . . . , l1,n), (l2,1, . . . , l2,n), . . .〉, iff

∀(i, j) : 1 ≤ i < j ≤ |X |, ∃k ∈ 1..n : xi,k + li,k ≤ xj,k ∨ xj,k + lj,k ≤ xi,k

Prerequisite : |X | = |L| ≥ 2

In PyCSP3, to post a constraint noOverlap, we must call the function NoOverlap() whose signature
is:

def NoOverlap(*, origins , lengths , zero_ignored=False):

Note that all parameters must be named (see ’*’ at first position), and that the parameter
zero_ignored is optional (value False by default). If ever we are in a situation where there ex-
ist some zero-length box(es), then if the parameter zero_ignored is set to False, it indicates that
zero-length boxes cannot be packed anywhere (cannot overlap with other boxes). Arguments given
to origins and lengths when calling the function NoOverlap() are expected to be two-dimensional
lists of the same length; origins must only involve variables whereas lengths must involve either
only variables or only integers.

Rectangle Packing Problem. The rectangle packing problem consists of finding a way of putting
a given set of rectangles (boxes) in an enclosing rectangle (container) without overlap.

Figure 3.18: Packing Rectangles in a Container.

An example of data is given by the following JSON file:
{

"container ":{" width":112,"height ":112},
"boxes":[

{"width ":2 ,"height ":2},
{"width ":4 ,"height ":4},
...

]
}

A PyCSP3 model of this problem is given by the following file ‘RectanglePacking.py’:

93

PyCSP3 Model 51

from pycsp3 import *

width , height = data.container
boxes = data.boxes
nBoxes = len(boxes)

x[i] is the x-coordinate where is put the ith box (rectangle)
x = VarArray(size=nBoxes , dom=range(width))

y[i] is the y-coordinate where is put the ith box (rectangle)
y = VarArray(size=nBoxes , dom=range(height))

satisfy(
unary constraints on x
[x[i] + boxes[i].width <= width for i in range(nBoxes)],

unary constraints on y
[y[i] + boxes[i]. height <= height for i in range(nBoxes)],

no overlap on boxes
NoOverlap(origins =[(x[i], y[i]) for i in range(nBoxes)], lengths=boxes),

tag(symmetry -breaking)
[

x[-1] <= math.floor ((width - boxes [-1]. width) // 2.0),
y[-1] <= x[-1]

] if width == height else None
)

3.19 Constraint cumulative

The constraint cumulative is useful when a resource of limited quantity must be shared for achieving
several tasks. For example, in a scheduling context where several tasks require some specific quantities
of a single resource, the cumulative constraint imposes that a strict limit on the total consumption
of the resource is never exceeded at each point of a time line. The tasks may overlap but their
cumulative resource consumption must never exceed the limit. In Figure 3.19, five tasks (some of
them overlapping) are scheduled while never exceeding the capacity (5) of the resource. The interested
reader can check that there is no better scheduling scenario, that is to say, a way of scheduling the
five tasks in less than 7 time units.

So, the context is to manage a collection of tasks, each one being described by 4 attributes: its
starting time origin, its length or duration length, its stopping time end and its resource consumption
height. Usually, the values for length and height are given while the values for origin (and end
by deduction) must be computed.

The constraint cumulative [1] enforces that at each point in time, the cumulated height of tasks
that overlap that point, respects a numerical condition (�, k). The semantics is given by:

Semantics 25

cumulative(X,L,H, (�, k)), with X = 〈x0, x1, . . .〉, L = 〈l0, l1, . . .〉, H = 〈h0, h1, . . .〉, iff
∀t ∈ N,

∑
{hi : 0 ≤ i < |H| ∧ xi ≤ t < xi + li} � k

Prerequisite : |X| = |L| = |H| ≥ 2

94

1

2

3

4

5

6

1 2 3 4 5 6 7 8
Time

R
es
ou

rc
e
C
on

su
m
pt
io
n Limit

Task 1

Task 2

Task 4

Task 5
Task 3

Figure 3.19: Example of a Limited Cumulative Resource.

If the attributes end are present while reasoning, we have additionally a set E = 〈e0, e1, . . .〉 such
that:

∀i : 0 ≤ i < |X|,xi + li = ei

In PyCSP3, to post a constraint cumulative, we must call the function Cumulative() whose
signature is:

def Cumulative (*, origins , lengths , heights , ends=None):

Note that all parameters must be named (see ’*’ at first position) and the parameter ends is
optional (value None by default). Arguments given when calling the function are expected to be lists
of the same length. The object obtained when calling Cumulative() must be restricted by a condition
(typically, defined by a relational operator and a limit).

RCPSP. From CSPLib: “The Resource-Constrained Project Scheduling Problem is a classical prob-
lem in operations research. A number of activities are to be scheduled. Each activity has a duration
and cannot be interrupted. There are a set of precedence relations between pairs of activities which
state that the second activity must start after the first has finished. There are a set of renewable
resources. Each resource has a maximum capacity and at any given time slot no more than this
amount can be in use. Each activity has a demand (possibly zero) on each resource. The problem is
usually stated as an optimization problem where the makespan (i.e., the completion time of the last
activity) is minimized.” See CSPLib–Problem 061 for more information.

An example of data is given by the following JSON file:
{

"horizon ":158,
"resourceCapacities ":[12,13,4,12],
"jobs":[

{" duration ":0, "successors ":[1,2,3], "requiredQuantities ":[0,0,0,0]},
{" duration ":8, "successors ":[5,10,14], "requiredQuantities ":[4,0,0,0]},
...

]
}

A PyCSP3 model of this problem is given by the following file ‘Rcpsp.py’:

95

http://csplib.org/Problems/prob061/

PyCSP3 Model 52

from pycsp3 import *

horizon , capacities , jobs = data
nJobs = len(jobs)

def cumulative_for(k):
origins , lengths , heights = zip (*[(s[i], duration , quantities[k])

for i, (duration , _, quantities) in enumerate(jobs) if quantities[k] > 0])
return Cumulative(origins=origins , lengths=lengths , heights=heights)

s[i] is the starting time of the ith job
s = VarArray(size=nJobs , dom=lambda i: {0} if i == 0 else range(horizon))

satisfy(
precedence constraints
[s[i] + duration <= s[j] for i, (duration , successors , _) in enumerate(jobs)

for j in successors],

resource constraints
[cumulative_for(k) <= capacity for k, capacity in enumerate(capacities)]

)

minimize(
s[-1]

)

Observe how the Cumulative object returned by the local function call cumulative_for(k) is
imposed to be less than or equal to the capacity of the kth resource.

3.20 Constraint circuit

Sometimes, problems involve graphs that are defined with integer variables (encoding called “successors
variables”). In that context, graph-based constraints, like circuit, involve a main list of variables
x0, x1, . . . The assumption is that each pair (i,xi) represents an arc (or edge) of the graph to be built;
if xi = j, then it means that the successor of node i is node j. Note that a loop (also called self-loop)
corresponds to a variable xi such that xi = i.

The constraint circuit [4] ensures that the values taken by the variables of the specified list forms
a circuit, with the assumption that each pair (i,xi) represents an arc. It is also possible to indicates
that the circuit must be of a given size (strictly greater than 1). The semantics is given by:

Semantics 26

circuit(X), with X = 〈x0, x1, . . .〉, iff // capture subscircuit
{(i,xi) : 0 ≤ i < |X| ∧ i 6= xi} forms a circuit of size > 1

circuit(X, s), with X = 〈x0, x1, . . .〉, iff
{(i,xi) : 0 ≤ i < |X| ∧ i 6= xi} forms a circuit of size s > 1

In PyCSP3, to post a constraint circuit, we must call the function Circuit() whose signature is:
def Circuit(term , *others , start_index =0, size=None):

The two first parameters term and others are positional, and allow us to pass the “successors
variables” either in sequence (individually) or under the form of a list. The two other parameters are
optional (and must be named): start_index gives the number used for indexing the first variable of

96

the specified list (0, by default), and size indicates that the circuit must be of a given size (None by
default indicates that no specific size is required).

It is important to note that the circuit is not required to cover all nodes (the nodes that are not
present in the circuit are then self-looping). Hence circuit, with loops being simply ignored, basically
represents subcircuit (e.g., in MiniZinc). If ever you need a full circuit (i.e., without any loop), you
have three solutions:

◦ indicate with size the number of successor variables

◦ initially define the variables without the self-looping values,

◦ post unary constraints.

Mario. From Amaury Ollagnier and Jean-Guillaume Fages, in the context of the 2013 Minizinc
Competition: “This models a routing problem based on a little example of Mario’s day. Mario is
an Italian Plumber and his work is mainly to find gold in the plumbing of all the houses of the
neighborhood. Mario is moving in the city using his kart that has a specified amount of fuel. Mario
starts his day of work from his house and always ends to his friend Luigi’s house to have the supper.
The problem here is to plan the best path for Mario in order to earn the more money with the amount
of fuel of his kart. From a more general point of view, the problem is to find a path in a graph:

◦ path endpoints are given (from Mario’s to Luigi’s)

◦ the sum of weights associated to arcs in the path is restricted (fuel consumption)

◦ the sum of weights associated to nodes in the path has to be maximized (gold coins)”

An example of data is given by the following JSON file:
{

"marioHouse ": 0,
"luigiHouse ": 1,
"fuelLimit ": 2000,
"houses ":[

{
"fuelConsumption ": [0,221,274,80,13,677,670,921,93,969,13,18,217,86,322],
"gold":0

},
{

"fuelConsumption ":[0,0,702,83,813,679,906,246,35,529,79,528,451,242,712],
"gold":0

},
...

]
}

Figure 3.20: Finding the Best Path for Mario. (image from pngimg.com)

A PyCSP3 model2 of this problem is given by the following file ‘Mario.py’:

2This model is inspired from the one proposed by Ollagnier and Fages for the 2013 Minizinc Competition.

97

https://pngimg.com/download/30515

PyCSP3 Model 53

from pycsp3 import *

marioHouse , luigiHouse , fuelLimit , houses = data
fuels , golds = zip(* houses) # using cp_array is not necessary since intern arrays

have the right type (for the constraint Element)
nHouses = len(houses)

s[i] is the house succeeding to the ith house (itself if not part of the route)
s = VarArray(size=nHouses , dom=range(nHouses))

satisfy(
we cannot consume more than the available fuel
Sum(fuels[i][s[i]] for i in range(nHouses)) <= fuelLimit ,

Mario must make a tour (not necessarily complete)
Circuit(s),

Mario ’s house succeeds to Luigi’s house
s[luigiHouse] == marioHouse

)

maximize(
maximizing collected gold
Sum((s[i] != i) * golds[i] for i in range(nHouses) if golds[i] != 0)

)

When computing consumed fuel, note how some element constraints are internally involved. The
lists fuels[i] involved in these constraints can be directly indexed by variables (objects). This is
because the type of fuels[i] is a PyCSP3 subclass of ’list’; and this is automatically handled when
loading the JSON file. Suppose that we would have written instead:
fuels = [[v for v in house.fuelConsumption] for house in houses]

Here, fuels[i] would be a simple ’list’, and we would get an error when compiling. In that case, to
fix the problem, it is possible to call the PyCSP3 function cp_array():
fuels = [cp_array(v for v in house.fuelConsumption) for house in houses]

but of course, the code we have chosen for our model above is simpler.

3.21 Meta-Constraint slide

A general mechanism, or meta-constraint, that is useful to post constraints on sequences of variables
is slide [6]. The scheme slide ensures that a given constraint is enforced all along a sequence
of variables. To represent such sliding constraints in XCSP3, we simply build an element <slide>
containing a constraint template (for example, one for <extension> or <intension>) to indicate the
abstract (parameterized) form of the constraint to be slided, preceded by an element <list> that
indicates the sequence of variables on which the constraint must slide.

For the semantics, we consider that ctr(%0, . . . ,%q − 1) denotes the template of the constraint
ctr of arity q, and that slidecirc means the circular form of slide

98

Semantics 27

slide(X, ctr(%0, . . . ,%q − 1)), with X = 〈x0, x1, . . .〉, iff
∀i : 0 ≤ i ≤ |X| − q, ctr(xi, xi+1, . . . , xi+q−1)

slide(X, os, ctr(%0, . . . ,%q − 1)), with an offset os, iff
∀i : 0 ≤ i ≤ (|X| − q)/os, ctr(xi×os , xi×os+1, . . . , xi×os+q−1)

slidecirc(X, ctr(%0, . . . ,%q − 1)) iff
∀i : 0 ≤ i ≤ |X| − q + 1, ctr(xi, xi+1 . . . , x(i+q−1)%|X|)

In PyCSP3, to post a (meta-)constraint slide, we must call the function Slide() whose signature
is:

def Slide(*args):

The specified arguments must correspond to a list (or a set, or even a generator) of sliding con-
straints. The PyCSP3 compiler will then attempt to build the XCSP3 sliding form.

It is important to note that slide is interesting only if reasoning with the meta-constraint is
stronger than reasoning with each constraint individually. It is also interesting for generating com-
pacter XCSP3 files (however, you can simply use the option -recognizeSlides). An illustration is
given in Section 1.3.3.

99

Chapter 4

Logically Combining Constraints

When modeling, it happens that, for some problems, constraints must be logically combined. For
example, assuming that x is a 1-dimensional array of variables, the statement:

Sum(x) > 10 ∨ AllDifferent(x) (4.1)

enforces that the sum of values assigned to the variables of x must be greater than 10, or the values
assigned to x variables must be all different. As another example, assuming that i is an integer
variable, the statement:

i 6= −1⇒ x[i] = 1 (4.2)
enforces that when the value of i is different from −1 then the value in x at index i must be equal to
1.

The question is: how can we deal with such situations? The answer is multiple, as we can use:

◦ meta-constraints

◦ reification

◦ tabling

◦ reformulation

4.1 Using Meta-Constraints
In PyCSP3, some functions have been specifically introduced to build meta-constraints: And(), Or(),
Not(), Xor(), IfThen(), IfThenElse() and Iff(). It is important to note that the first letter of
these function names is uppercase.

As an illustration, here is a PyCSP3 model showing how to capture statements of Equations 4.1
and 4.2:

PyCSP3 Model 54

from pycsp3 import *

x = VarArray(size=4, dom=range (4))
i = Var(range(-1, 4))

satisfy(
Or(Sum(x) > 10, AllDifferent(x)),
IfThen(i != -1, x[i] == 1)

)

When compiling, we obtain the following XCSP3 instance:

100

<instance format="XCSP3" type="CSP">
<variables >

<array id="x" size="[4]"> 0..3 </array >
<var id="i"> -1..3 </var >

</variables >
<constraints >

<or>
<sum >

<list > x[] </list >
<condition > (gt ,10) </condition >

</sum >
<allDifferent > x[] </allDifferent >

</or >
<ifThen >

<intension > ne(i,-1) </intension >
<element >

<list > x[] </list >
<index > i </index >
<value > 1 </value >

</element >
</ifThen >

</constraints >
</instance >

As you can see, with meta-constraints, we can stay very close to the original (formal) formulation.
Unfortunately, there is a price to pay: the generated instances are no more in the perimeter of
XCSP3-core (and consequently, it is not obvious to find an appropriate constraint solver to read such
instances). Of course, in the future, some additional tools could be developed to offer the user the
possibility of reformulating XCSP3 instances (and possibly, the perimeter of XCSP3-core could be
slightly extended). Meanwhile, the solutions presented in Sections 4.3 and 4.4 should be chosen in
priority.

4.2 Using Reification
Reification is the fact of representing the satisfaction value of certain constraints by means of Boolean
variables. Reifying a constraint c requires the introduction of an associated variable b while considering
the logical equivalence b⇔ c. The two equations given earlier could be transformed by reifying three
constraints, as follows:

b1 ⇔ Sum(x) > 10
b2 ⇔ AllDifferent(x)
b1 ∨ b2

b3 ⇔ x[i] = 1
i 6= −1⇒ b3

Currently, there is no PyCSP3 function (or mechanism) to deal with reification, although this is
possible in XCSP3. The main reason is that when reification is involved, XCSP3 instances are no more
in the perimeter of XCSP3-core (and consequently, it is not obvious to find an appropriate constraint
solver to read such instances). Actually, reification is outside the scope of XCSP3-core because it
complexifies the task of constraint solvers. Even if this restriction could be relaxed in the future
(e.g., half reification), for the moment, we are not aware of any situation (based on our experience of
modeling around 200 problems) that cannot be (efficiently) handled with the solutions presented in
Sections 4.3 and 4.4.

101

4.3 Using Tabling
In this section, we show with two illustrations how modeling with tables can be relevant to logically
combine involved constraints.

First, let us recall that table constraints are important in constraint programming because (i) they
are easily handled by end-users of constraint systems, (ii) they can be perceived as a universal modeling
mechanism since any constraint can theoretically be expressed in tabular form (although this may lead
to time/space explosion), (iii) sometimes, they happen to be simple and natural choices for dealing
with tricky situations: this is the case when no adequate (global) constraint exists or when a logical
combination of (small) constraints must be represented as a unique table constraint for efficiency
reasons. If ever needed, another argument showing the importance of universal structures like tables,
and also diagrams, is the rising of (automatic) tabling techniques, i.e., the process of converting
sub-problems into tables, by hand, using heuristics [2] or by annotations [19].

Amaze. From Minizinc, Challenge 2012. Given a grid containing p pairs of numbers (ranging from
1 to p), connect the pairs (1 to 1, 2 to 2, . . . , p to p) by drawing a line horizontally and vertically, but
not diagonally. The lines must never cross.

An example of data is given by the following JSON file:
{

"n": 5,
"m": 5,
"points ": [

[[3,4], [5,1]],
[[2,2], [4,2]]

]
}

Here, we have a grid of size 5× 5 with value 1 in cells at index (3, 4) and (5, 1), and value 2 in cells at
index (2, 2) and (4, 2); here, p = 2, and indexing is assumed to start at 1. For representing a solution,
we can fill up the grid with either value 0 (empty cell) or a line number (value from 1 to p). For
example, here is a solution corresponding to the data given above (with a border put all around the
grid).

[
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 2, 0, 0, 0, 0],
[0, 0, 2, 0, 1, 0, 0],
[0, 0, 2, 0, 1, 0, 0],
[0, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]

]

When analysing this problem, one can find that any non-empty cell (i.e., any cell with a value
different from 0) is such that if it is not an end-point then it has exactly two horizontal or vertical
neighbours with the same value. The piece of code in Minizinc to handle such constraints is:

% Return true if the given point is one of the end points of a path.
%
test is_end_point(int: i, int: j) =

exists (v in 1..N) (
end_points_start_x[v] = i /\ end_points_start_y[v] = j \/
end_points_end_x[v] = i /\ end_points_end_y[v] = j

);

% Constrain any non-empty cell that is not an end-point to have exactly two
% horizontal or vertical neighbours of the same value.
%

102

constraint forall(i in 1..n, j in 1..m) (
if is_end_point(i, j) then

true
else

x[i, j] != 0 -> count([x[i, j+1], x[i+1, j], x[i, j-1], x[i-1, j]], x[i, j], 2)
endif

);

As an alternative, table constraints can be posted, leading to the PyCSP3 model given by the
following file ‘Amaze.py’:

PyCSP3 Model 55

from pycsp3 import *

n, m, points = data # points[v] gives the pair of points for value v+1
nValues = len(points) + 1 # number of pairs of points + 1 (for 0)

table = {(0, ANY , ANY , ANY , ANY)}
| {tuple(ne(v) if k in (i, j) else v for k in range (5))

for i, j in combinations(range(1, 5), 2) for v in range(1, nValues)}

def domain_x(i, j):
return {0} if i in {0, n + 1} or j in {0, m + 1} else range(nValues)

x[i][j] is the value at row i and column j (a boundary is put around the board).
x = VarArray(size=[n + 2, m + 2], dom=domain_x)

satisfy(
putting two occurrences of each value on the board
[x[i, j] == v for v in range(1, nValues) for i, j in points[v - 1]],

each fixed cell has exactly one neighbour with the same value
[Count([x[i - 1][j], x[i + 1][j], x[i][j - 1], x[i][j + 1]], value=v) == 1

for v in range(1, nValues) for i, j in points[v - 1]],

each free cell either contains 0 or has exactly two neighbours with its value
[(x[i][j], x[i - 1][j], x[i + 1][j], x[i][j - 1], x[i][j + 1]) in table

for i in range(1, n + 1) for j in range(1, m + 1)
if [i, j] not in [p for pair in points for p in pair]]

)

minimize(
Sum(x)

)

Each table indicates the possible combinations of values for exactly 5 variables (forming a cross
shape in the grid). We use the function ne to stand for any value ’not equal’ to the specified parameter
(in the near future, we shall let the user the opportunity to generate so-called smart tables [30]). For
example, we obtain the following group of constraints with respect to the above data:

<group >
<extension >

<list > %... </list >
<supports >

(0,*,*,*,*)(1,0,0,1,1)(1,0,1,0,1)(1,0,1,1,0)(1,0,1,1,2)(1,0,1,2,1)(1,0,2,1,1)
(1,1,0,0,1)(1,1,0,1,0)(1,1,0,1,2)(1,1,0,2,1)(1,1,1,0,0)(1,1,1,0,2)(1,1,1,2,0)
(1,1,1,2,2)(1,1,2,0,1)(1,1,2,1,0)(1,1,2,1,2)(1,1,2,2,1)(1,2,0,1,1)(1,2,1,0,1)
(1,2,1,1,0)(1,2,1,1,2)(1,2,1,2,1)(1,2,2,1,1)(2,0,0,2,2)(2,0,1,2,2)(2,0,2,0,2)
(2,0,2,1,2)(2,0,2,2,0)(2,0,2,2,1)(2,1,0,2,2)(2,1,1,2,2)(2,1,2,0,2)(2,1,2,1,2)
(2,1,2,2,0)(2,1,2,2,1)(2,2,0,0,2)(2,2,0,1,2)(2,2,0,2,0)(2,2,0,2,1)(2,2,1,0,2)
(2,2,1,1,2)(2,2,1,2,0)(2,2,1,2,1)(2,2,2,0,0)(2,2,2,0,1)(2,2,2,1,0)(2,2,2,1,1)

</supports >

103

</extension >
<args > x[2][3] x[1][3] x[3][3] x[2][2] x[2][4] </args >
<args > x[2][4] x[1][4] x[3][4] x[2][3] x[2][5] </args >
<args > x[3][2] x[2][2] x[4][2] x[3][1] x[3][3] </args >
<args > x[3][3] x[2][3] x[4][3] x[3][2] x[3][4] </args >
<args > x[4][3] x[3][3] x[5][3] x[4][2] x[4][4] </args >
<args > x[4][4] x[3][4] x[5][4] x[4][3] x[4][5] </args >

</group >

Layout Problem. From Exploiting symmetries within constraint satisfaction search by P. Meseguer
and C. Torras, Artificial Intelligence 129, 2001: given a grid, we want to place a number of pieces
such that every piece is completely included in the grid and no overlapping occurs between pieces.
An example is given in Figure 4.1, where three pieces have to be placed inside the proposed grid. See
also CSPLib–Problem 132.

(a) Grid (b) Piece 1 (c) Piece 2 (d) Piece 3

Figure 4.1: Layout Problem

An example of data (corresponding to the problem instance of Figure 4.1) is given by the following
JSON file:

{
"grid": [[1,1,1,1],[1,1,1,1],[1,1,0,0],[1,0,0,0] ,[1,0,0,0],[1,0,0,0],[1,0,0,0]]

,
"shapes ": [

[[1,1], [1,0],[1,0],[1,0],[1,0]],
[[1,1], [1,1]],
[[1,1], [1,1]]

]
}

Note how the grid and the pieces are represented by two-dimensional matrices (0 being used to
discard some cells). A solution can be represented by storing in each cell of the grid either the index
of a piece or -1. For example, here is a solution corresponding to the data given above.

[
[1, 1, 2, 2],
[1, 1, 2, 2],
[0, 0, -1, -1],
[0, -1, -1, -1],
[0, -1, -1, -1],
[0, -1, -1, -1],
[0, -1, -1, -1]

]

A model for this layout problem in language Essence is:

given n, m, nShapes : int(1..)

104

https://www.csplib.org/Problems/prob132

letting Shape be domain int(1..nShapes),
N be domain int(1..n),
M be domain int(1..m),
Cell be domain tuple (N,M)

$ grid: the set of pairs of i and j coordinates that make up the grid shape
$ form: the form of each shape, as a set of pairs of i and j coordinates
given grid : set of Cell,

form : function (total) Shape --> set of Cell

$ x: a mapping from each cell in the grid to the shape id occupying it
find x : function Cell --> Shape

such that
$ only cells in the grid are part of the layout

forAll c in defined(x) . c in grid,
$ the cells that map to a shape match the shape’s form.
$ this is long and complicated because we need the minimum i and j coordinates
$ (min(sn) and min(sm)) that map to each shape, ...

forAll s : Shape . exists sn : set of N . exists sm : set of M .
(forAll (i,j) : Cell . i in sn /\ j in sm <-> (i,j) in preImage(x,s)) /\
forAll (i,j) in form(s) . x((min(sn) + i, min(sm) + j)) = s,

$ a shape has exactly the right number of cells mapping to it
forAll s : Shape . |form(s)| = |preImage(x,s)|

This model is elegant (Essence handles rather high level mathematical objects), but its compilation
may possibly yield complex instances. Posting table constraints substantially simplifies this task. Of
course, this can be performed in Essence. A PyCSP3 model based on table constraints is given by the
following file ‘Layout.py’:

PyCSP3 Model 56

from pycsp3 import *

grid , shapes = data
n, m, nShapes = len(grid), len(grid [0]), len(shapes)

def domain_x(i, j):
return {-1} if grid[i][j] == 0 else range(nShapes)

def domain_y(k):
shape , height , width = shapes[k], len(shapes[k]), len(shapes[k][0])
return [i * m + j for i in range(n - height + 1) for j in range(m - width + 1)

if all(grid[i + gi][j + gj] == 1 or shape[gi][gj] == 0
for gi in range(height) for gj in range(width))]

def table(k):
shape , height , width = shapes[k], len(shapes[k]), len(shapes[k][0])
tbl = []
for v in domain_y(k):

i, j = v // m, v % m
t = [(i + gi) * m + (j + gj) for gi in range(height) for gj in range(width)

if shape[gi][gj] == 1]
tbl.append ((v,) + tuple(k if w in t else ANY for w in range(n * m)))

return tbl

x[i][j] is the index of the shape occupying the cell at row i and column j, or -1
x = VarArray(size=[n, m], dom=domain_x)

y[k] is the base cell index in the grid where we start putting the kth shape
y = VarArray(size=nShapes , dom=domain_y)

105

satisfy(
putting shapes in the grid
(y[k], x) in table(k) for k in range(nShapes)

)

As an illustration, the table constraints that are generated from the above data are:
<block note="putting shapes in the grid">

<extension >
<list > y[0] x[][] </list >
<supports > (0,0,0,*,*,0,*,*,*,0,*,*,*,0,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*)

(4,*,*,*,*,0,0,*,*,0,*,*,*,0,*,*,*,0,*,*,*,0,*,*,*,*,*,*,*)
(8,*,*,*,*,*,*,*,*,0,0,*,*,0,*,*,*,0,*,*,*,0,*,*,*,0,*,*,*) </supports >

</extension >
<extension >

<list > y[1] x[][] </list >
<supports > (0,1,1,*,*,1,1,*)

(1,*,1,1,*,*,1,1,*)
(2,*,*,1,1,*,*,1,1,*)
(4,*,*,*,*,1,1,*,*,1,1,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*) </supports >

</extension >
<extension >

<list > y[2] x[][] </list >
<supports > (0,2,2,*,*,2,2,*)

(1,*,2,2,*,*,2,2,*)
(2,*,*,2,2,*,*,2,2,*)
(4,*,*,*,*,2,2,*,*,2,2,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*) </supports >

</extension >
</block >

4.4 Using Reformulation
In Section 4.1, we have seen that meta-constraint operators can be applied by calling specific PyCSP3

functions And(), Or(), . . . But, what about using the classical Python operators ’|’, ’&’ and ’~’?
These operators, which are redefined in PyCSP3, can be used to build intension constraints, but
also more complex forms obtained by logically combining (global) constraints. Let us try this with
the following PyCSP3 model:

PyCSP3 Model 57

from pycsp3 import *

x = VarArray(size=4, dom=range (4))
i = Var(range(-1, 4))

satisfy(
(Sum(x) > 10) | AllDifferent(x),
imply(i != -1, x[i] == 1)

)

Note that we could equivalently write (i == -1) | (x[i] == 1), instead of using the function
imply(). In any case, when compiling, we obtain the following XCSP3 instance:
<instance format="XCSP3" type="CSP">

<variables >
<array id="x" size="[4]"> 0..3 </array >
<var id="i"> -1..3 </var >
<array id="aux" note="auxiliary variables automatically introduced" size="[4]">

106

<domain for="aux[0]"> 0..12 </domain >
<domain for="aux[1]"> 1..4 </domain >
<domain for="aux[2] aux [3]"> 0..3 </domain >

</array >
</variables >
<constraints >

<extension >
<list > i aux[2] </list >
<supports > (-1,*)(0,0)(1,1)(2,2)(3,3) </supports >

</extension >
<sum >

<list > x[] </list >
<condition > (eq,aux [0]) </condition >

</sum >
<nValues >

<list > x[] </list >
<condition > (eq,aux [1]) </condition >

</nValues >
<intension > or(gt(aux [0] ,10),eq(aux[1],4)) </intension >
<intension > imp(ne(i,-1),eq(aux [3],1)) </intension >
<element >

<list > x[] </list >
<index > aux [2] </index >
<value > aux [3] </value >

</element >
</constraints >

</instance >

One can observe that four auxiliary variables have been automatically introduced. The generated
XCSP3 instance has been the subject of some reformulation rules which, importantly, allow us to
remain within the perimeter of XCSP3-core. Actually, the main reformulation rule is the following:
if a condition-based global constraint is involved in a complex formulation, it can be replaced by
an auxiliary variable while ensuring apart that what is ’computed’ by the constraint is equal to the
value of the new introduced variable. For example, Sum(x) > 10 becomes aux[0] > 10 while posting
Sum(x) = aux[0] apart (after having introduced the auxiliary variable aux[0]). By proceeding that
way, we obtain normal intension constraints.

Many global constraints are condition-based, i.e., involve a condition in their statements. This is
the case for:

◦ AllDifferent, since AllDifferent(x) is equivalent to NValues(x) = |x|
◦ AllEqual, since AllEqual(x) is equivalent to NValues(x) = 1

◦ Sum

◦ Count

◦ NValues

◦ Minimum

◦ Maximum

◦ Element

◦ Cumulative

In the rest of this section, three illustrations are given.

Stable Marriage. See Wikipedia. Consider two groups of men and women who must marry. Con-
sider that each person has indicated a ranking for her/his possible spouses. The problem is to find a
matching between the two groups such that the marriages are stable. A marriage between a man m
and a woman w is stable iff:

107

https://en.wikipedia.org/wiki/Stable_marriage_problem/

◦ whenever m prefers an other woman o to w, o prefers her husband to m

◦ whenever w prefers an other man o to m, o prefers his wife to w

In 1962, David Gale and Lloyd Shapley proved that, for any equal number n of men and women,
it is always possible to make all marriages stable, with an algorithm running in O(n2). Nevertheless,
this problem remains interesting as it shows how a nice and compact model can be written.

Figure 4.2: Marrying People. (image from freesvg.org)

An example of data is given by the following JSON file (here, n = 5) :
{

"women_rankings ": [[1,2,4,3,5],[3,5,1,2,4],[5,4,2,1,3],[1,3,5,4,2],[4,2,3,5,1]],
"men_rankings ": [[5,1,2,4,3],[4,1,3,2,5],[5,3,2,4,1],[1,5,4,3,2],[4,3,2,1,5]]

}

A PyCSP3 model of this problem is given by the following file ‘StableMarriage.py’:

PyCSP3 Model 58

from pycsp3 import *

wr , mr = data # ranking by women and men
n = len(wr)
Men , Women = range(n), range(n)

x[m] is the wife of the man m
x = VarArray(size=n, dom=Women)

y[w] is the husband of the woman w
y = VarArray(size=n, dom=Men)

satisfy(
spouses must match
Channel(x, y),

whenever m prefers an other woman o to w, o prefers her husband to m
[(mr[m][o] >= mr[m][x[m]]) | (wr[o][y[o]] < wr[o][m]) for m in Men for o in Women],

whenever w prefers an other man o to m, o prefers his wife to w
[(wr[w][o] >= wr[w][y[w]]) | (mr[o][x[o]] < mr[o][w]) for w in Women for o in Men]

)

Note how the two last lists (groups) of constraints combine element constraints. When compiling,
auxiliary variables will then be introduced. Note that a cache is used to avoid generating equivalent
auxiliary variables.

Diagnosis. From CSPLib: “ Model-based diagnosis can be seen as taking as input a partially param-
eterized structural description of a system and a set of observations about that system. Its output is
a set of assumptions which, together with the structural description, logically imply the observations,
or that are consistent with the observations. Diagnosis is usually applied to combinational digital
circuits, seen as black-boxes where there is a set of controllable input bits but only a set of primary

108

https://freesvg.org/group-of-men-and-women-silhouettes
https://www.csplib.org/Problems/prob042/

outputs is visible. The problem is to find the set of all (minimal) internal faults that explain an incor-
rect output (different than the modelled, predicted, output), given some input vector. The possible
faults consider the usual stuck-at fault model, where faulty circuit gates can be either stuck-at-0 or
stuck-at-1, respectively outputting value 0 or 1 independently of the input. As an example, for the
full-adder circuit displayed in Figure 4.3, if we assume that the input is A = 0, B = 0, cin = 0 and
the observed output is S = 1, Cout = 0 (although it should be S = 0, Cout = 0), the single faults that
explain the incorrect output are the first XOR gate stuck-at-1 or the second XOR gate stuck-at-1.”

Figure 4.3: Full Adder. (image from commons.wikimedia)

An example of data is given by the following JSON file:
{

"functions ": [[[0,1],[1,1]], [[0,0],[0,1]],[[0,1],[1,0]]],
"gates": [

null ,
null ,
{"f": 2, "in1": 0, "in2": 0, "out": -1},
{"f": 1, "in1": 0, "in2": 0, "out": -1},
{"f": 2, "in1": 0, "in2": 2, "out": 1},
{"f": 1, "in1": 0, "in2": 2, "out": -1},
{"f": 0, "in1": 3, "in2": 5, "out": 0}

]
}

Logical functions are given under their matrix forms; here, we have the functions OR (index 0),
AND (index 1), and XOR (index 2). Each gate is given its logical function (index given by ’f’), its
input (0 for False, 1 for True and the index of another gate otherwise), and its observed output (if
any). A PyCSP3 model of this problem is given by the following file ‘Diagnosis.py’:

PyCSP3 Model 59

from pycsp3 import *

note that the two first gates are special
they are inserted for reserving indexes 0 and 1 (for false and true)
funcs , gates = data
nGates = len(gates)

x[i] is -1 if the ith gate is not faulty (otherwise 0 or 1 when stuck at 0 or 1)
x = VarArray(size=nGates , dom=lambda i: {-1} if i < 2 else {-1, 0, 1})

y[i] is the (possibly faulty) output of the ith gate
y = VarArray(size=nGates , dom=lambda i: {i} if i < 2 else {0, 1})

109

https://commons.wikimedia.org/wiki/File:Full-adder.svg

def apply(gate):
return functions[gate.f][y[gate.in1]][y[gate.in2]]

satisfy(
ensuring that y is coherent with the observed output
[y[i] == gates[i].out for i in range(2, nGates) if gates[i].out != -1],

ensuring that each gate either meets expected outputs based on its function
or is broken (either stuck on or off)
[(y[i] == x[i]) | (y[i] == apply(gates[i])) & (x[i] == -1)

for i in range(2, nGates)]
)

minimize(
minimizing the number of faulty gates
Sum(x[i] != -1 for i in range(2, nGates))

)

Note how the last list (group) of constraints involve element constraints under their matrix forms.
Once again, when compiling, auxiliary variables will be introduced, and the generated XCSP3 instances
will be guaranteed to be within XCSP3-core.

Vellino’s Problem. From Constraint Programming in OPL by L. Michel, L. Perron, and J.-C.
Régin, CP’99: this problem involves putting components of different materials (glass, plastic, steel,
wood, copper) into bins of various types (identified by red, blue, green colors), subject to capacity
(each bin type has a maximum capacity) and compatibility constraints. Every component must be
placed into a bin and the total number of used bins must be minimized. The compatibility constraints
are:

◦ red bins cannot contain plastic or steel

◦ blue bins cannot contain wood or plastic

◦ green bins cannot contain steel or glass

◦ red bins contain at most one wooden component

◦ green bins contain at most two wooden components

◦ wood requires plastic

◦ glass excludes copper

◦ copper excludes plastic

See also CSPLib–Problem 116.
An example of data is given by the following JSON file:
{

"capacities ": [3,1,4],
"demands ": [1,2,1,3,2]

}

Capacities are orderly given for red, blue and green bins, and demands (numbers of components)
are orderly given for glass, plastic, steel, wood, and copper materials. A PyCSP3 model of this problem
is given by the following file ‘Vellino.py’:

110

https://www.csplib.org/Problems/prob116/

(a) Types of Components (Glass, Plastic, Steel, Wood, Copper). (images from freesvg.org)

(b) Red, Blue and Green Bins. (image from freesvg.org)

Figure 4.4: Vellino’s Problem

PyCSP3 Model 60

from pycsp3 import *

0 is a special color , ’Unusable ’, to be used for any empty bin
Unusable , Red , Blue , Green = BIN_COLORS = 0, 1, 2, 3
Glass , Plastic , Steel , Wood , Copper = MATERIALS = 0, 1, 2, 3, 4
nColors , nMaterials = len(BIN_COLORS), len(MATERIALS)

capacities , demands = data
capacities.insert(0, 0) # unusable bins have capacity 0
maxCapacity , nBins = max(capacities), sum(demands)

c[i] is the color of the ith bin
c = VarArray(size=nBins , dom=range(nColors))

p[i][j] is the number of components of the jth material put in the ith bin
p = VarArray(size=[nBins , nMaterials],

dom=lambda i, j: range(min(maxCapacity , demands[j]) + 1))

satisfy(
every bin with a real colour must contain something , and vice versa
[(c[i] == Unusable) == (Sum(p[i]) == 0) for i in range(nBins)],

all components of each material are spread across all bins
[Sum(p[:, j]) == demands[j] for j in range(nMaterials)],

the capacity of each bin is not exceeded
[Sum(p[i]) <= capacities[c[i]] for i in range(nBins)],

red bins cannot contain plastic or steel
[(c[i] != Red) | (p[i][Plastic] == 0) & (p[i][Steel] == 0) for i in range(nBins)],

blue bins cannot contain wood or plastic
[(c[i] != Blue) | (p[i][Wood] == 0) & (p[i][Plastic] == 0) for i in range(nBins)],

green bins cannot contain steel or glass
[(c[i] != Green) | (p[i][Steel] == 0) & (p[i][Glass] == 0) for i in range(nBins)],

red bins contain at most one wooden component
[(c[i] != Red) | (p[i][Wood] <= 1) for i in range(nBins)],

111

 https://freesvg.org/glass-block
https://freesvg.org/trash-bin

green bins contain at most two wooden components
[(c[i] != Green) | (p[i][Wood] <= 2) for i in range(nBins)],

wood requires plastic
[(p[i][Wood] == 0) | (p[i][Plastic] > 0) for i in range(nBins)],

glass excludes copper
[(p[i][Glass] == 0) | (p[i][Copper] == 0) for i in range(nBins)],

copper excludes plastic
[(p[i][Copper] == 0) | (p[i][Plastic] == 0) for i in range(nBins)],

tag(symmetry -breaking)
[LexIncreasing(p[i], p[i + 1]) for i in range(nBins - 1)]

)

minimize(
minimizing the number of used bins
Sum(c[i] != Unusable for i in range(nBins))

)

Note how the first list (group) of constraints involve sum constraints in a more general expression.
Automatic reformulation at compilation time will then be applied. Some other lists in the model also
involve element constraints that will be reformulated.

112

Chapter 5

Interface of the Library

In this chapter, we are interested in the interface of the library PyCSP3. First, in Section 5.1, we review
all options that can be used on the command line. Second, in Section 5.2, we review all components
(constants, variables and functions) that are available when importing the library (package) PyCSP3.
Finally, we briefly discuss control of imports in Section 5.3, which is actually a classical Python issue.

5.1 Command-Line Interface
The following options, concerning data, are described in Section 2.1.

◦ -data

◦ -dataparser

◦ -dataexport

◦ -dataformat

The following option allows us to indicate what must be the name of the generated filename (instead
of the one that is automatically chosen).

◦ -output

For example, the name of the generated XCSP3 file is ‘Queens-4.xml’ when executing:

python Queens.py -data=4

whereas it is ‘myname.xml’ when executing:

python Queens.py -data=4 -output=myname

The following option allows us to choose between several possible variants of a model.

◦ -variant

Actually, it is possible to reason with both a variant name and a subvariant name. It is the case
when the specified name contains the character ’-’ separating the variant name from the subvariant
name. In PyCSP3, we then use the functions variant() and subvariant(). Let us consider the
following example (piece of code in a file called ‘TestVariant.py’):

113

PyCSP3 Model 61

from pycsp3 import *

x = Var(0,1)

if not variant ():
print("no variant")

elif variant("v1"):
print("variant v1")

elif variant("v2"):
print("variant v2")
if not subvariant ():

print("no subvariant")
elif subvariant("a"):

print("subvariant a")
elif subvariant("b"):

print("subvariant b")

Here are the results we obtain for various command lines:

python TestVariant.py // no variant
python TestVariant.py -variant=v1 // variant v1
python TestVariant.py -variant=v2 // variant v2 no subvariant
python testVariant.py -variant=v2-a // variant v2 subvariant a
python testVariant.py -variant=v2-b // variant v2 subvariant b

The following options concern the solving process.

◦ -solve

◦ -solver

When using -solve, the default solver, ACE, is called. However, when using -solver, one must
indicate the name of the solver (ace or choco, case insensitive), and possibly other solver options, in
which case, square brackets are required. Among the solver options, one can use v (for verbose) or vv
(for very verbose), and args that must then be followed by the symbol ’=’ and a string corresponding
to some specific solver options. Here are a few examples:

python Queens.py -data=4 -solve
python Queens.py -data=4 -solver=choco
python Queens.py -data=4 -solver=ace
python Queens.py -data=4 -solver=[choco,v]
python Queens.py -data=4 -solver=[ace,vv]
python Queens.py -data=4 -solver=[ace,v,args="-s=2"]

Finally, there are some other options, used as flags, i.e., requiring no argument:

◦ -display displays the XCSP3 instance in the system standard output, instead of generating an
XCSP3 file (not compatible with -solve and -solver)

◦ -verbose displays some additional information when compiling

◦ -sober does not include side notes in the XCSP3 file

◦ -ev may display additional information when an error occurs

◦ -lzma compresses the XCSP3 file with lzma (requires lzma to be installed)

◦ -safe performs some operations (possibly based on parallelism) in a safer manner

114

5.2 Main Module Interface
In this section, we briefly review all components (constants, variables, functions) that are available
from the main module of the library PyCSP3. This is what you get when executing:

from pycsp3 import *

To list all of them, one can simply execute:

import pycsp3
dir(pycsp3)

In the next sub-sections, we introduce the different categories of such components.

5.2.1 Building Models
The main functions for building CSP and COP models are about:

◦ declaring stand-alone variables, and arrays of variables

– Var()

– VarArray()

◦ posting constraints

– satisfy()

◦ specifying an objective

– minimize()

– maximize()

◦ managing several model variants

– variant()

– subvariant()

How to declare variables is discussed in Section 2.2. How to post constraints is made by calling
satisfy(), as recalled in the introduction of Chapter 3. How to specify an objective is discussed in
Section 2.3. How to manage variants and subvariants is illustrated in Section 5.1.

5.2.2 Building Expressions
When building expressions of intensional constraints, one can use constants, variables, and arithmetic,
relational, and logic operators (which are redefined to this particular purpose). In addition to the
Python functions:

◦ abs()

◦ min()

◦ max()

which are also extended (redefined), one can use the following specific functions:

◦ xor()

◦ iff()

◦ imply()

115

◦ ift()

◦ expr()

◦ conjunction()

◦ disjunction()

For example, the 8 constraints of this demonstration model:

PyCSP3 Model 62

from pycsp3 import *

x = VarArray(size=6, dom=range (6))

satisfy(
xor(x[0] == 0, x[1] == 1, x[2] == 2),
iff(x[0] < 3, x[1] != 2),
iff(x[i] != i for i in range (6)),
imply(x[0] > 2, x[1] == 4),
ift(x[0] == 1, x[1] == 2, x[2] == 3),
expr("<", x[0], 4),
conjunction(x[i] != i for i in range (6)),
disjunction(x[i] != i for i in range (6)),

)

correspond to intensional constraints whose expressions in prefix notation are:

xor(eq(x[0],0),eq(x[1],1),eq(x[2],2))
iff(lt(x[0],3),ne(x[1],2))
iff(ne(x[0],0),ne(x[1],1),ne(x[2],2),ne(x[3],3),ne(x[4],4),ne(x[5],5))
imp(gt(x[0],2),eq(x[1],4))
if(eq(x[0],1),eq(x[1],2),eq(x[2],3))
lt(x[0],4)
and(ne(x[0],0),ne(x[1],1),ne(x[2],2),ne(x[3],3),ne(x[4],4),ne(x[5],5))
or(ne(x[0],0),ne(x[1],1),ne(x[2],2),ne(x[3],3),ne(x[4],4),ne(x[5],5))

A related function is protect that allows us to execute some piece of code while all redefined
operators are temporarily deactivated. To be effective, one must chain the call to protect with a call
to execute with the piece of code to be executed in protected mode. As an illustration, if we execute:
x = Var(0,1)
y = Var(0,1)

print(x == y)
print(protect (). execute(x == x))
print(protect (). execute(x == y))

we obtain:

eq(x,y)
True
False

5.2.3 Building Global Constraints
Some constraints can be built by simply using the (redefined) operators (and functions) of Python.
This is mainly the case for intension, extension and also element. For the other global constraints,
here is the list of functions to be called.

116

◦ Automaton() and MDD()

◦ AllDifferent(), AllDifferentList(), AllEqual()

◦ Increasing(), Decreasing(), LexIncreasing(), LexDecreasing()

◦ Sum(), Count(), NValues(), Cardinality()

◦ Maximum(), Minimum(), Channel()

◦ NoOverlap(), Cumulative(), BinPacking()

◦ Circuit(), Clause()

Details about these functions can be found in the docstrings and in Chapter 3 of this document.

5.2.4 Loading (Default) JSON Data
Two useful functions to load some JSON data by default, or independently of the main object data
are:

◦ default_data()

◦ loading_json_data()

These functions are described in Section 2.1.

5.2.5 Handling Lists (Matrices)
Rather often, we need to handle matrices (i.e., two-dimensional lists) of integers or variables. The
following functions can be helpful:

◦ columns()

◦ diagonal_down()

◦ diagonals_down()

◦ diagonal_up()

◦ diagonals_up()

The function columns actually computes a transpose matrix. If we execute:
x = VarArray(size =[3,4], dom ={0 ,1})

print(x)
print(columns(x))

we obtain:

[
[x[0][0], x[0][1], x[0][2], x[0][3]]
[x[1][0], x[1][1], x[1][2], x[1][3]]
[x[2][0], x[2][1], x[2][2], x[2][3]]

]
[

[x[0][0], x[1][0], x[2][0]]
[x[0][1], x[1][1], x[2][1]]
[x[0][2], x[1][2], x[2][2]]
[x[0][3], x[1][3], x[2][3]]

]

As an illustration of functions that are useful for extracting diagonals, if we execute:

117

y = VarArray(size =[4,4], dom ={0 ,1})

print(diagonal_down(y))
print(diagonals_down(y))
print(diagonals_down(y, broken=True))

we obtain:

[y[0][0], y[1][1], y[2][2], y[3][3]]
[

[y[2][0], y[3][1]]
[y[1][0], y[2][1], y[3][2]]
[y[0][0], y[1][1], y[2][2], y[3][3]]
[y[0][1], y[1][2], y[2][3]]
[y[0][2], y[1][3]]

]
[

[y[0][0], y[1][1], y[2][2], y[3][3]]
[y[0][3], y[1][0], y[2][1], y[3][2]]
[y[0][2], y[1][3], y[2][0], y[3][1]]
[y[0][1], y[1][2], y[2][3], y[3][0]]

]

Finally, the function cp_array allows us to transform any list (of any dimension) of integers into
a more specific type called ’ListInt’ that inherits from list. Similarly, it allows us to transform any
list (of any dimension) of variables into a more specific type called ’ListVar’ that inherits from list.
It is important to have such specific types of lists when using the constraint element. Importantly,
when the data are loaded from a file (the usual case), all lists of integers have the specific type of list
returned by cp_array, and so, it is very rare to need to call this function explicitly.

As an illustration, if we execute:
t = [3, 4, 5]
print(type(t))
t = cp_array(t)
print(type(t))

we obtain:

<class ’list’>
<class ’pycsp3.tools.curser.ListInt’>

If we execute:
x = VarArray(size=5, dom ={0 ,1})

print(type(x))
y = [x[0], x[2], x[4]]
print(type(y))
y = cp_array(y)
print(type(y))

we obtain:

<class ’pycsp3.tools.curser.ListVar’>
<class ’list’>
<class ’pycsp3.tools.curser.ListVar’>

When a list is from type ’ListVar’ or ’ListInt’, it can be used in the expression of a constraint
element.

118

5.2.6 Handling Tuples
From package itertools, the following functions are directly available:

◦ product()

◦ permutations()

◦ combinations()

Note that the function combinations() is slightly extended so as to permit the first argument to
be an integer. In that case, this value is converted into a range. For example, if we execute:
print([tuple for tuple in combinations (5 ,2)])

we obtain:

[(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]

5.2.7 Utility Computations
Some utility functions are:

◦ different_values()

◦ flatten()

◦ alphabet_positions()

◦ all_primes()

◦ integer_scaling()

The function different_values just checks that all specified arguments are different. The func-
tion flatten builds a one-dimensional list with all elements that can be encountered when looking into
the specified arguments (typically, this is a list of possibly any dimension). None values are discarded
except if the optional named parameter keep_none is set to True. For example, if we execute:
x = VarArray(size =[3,3], dom=lambda i,j: {0,1} if i >= j else None)
print("x: ", x)
print("x flattened: ", flatten(x))

we obtain:

x: [
[x[0][0], None, None]
[x[1][0], x[1][1], None]
[x[2][0], x[2][1], x[2][2]]

]
x flattened: [x[0][0], x[1][0], x[1][1], x[2][0], x[2][1], x[2][2]]

The function alphabet_positions returns a list with the indexes of the letters (with respect to
the 26 letters of the Latin alphabet) of a specified string. The function all_primes returns a list with
all prime numbers that are strictly less than the specified limit.

The function integer_scaling returns a list with all specified values after possibly converting
them (when decimal) into integers by means of automatic scaling. For example, if we execute:
t = [3, 2.11, 0.0141]
print("t scaled: ", integer_scaling(t))

we obtain:

t scaled: [30000, 21100, 141]

119

5.2.8 Building Compressed Forms of Tables
On the one hand, it is rather easy to build starred tuples, which are tuples involving ’*’, denoted by
the constant ANY in PyCSP3. Illustrations are given by the models of problems TTPV, Section 3.2,
and Layout, Section 4.3.

On the other hand, when creating tables to be used with extensional constraints, one can use some
auxiliary functions that capture some patterns (conditions) that can be put at some places inside
tuples. Tables are then said to be hybrid. The interest is that it is easier (quicker) to build tables (and
besides, in the near future, we shall be able to generate such tables when compiling). These functions
are:

◦ lt(), meaning ’strictly less than’

◦ le(), meaning ’less than or equal to’

◦ gt(), meaning ’strictly greater than’

◦ ge(), meaning ’greater than or equal to’

◦ eq(), meaning ’equal to’

◦ ne(), meaning ’not equal to’

◦ complement(), meaning ’not present in’

For example, assuming that the possible values to work with are {0, 1, 2, 3, 4}, the hybrid tuple
(0, lt(3), 2) represents the set of tuples {(0, 0, 2), (0, 1, 2), (0, 2, 2)} since lt(3) means any value that is
strictly less than 3. As a more concrete illustration, let us consider the following demonstration model:

PyCSP3 Model 63

from pycsp3 import *

table = [(0, ANY , gt(1)), (ne(0),(2,3), complement (2 ,3))]

x = VarArray(size=3, dom=range (4))

satisfy(
x in table

)

The constraint expresses the fact that x[0] can be 0 if x[2] > 1, or different from 0 if x[1] ∈ {2, 3}
and x[2] ∈ {0, 1} (the complement of {2, 3}). When looking at the outcome of compilation (i.e., the
XCSP3 file), one can see that a starred table has been generated.

Although the transformation from hybrid tables to ordinary/starred tables is automatic when
compiling, one may want, for some reasons, to apply explicitly the transformation with the function
to_ordinary_table. This function converts a specified table that may contain hybrid restrictions
and stars into an ordinary table (or a starred table). The first argument of the function is a table
that contains r-tuples. For converting, the domain to be considered are any index i of these tuples is
given by domains[i] where domains is the second argument of the function. In case, domains[i] is an
integer, it is automatically transformed into a range. An optional named parameter starred allows
us to choose between an ordinary and a starred table.

For example, if we execute:
table = [(0, ANY , gt(1)), (ne(0),(2,3), complement (2 ,3))]
print("Hybrid table: ", table)
print("Starred Table: ", sorted(to_ordinary_table(table ,[4,4,4], starred=True)))
print("Ordinary Table: ", sorted(to_ordinary_table(table ,[4 ,4 ,4])))

we obtain:

120

Hybrid table: [(0, *, ≥ 2), (6= 0, (2, 3), {{2, 3})]

Starred Table: [(0, *, 2), (0, *, 3), (1, 2, 0), (1, 2, 1), (1, 3, 0), (1, 3, 1),
(2, 2, 0), (2, 2, 1), (2, 3, 0), (2, 3, 1), (3, 2, 0), (3, 2, 1), (3, 3, 0), (3, 3, 1)]

Ordinary Table: [(0, 0, 2), (0, 0, 3), (0, 1, 2), (0, 1, 3), (0, 2, 2), (0, 2, 3),
(0, 3, 2), (0, 3, 3), (1, 2, 0), (1, 2, 1), (1, 3, 0), (1, 3, 1), (2, 2, 0), (2, 2, 1),
(2, 3, 0), (2, 3, 1), (3, 2, 0), (3, 2, 1), (3, 3, 0), (3, 3, 1)]

5.2.9 Building Meta-constraints
It is possible to build meta-constraints by using the following functions:

◦ And()

◦ Or()

◦ Not()

◦ Xor()

◦ IfThen()

◦ IfThenElse()

◦ Iff()

It is important to note that the first letter of these function names is uppercase. Some illustrations
and details are given in Section 4.1. For the moment, note that meta-constraints should be avoided
as they are not in the perimeter of XCSP3-core.

5.2.10 Solving
Some constants are available. Some concern the result of a solving process, when solve() is called.

◦ UNSAT, unsatisfiable (means that no solution is found by the solver)

◦ SAT, satisfiable (means that at least one solution is found by the solver)

◦ OPTIMUM, optimum (means that an optimal solution is found by the solver)

◦ UNKNOWN, unknown (means that the solver is unable to solve the problem instance)

◦ CORE, core (means that an unsatisfiable core has been extracted by the solver)

Some concern the choice of a solver:

◦ ACE, Solver ACE (AbsCon Essence)

◦ CHOCO, Solver Choco

A last constant is

◦ ALL, meaning that all solutions must be sought, when used with the parameter sols of solve().

The functions that directly concern the solving process are:

◦ solve(): runs the solver on the current instance

◦ solver(): returns the current solver, when no argument is given, or sets the current solver with
an argument set to the constant ACE or the constant CHOCO

◦ status(): returns the result of the last solving process (last call to solve())

121

◦ solution(): returns an object with various information (fields) concerning the last found solu-
tion

◦ value(): returns the value assigned to the variable specified as parameter

◦ values(): returns the list of values assigned to the (list of) variables specified as parameter

◦ n_solutions(): returns the number of found solutions

◦ bound(): returns the value of the objective function corresponding to the last found solution

◦ core(): returns the core identified by the last extraction operation

These functions are described and/or illustrated in Chapter 6.

Finally, some functions allow us to display the posted constraints (or objective), to remove some
posted constraints and to clear everything (variables, constraints, objective):

◦ posted(): displays the posted constraints

◦ objective(): displays the current objective

◦ unpost(): removes the constraints posted by the last call to satisfy().

◦ clear(): clears everything (variables, constraints, objective)

These functions are described and/or illustrated in Chapter 6.

5.3 Controlling Imports
The practice of importing everything (i.e., ∗) into the current namespace is sometimes discouraged
because it notably provides the opportunity for namespace collisions. Although we shall always use
from pycsp3 import * in this guide, we give below an illustration of specific import statements.
Note that it is a general Python technical issue.

Cookie Monster. The Cookie Monster Problem is from Richard Green: “Suppose that we have a
number of cookie jars, each one containing a certain number of cookies. The Cookie Monster (CM)
wants to eat all the cookies, but he is required to do so in a number of sequential moves. At each
move, the CM chooses a subset of the jars, and eats the same (nonzero) number of cookies from each
selected jar. The goal of the CM is to empty all the cookies from the jars in the smallest possible
number of moves, and the Cookie Monster Problem is to determine this number for any given set of
cookie jars.”

Concerning data, we need a list of quantities in jars as e.g., [15, 13, 12, 4, 2, 1], meaning that there
are six jars, containing 15, 13, 12 4, 2, 1 cookies each.

Figure 5.1: Cookie Monsters. (image from Pixabay)

A PyCSP3 model (a variant can be found in OscaR) for this problem is given by the following file
‘CookieMonster.py’:

122

https://pixabay.com/fr/illustrations/cookie-monster-les-cookies-5655016

PyCSP3 Model 64

from pycsp3 import data, Var , VarArray , satisfy, minimize

jars = data or [15, 13, 12, 4, 2, 1]
nJars , horizon = len(jars), len(jars) + 1

x[t][i] is the quantity of cookies in the ith jar at time t
x = VarArray(size=[horizon , nJars], dom=range(max(jars) + 1))

y[t] is the number of cookies eaten by the monster in selected jars at time t
y = VarArray(size=horizon , dom=range(max(jars) + 1))

f is the first time where all jars are empty
f = Var(range(horizon))

satisfy(
initial state
[x[0][i] == jars[i] for i in range(nJars)],

final state
[x[-1][i] == 0 for i in range(nJars)],

handling the action of the cookie monster at time t (to t+1)
[(x[t + 1][i] == x[t][i]) | (x[t + 1][i] == x[t][i] - y[t])

for t in range(horizon - 1) for i in range(nJars)],

ensuring no useless intermediate inaction
[(y[t] != 0) | (y[t + 1] == 0) for t in range(horizon - 1)],

at time f, all jars are empty
y[f] == 0

)

minimize(
f

)

Note how the first line of the model avoids importing everything (∗).

We can even go further, by only importing the package. This way, no collision is possible; there
is no risk of inadvertently redefining a PyCSP3 function, for example. However, one must prefix any
PyCSP3 member (constant, variable or function) with pycsp3. On our example, this gives:

PyCSP3 Model 65

import pycsp3

jars = pycsp3.data or [15, 13, 12, 4, 2, 1]
nJars , horizon = len(jars), len(jars) + 1

x[t][i] is the quantity of cookies in the ith jar at time t
x = pycsp3.VarArray(size=[horizon , nJars], dom=range(max(jars) + 1))

y[t] is the number of cookies eaten by the monster in selected jars at time t
y = pycsp3.VarArray(size=horizon , dom=range(max(jars) + 1))

f is the first time where all jars are empty
f = pycsp3.Var(range(horizon))

pycsp3.satisfy(

123

initial state
[x[0][i] == jars[i] for i in range(nJars)],

final state
[x[-1][i] == 0 for i in range(nJars)],

handling the action of the cookie monster at time t (to t+1)
[(x[t + 1][i] == x[t][i]) | (x[t + 1][i] == x[t][i] - y[t])

for t in range(horizon - 1) for i in range(nJars)],

ensuring no useless intermediate inaction
[(y[t] != 0) | (y[t + 1] == 0) for t in range(horizon - 1)],

at time f, all jars are empty
y[f] == 0

)

pycsp3.minimize(
f

)

124

Chapter 6

Piloting the Solving Process

In this chapter, we show how it is easy to pilot, in Python, the process of solving any problem
instance by using the interface of PyCSP3. More specifically, we show how to run a solver, how to get
several (possibly, all) solutions, how to conduct an incremental solving strategy, and how to extract
an unsatisfiable core of constraints.

6.1 Running a Solver
It is very simple to directly run a solver on a PyCSP3 model. You just have to call the following
function:

solve()

This will start the solver ACE on the current problem instance. The result of this command is the
status of the solving operation, which is one of the following constants:

UNSAT
SAT
OPTIMUM
UNKNOWN

More specifically, the result is:

◦ among UNSAT, SAT, and UNKNOWN for a CSP instance

◦ among UNSAT, SAT, OPTIMUM and UNKNOWN for a COP instance

This function solve() accepts several named parameters:

◦ solver: name of the solver (ACE or CHOCO)

◦ options: specific options for the solver

◦ filename: the filename of the compiled problem instance

◦ verbose: verbosity level from -1 to 2

◦ sols: number of solutions to be found (ALL if no limit)

◦ extraction: True if an unsatisfiable core of constraints must be sought

As an illustration, let us consider the Warehouse Location Problem (WLP), introduced in Section
1.3.2. In a first step, we consider the decision problem (i.e., the objective is not posted, so, we have a

125

CSP instance), run the solver and print the solution if the problem instance is satisfiable (by default,
only one solution is sought for a CSP instance). Note that we can display the values assigned to the
variables of a specified (possibly multi-dimensional) list by calling the function values(). The file
‘Warehouse.py’ is:

PyCSP3 Model 66

from pycsp3 import *

fixed_cost , capacities , costs = data
nWarehouses , nStores = len(capacities), len(costs)

w[i] is the warehouse supplying the ith store
w = VarArray(size=nStores , dom=range(nWarehouses))

satisfy(
capacities of warehouses must not be exceeded
Count(w, value=j) <= capacities[j] for j in range(nWarehouses)

)

if solve() is SAT:
print(values(w))

When we execute:

python Warehouse.py -data=warehouse.json

we obtain:

[0, 1, 1, 1, 1, 2, 2, 3, 4, 4]

The output is not very friendly/readable, but nothing prevents us from improving that aspect.
This is what we do now with a Python f-string, getting the value of individual variables with the
function value(). The new file ‘Warehouse.py’ is:

PyCSP3 Model 67

from pycsp3 import *

fixed_cost , capacities , costs = data
nWarehouses , nStores = len(capacities), len(costs)

w[i] is the warehouse supplying the ith store
w = VarArray(size=nStores , dom=range(nWarehouses))

satisfy(
capacities of warehouses must not be exceeded
Count(w, value=j) <= capacities[j] for j in range(nWarehouses)

)

if solve() is SAT:
for i in range(nStores):

print(f"Warehouse supplying the store {i} is {value(w[i])}
with cost {costs[i][value(w[i])]}")

When we execute:

python Warehouse.py -data=warehouse.json

we obtain:

126

Warehouse supplying the store 0 is 0 with cost 100
Warehouse supplying the store 1 is 1 with cost 27
Warehouse supplying the store 2 is 1 with cost 97
Warehouse supplying the store 3 is 1 with cost 55
Warehouse supplying the store 4 is 1 with cost 96
Warehouse supplying the store 5 is 2 with cost 29
Warehouse supplying the store 6 is 2 with cost 73
Warehouse supplying the store 7 is 3 with cost 43
Warehouse supplying the store 8 is 4 with cost 46
Warehouse supplying the store 9 is 4 with cost 95

Now, we consider the objective function (and so, we have a COP instance). This is the reason why
we check if the status returned when calling solve() is OPTIMUM. Note that the function bound()
directly returns the value of the objective function corresponding to the found optimal solution. The
new file ‘Warehouse.py’ is:

PyCSP3 Model 68

from pycsp3 import *

fixed_cost , capacities , costs = data
nWarehouses , nStores = len(capacities), len(costs)

w[i] is the warehouse supplying the ith store
w = VarArray(size=nStores , dom=range(nWarehouses))

satisfy(
capacities of warehouses must not be exceeded
Count(w, value=j) <= capacities[j] for j in range(nWarehouses)

)

minimize(
minimizing the overall cost
Sum(costs[i][w[i]] for i in range(nStores)) + NValues(w) * fixed_cost

)

if solve() is OPTIMUM:
print(values(w))
for i in range(nStores):

print(f"Cost of supplying the store {i} is {costs[i][value(w[i])]}")
print("Total supplying cost: ", bound ())

When we execute:

python Warehouse.py -data=warehouse.json

we obtain:

[4, 1, 4, 0, 4, 1, 1, 2, 1, 2]
Cost of supplying the store 0 is 30
Cost of supplying the store 1 is 27
Cost of supplying the store 2 is 70
Cost of supplying the store 3 is 2
Cost of supplying the store 4 is 4
Cost of supplying the store 5 is 22
Cost of supplying the store 6 is 5
Cost of supplying the store 7 is 13
Cost of supplying the store 8 is 35
Cost of supplying the store 9 is 55
Total supplying cost: 383

127

One may be worried by the fact that the code mixes modeling and solving parts. Interestingly, we
can make a clear separation as described now. First, we write the model in the file ‘Warehouse.py’:

PyCSP3 Model 69

from pycsp3 import *

fixed_cost , capacities , costs = data
nWarehouses , nStores = len(capacities), len(costs)

w[i] is the warehouse supplying the ith store
w = VarArray(size=nStores , dom=range(nWarehouses))

satisfy(
capacities of warehouses must not be exceeded
Count(w, value=j) <= capacities[j] for j in range(nWarehouses)

)

minimize(
minimizing the overall cost
Sum(costs[i][w[i]] for i in range(nStores)) + NValues(w) * fixed_cost

)

Then, we write the solving part in a file ‘WarehouseSolving.py’:

Code

from Warehouse import *

if solve() is OPTIMUM:
print(values(w))
for i in range(nStores):

print(f"Cost of supplying the store {i} is {costs[i][value(w[i])]}")
print("Total supplying cost: ", bound ())

Then, we can execute:

python WarehouseSolving.py -data=warehouse.json

If for some reasons, it is better to set data in the file containing the solving part, we can modify
sys.argv. The file ‘WarehouseSolving.py’ becomes:

Code

import sys

sys.argv.append("-data=Warehouse_example.json")

from Warehouse import *

if solve() is OPTIMUM:
print(values(w))
for i in range(nStores):

print(f"Cost of supplying the store {i} is {costs[i][value(w[i])]}")
print("Total supplying cost: ", bound ())

Then, we can simply execute (do note that the option -data is not used):

python WarehouseSolving.py

128

As another illustration, let us consider one of the two models, put in a file called ‘Queens.py’,
introduced (without variants) in Section 1.2.1 for the Queens problem. If we write this solving code
in a file ‘QueensSolving.py’:

Code

import sys
import chess.svg

sys.argv.append("-data=8")

from Queens import *

if solve() is SAT:
solution = values(q) # for example: [0, 4, 7, 5, 2, 6, 1, 3]
board = chess.Board("/".join(("" if v == 0 else str(v)) + "q"

+ ("" if v == n - 1 else str(n - 1 - v)) for v in solution)
+ ’ b KQkq - 0 1’)

with open(’chess.svg’, ’w’) as f:
f.write(chess.svg.board(board , size =350))

Then, by means of the package chess.svg, we can generate the rendering of the solution to the 8
queens problem in a SVG file:

6.2 Finding One, Several or All Solutions
The easiest and most efficient way of getting several (and even, all) solutions of a CSP instance is to
ask the underlying solver to provide them. We give an illustration with the Prime Looking Problem.

Prime Looking. This problem is from Martin Gardner: a number is said to be prime-looking if it
is composite but not divisible by 2, 3 or 5. We know that the three smallest prime-looking numbers
are 49, 77 and 91. Can you find the prime-looking numbers less than 1000?

The model, which is rather simple, is written in a file ‘PrimeLooking.py’:

PyCSP3 Model 70

from pycsp3 import *

the number we look for
x = Var(range (1000))

a first divider
d1 = Var(range(2, 1000))

129

a second divider
d2 = Var(range(2, 1000))

satisfy(
x == d1 * d2,
x % 2 != 0,
x % 3 != 0,
x % 5 != 0,
d1 <= d2

)

The solving part of the code is put in another file ‘PrimeLookingSolving.py’:

Code

from PrimeLooking import *

instance = compile ()
ace = solver(ACE)
result = ace.solve(instance)

print("Result:", result)
if result is SAT:

print("The prime -looking number is: ", value(x))

For the moment, we only get and display the first found solution. Note how we can decide to
compile, choose the solver and run the solver in separate statements. By executing:

python PrimeLookingSolving.py

we obtain:

Result: SAT
The prime-looking number is: 49

Of course, most of the time, we can prefer to use a simplified equivalent code. This gives:

Code

from PrimeLooking import *

if solve() is SAT:
print("The prime -looking number is: ", value(x))

When executed, we obtain:

The prime-looking number is: 49

Note that we can also call solution() and get specialized information (field) as shown now:

Code

from PrimeLooking import *

if solve() is SAT:
solution = solution ()
print("Solution: ", solution)
print("Solution Root: ", solution.root)

130

print("Solution Variables: ", solution.variables)
print("Solution Values: ", solution.values)
print("Pretty Solution: ", solution.pretty_solution)

When executed, we obtain:

Solution: <instantiation id="sol1" type="solution">
<list> x d1 d2 </list>
<values> 49 7 7 </values>

</instantiation>
Solution Root: <Element instantiation at 0x7f061150d9b0>
Solution Variables: [x, d1, d2]
Solution Values: [49, 7, 7]
Pretty Solution: <instantiation id="sol1" type="solution">

<list> x d1 d2 </list>
<values> 49 7 7 </values>

</instantiation>

Now, if we want to get and display all solutions, we need to set ALL as value of the named pa-
rameter sols of the function solve(). After solving, we can get the number of found solutions by
calling n_solutions(), and, interestingly, we can use the name parameter sol to indicate the index
of a solution when calling the functions values() and value(). The content of the file ‘PrimeLook-
ingSolving.py’ is now:

Code

from PrimeLooking import *

if solve(sols=ALL) is SAT:
print("Number of solutions: ", n_solutions ())
print("Solutions: ", sorted ([value(x, sol=i) for i in range(n_solutions ())]))

By executing:

python PrimeLookingSolving.py

we obtain (we use an ellipsis ... to avoid listing the 105 solutions):

Number of solutions: 105
Solutions: [49, 77, 91, 119, 121, 133, 143, 161, 169, 187, ...]

Actually, it is known that there are 100 prime-looking numbers less than 1000. To check this, we
can use a Python set to remove identical solutions:

Code

from PrimeLooking import *

if solve(sols=ALL) is SAT:
t = sorted(set([value(x, sol=i) for i in range(n_solutions ())]))
print("Number of prime looking numbers: ", len(t))

When executed, we obtain:

Number of prime looking numbers: 100

We can also choose to only find the first k solutions. We need k to be a positive integer set as
value of the named parameter sols of the function solve(). For example, for k = 10, we have:

131

Code

from PrimeLooking import *

if solve(sols =10) is SAT:
print("Number of solutions: ", n_solutions ())
print("Solutions: ", [value(x, sol=i) for i in range(n_solutions ())])

When executed, we obtain:

Number of solutions: 10
Solutions: [49, 77, 91, 119, 133, 161, 203, 217, 259, 287]

6.3 Incremental Solving
Interestingly, one can really pilot the solving process by iteratively adding and/or removing constraints
(and also adding/changing the objective), handling a form of incremental solving. To add constraints,
we already know that it suffices to call satisfy(). To remove constraints, it suffices to call the
function:

unpost()

When this function is called, the last posting operation is discarded: it corresponds to all constraints
that were posted by the last call to satisfy(). It is also possible to give the index of the posting
operation, and even a second parameter indicating the index of constraint(s) inside the specified
posting operation.

In this section, we illustrate incremental solving by showing how to enumerate solutions by means
of solution-blocking constraints, how to simulate an optimization procedure and how to compute
diversified solutions.

6.3.1 Enumerating Solutions with Solution-Blocking Constraints
For a given CSP P , a solution-blocking constraint of P is a constraint that forbids a solution of P
(i.e., forbids a complete instantiation of the variables of P corresponding to a solution). An original
(but not necessarily efficient) way of enumerating the solutions of P with a solver S (that can, for
example, only output a single solution) is to find solutions in sequence with S while posting a new
solution-blocking constraint every time a solution is found.

Let us consider the following toy model in a file called ‘ToyPb.py’:

PyCSP3 Model 71

from pycsp3 import *

x = VarArray(size=4, dom=range (7))

satisfy(
AllDifferent(x),
Increasing(x),
Sum(x) == 10

)

Enumerating the solutions of this model by successively posting solution-blocking constraints cor-
responds to the following piece of code, put in a file ‘ToyPbSolving.py’:

132

Code

from ToyPb import *

cnt = 0
while solve() is SAT:

cnt += 1
print(f"Solution {cnt}: {values(x)}")
satisfy(x != values(x))

By writing satisfy(x != values(x)), we post a constraint (technically, a table constraint with
only one conflict) that will prevent us from finding the same solution again. By executing:

python ToyMaxSolving.py

we display the 4 solutions of this problem instance:

Solution 1: [0, 1, 3, 6]
Solution 2: [0, 1, 4, 5]
Solution 3: [0, 2, 3, 5]
Solution 4: [1, 2, 3, 4]

6.3.2 Simulating an Optimization Procedure
For a given CSP P , an independent integer cost function f to be minimized, defined from (the
Cartesian product of the domains of) a subset X of variables of P to Z, and a solution sol of P whose
cost computed by f is B , a bound-improving constraint of P wrt f and sol is a constraint that forbids
all solutions of P with a bound greater than or equal to B: it can be written f(X) < B. An original
(but not necessarily efficient) way of finding an optimal solution of P wrt f with a CSP solver S is
to find solutions in sequence with S while posting a new bound-improving constraint every time a
solution is found.

Let us consider the Prime Looking problem introduced earlier, and let us consider that the cost
function is simply the variable x (to be maximized). One way of ensuring that we get a better solution
after finding a first solution is given by the following piece of code in a file ‘PrimeLookingSolving.py’:

Code

from PrimeLooking import *

if solve() is SAT:
print("The prime -looking number is: ", value(x))
satisfy(x > x.value)
if solve() is SAT:

print("The prime -looking number is: ", value(x))

By executing:

python PrimeLookingSolving.py

we obtain:

The prime-looking number is: 49
The prime-looking number is: 77

If we want to find an optimal solution, we can write instead:

133

Code

from PrimeLooking import *

while True:
if solve() is not SAT:

break
print("The prime -looking number is: ", value(x))
satisfy(x > x.value)

When executed, we obtain for example:

The prime-looking number is: 49
The prime-looking number is: 77
The prime-looking number is: 121
...
The prime-looking number is: 899
The prime-looking number is: 961
The prime-looking number is: 989

In some cases, one may be worried of posting many bound-improving constraints, knowing that
only the last one is relevant (since it is stronger than the other ones). In our context, we can store
the object (constraint) that was posted previously so as to be able to delete it afterwards. This gives:

Code

from PrimeLooking import *

objective = None
while True:

if solve() is not SAT:
break

print("The prime -looking number is: ", value(x))
if objective is not None:

objective.delete ()
objective = satisfy(x > x.value)

As an alternative, it is possible to call the function unpost() that discards the constraint(s) posted
at the last call to satisfy(). This gives:

Code

from PrimeLooking import *

objective = False
while True:

if solve() is not SAT:
break

print("The prime -looking number is: ", value(x))
if objective:

unpost ()
else:

objective = True
satisfy(x > x.value)

6.3.3 Computing Diversified Solutions
Instead of enumerating solutions in the order “fixed” by the solver, one may want to diversify computed
solutions by exploiting some distances. In other words, we may be interested in diverse solutions. As

134

a first illustration, let us consider the following toy model in a file called ‘ToyMax.py’:

PyCSP3 Model 72

from pycsp3 import *

n = 8

x = VarArray(size=n, dom=range (5))

satisfy(
Maximum(x) == 4

)

If we want to enumerate 5 solutions while maximizing the Hamming distance between found
solutions, we can write this piece of code in a file ‘ToyMaxSolving.py’:

Code

from ToyMax import *

solutions = []
while len(solutions) < 5 and solve() in {SAT , OPTIMUM }:

print("Solution: ", values(x))
solutions.append(values(x))
maximize(

Sum(x[i] != solution[i] for i in range(n) for solution in solutions)
)

Note that the problem instance is initially a CSP, and then becomes a COP because an objective
is posted after the first turn of the loop (note also that any new objective overwrites the previous one,
if any is present). This is the reason why we check if the solving status is either SAT or OPTIMUM.

By executing:

python ToyMaxSolving.py

we obtain:

Solution: [0, 0, 0, 0, 0, 0, 0, 4]
Solution: [1, 1, 1, 1, 1, 1, 4, 0]
Solution: [2, 2, 2, 2, 2, 4, 1, 1]
Solution: [3, 3, 3, 3, 4, 2, 2, 2]
Solution: [4, 4, 4, 4, 3, 3, 3, 3]

As a second illustration, let us consider the following model in a file called ‘ToySum.py’:

PyCSP3 Model 73

from pycsp3 import *

n = 8

x = VarArray(size=n, dom=range (7))

satisfy(
Sum(x) == 22

)

If we want to enumerate 5 solutions while maximizing the Euclidean distance between found
solutions, we can write this piece of code in a file ‘ToySumSolving.py’:

135

Code

from ToySum import *

solutions = []
while len(solutions) < 5 and solve() in {SAT ,OPTIMUM }:

print("Solution: ", values(x))
solutions.append(values(x))
maximize(

Sum(abs(x[i] - solution[i]) for i in range(n) for solution in solutions)
)

By executing:

python ToySumSolving.py

we obtain:

Solution: [0, 0, 0, 0, 4, 6, 6, 6]
Solution: [4, 6, 6, 6, 0, 0, 0, 0]
Solution: [6, 4, 0, 0, 6, 0, 0, 6]
Solution: [0, 0, 4, 6, 0, 6, 6, 0]
Solution: [0, 6, 6, 0, 6, 4, 0, 0]

6.4 Extracting Unsatisfiable Cores
In case a CSP instance is unsatisfiable, one may want to identify the cause of unsatisfiability. Ex-
tracting a minimal unsatisfiable core (i.e. subset) of constraints may be relevant. With ACE, this is
possible by setting the value of the named parameter extraction, of function solve(), to True. If a
core is extracted by the solver, the constant CORE is returned. In that case, one can call the function
core() to get the constraints of the identified core.

Important. Currently, a string is returned by core(). We shall revisit this simplistic way of
getting the information in the next version of PyCSP3.

Let us consider the following toy model in a file called ‘Core.py’:

PyCSP3 Model 74

from pycsp3 import *

x = VarArray(size=10, dom=range (10))

satisfy(
AllDifferent(x),
x[0] > x[1],
x[1] > x[2],
x[2] > x[0]

)

if solve(extraction=True) is CORE:
print(core ())

By executing:

python Core.py

we obtain:

{ c3(x[0],x[2]) c2(x[2],x[1]) c1(x[1],x[0]) }

136

Chapter 7

Frequently Asked Questions

This chapter will contain frequently asked questions. It needs to be extended.

Q. Is it possible to post a constraint only if a condition holds?
A. Of course, it is always possible to put the condition outside the PyCSP3 function satisfy().

For example:
if test > 0:

satisfy(AllDifferent(w, x, y, z))

but it is also possible to use the Python conditional operator ’if else’ while returning ’None’ if the
condition does not hold.

satisfy(AllDifferent(w, x, y, z) if test > 0 else None)

Q. Is it possible to use the PyCSP3 operators and, or and not to combine (parts of) constraints.
A. No. These operators cannot be redefined. For a predicate (expression), you must use |, & and

ˆ; see Table 1.2. For posting two sets of constraints linked by and, simply post two separate lists.

137

Chapter 8

Changelog

◦ Version 2.0 published on December 15, 2021. New functions allow us to pilot the solving process:
this is described in the new chapter 6. Everything you need to know about the interface of the
library is described in the new chapter 5. How to format data in filenames, to use default data
and to load independent JSON data files (possibly from URLs) is explained in Section 2.1.

◦ Version 1.3 published on June 21, 2021. It is now possible to load data from several files (see
Section 2.1). How to avoid importing everything (∗) is explained. How to logically combine
(global) constraints is explained in the new chapter 4.

138

Index

Problems
All-Interval Series, 37
Allergy, 47
Amaze, 103
Balanced Academic Curriculum (BACP), 40
Balanced Incomplete Block Designs, 38
Blackhole, 30
Board Coloration, 18
Cookie Monster, 123
Costas Arrays, 64
Crossword Generation, 67
Crypto Puzzle, 75
Diagnosis, 109
Domino, 69
Flow Shop Scheduling, 92
Futoshiki, 65
Golomb Ruler, 23
Labeled Dice, 80
Layout, 105
Magic Sequence, 21
Mario, 98
Open Stacks, 83
Pizza Voucher, 78
Prime Looking, 130
Progressive Party, 90
Quasigroup Existence, 87
Queens, 15
Rack Configuration, 33
Radio Link Frequency Assignment, 48
Rectangle Packing, 94
Resource Constrained Project Scheduling, 96
Riddle, 5
Sandwich, 85
Send-More-Money, 64
Social Golfers, 73
Sports Scheduling, 81
Stable Marriage, 108
Steiner Triple Systems, 71
Subgraph Isomorphism, 60
Sudoku, 25
Template Design, 76
Traffic Lights, 57

Traveling Salesman Problem (TSP), 88
Traveling Tournament with Pred. Venues, 58
Vellino, 111
Warehouse Location, 28
World Traveling, 12
Zebra, 54

139

Bibliography

[1] A. Aggoun and N. Beldiceanu. Extending chip in order to solve complex scheduling and placement
problems. Mathematical and Computer Modelling, 17(7):57–73, 1993.

[2] O. Akgun, I. Gent, C. Jefferson, I. Miguel, P. Nightingale, and A. Salamon. Automatic discovery
and exploitation of promising subproblems for tabulation. In Proceedings of CP’18, 2018.

[3] N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint catalog. Technical Report
T2012:03, TASC-SICS-LINA, 2014.

[4] N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathematical and
Computer Modelling, 20(12):97–123, 1994.

[5] C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. Filtering algorithms for the nvalue
constraint. Constraints, 11(4):271–293, 2006.

[6] C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. SLIDE: A useful special case of
the CARDPATH constraint. In Proceedings of ECAI’08, pages 475–479, 2008.

[7] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3: An integrated format for
benchmarking combinatorial constrained problems. Technical Report arXiv:1611.03398, Specifi-
cations, CoRR, 2016-2020. https://arxiv.org/abs/1611.03398.

[8] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3-core: A format for rep-
resenting Constraint Satisfaction/Optimization Problems. Technical Report arXiv:2009.00514,
Specifications 3.0.6, CoRR, 2020. https://arxiv.org/abs/2009.00514.

[9] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J.P. Warners. Radio Link Frequency Assign-
ment. Constraints, 4(1):79–89, 1999.

[10] J. Carlier. The one-machine sequencing problem. European Journal of Operational Research,
11:42–47, 1982.

[11] M. Carlsson and N. Beldiceanu. Arc-consistency for a chain of lexicographic ordering constraints.
Technical Report T2002-18, Swedish Institute of Computer Science, 2002.

[12] M. Carlsson and N. Beldiceanu. Revisiting the lexicographic ordering constraint. Technical
Report T2002-17, Swedish Institute of Computer Science, 2002.

[13] M. Carlsson and N. Beldiceanu. From constraints to finite automata to filtering algorithms. In
Proceedings of ESOP’04, pages 94–108, 2004.

[14] M. Carlsson, M. Ottosson, and B. Carlson. An open-ended finite domain constraint solver. In
Proceedings of PLILP’97, pages 191–306, 1997.

[15] K. Cheng and R. Yap. Maintaining generalized arc consistency on ad-hoc n-ary Boolean con-
straints. In Proceedings of ECAI’06, pages 78–82, 2006.

140

https://arxiv.org/abs/1611.03398
https://arxiv.org/abs/2009.00514

[16] K. Cheng and R. Yap. Maintaining generalized arc consistency on ad-hoc r-ary constraints. In
Proceedings of CP’08, pages 509–523, 2008.

[17] K. Cheng and R. Yap. An MDD-based generalized arc consistency algorithm for positive and
negative table constraints and some global constraints. Constraints, 15(2):265–304, 2010.

[18] R. Cymer. Dulmage-mendelsohn canonical decomposition as a generic pruning technique. Con-
straints, 17(3):234–272, 2012.

[19] J. Dekker, G. Bjordal, M. Carlsson, P. Flener, and J.-N. Monette. Auto-tabling for subproblem
presolving in minizinc. Constraints, 22(4):512–529, 2017.

[20] A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global constraints for lexicographic
orderings. In Proceedings of CP’02, pages 93–108, 2002.

[21] I.P. Gent, I. Miguel, and P. Nightingale. Generalised arc consistency for the alldifferent constraint:
An empirical survey. Artificial Intelligence, 172(18):1973–2000, 2008.

[22] T. Guns. Increasing modeling language convenience with a universal n-dimensional array, CPpy
as python-embedded example. In Proceedings of the 18th workshop on Constraint Modelling and
Reformulation, held with CP’19, 2019.

[23] E. Hebrard, E. O’Mahony, and B. O’Sullivan. Constraint programming and combinatorial opti-
misation in Numberjack. In Proceedings of CPAIOR’10, pages 181–185, 2010.

[24] P. Van Hentenryck and J.-P. Carillon. Generality versus specificity: An experience with AI and
OR techniques. In Proceedings of AAAI’88, pages 660–664, 1988.

[25] J.N. Hooker. Integrated Methods for Optimization. Springer, 2012.

[26] C. Jefferson and P. Nightingale. Extending simple tabular reduction with short supports. In
Proceedings of IJCAI’13, pages 573–579, 2013.

[27] C. Lecoutre. Constraint networks: techniques and algorithms. ISTE/Wiley, 2009.

[28] C. Lecoutre. JvCSP3: A java API for modeling constrained combinatorial problems (version 1.1).
Technical report, CRIL, 2018.

[29] C. Lecoutre. AbsCon, CRIL, CNRS, Univ. Artois. 2020. To be published on GitHub.

[30] J.-B. Mairy, Y. Deville, and C. Lecoutre. The smart table constraint. In Proceedings of
CPAIOR’15, pages 271–287, 2015.

[31] R. Melo, S. Urrutia, and C. Ribeiro. The traveling tournament problem with predefined venues.
Journal of Scheduling, 12(6):607–622, 2009.

[32] OscaR Team. OscaR: Scala in OR, 2012. https://bitbucket.org/oscarlib/oscar.

[33] G. Perez and J.-C. Régin. Improving GAC-4 for Table and MDD constraints. In Proceedings of
CP’14, pages 606–621, 2014.

[34] G. Pesant. A regular language membership constraint for finite sequences of variables. In Pro-
ceedings of CP’04, pages 482–495, 2004.

[35] G. Pesant and C.-G. Quimper. Counting solutions of knapsack constraints. In Proceedings of
CPAIOR’08, pages 203–217, 2008.

[36] C. Prud’homme, J.-G. Fages, and X. Lorca. Choco-solver, TASC, INRIA Rennes, LINA, Cosling
S.A. 2016. https://choco-solver.org/.

141

https://bitbucket.org/oscarlib/oscar
https://choco-solver.org

[37] J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of AAAI’94,
pages 362–367, 1994.

[38] J.-C. Régin. Generalized arc consistency for global cardinality constraint. In Proceedings of
AAAI’96, pages 209–215, 1996.

[39] M. Trick. A dynamic programming approach for consistency and propagation for knapsack
constraints. Annals OR, 118(1-4):73–84, 2003.

[40] W.J. van Hoeve. The alldifferent constraint: a survey. In Proceedings of the Sixth Annual
Workshop of the ERCIM Working Group on Constraints, 2001.

[41] H. Verhaeghe, C. Lecoutre, and P. Schaus. Extending compact-table to negative and short tables.
In Proceedings of AAAI’17, pages 3951–3957, 2017.

[42] Y. Zhang and R. Yap. Making AC3 an optimal algorithm. In Proceedings of IJCAI’01, pages
316–321, 2001.

[43] N.F. Zhou, H. Kjellerstrand, and J. Fruhman. Constraint Solving and Planning with Picat.
Springer, 2017.

142

	Illustrative Models in PyCSP3
	Single Problems
	A Simple Riddle
	Traveling the World

	Academic Problems
	Queens Problem
	Board Coloration
	Magic Sequence
	Golomb Ruler

	Structured Problems
	Sudoku
	Warehouse Location
	Black Hole (Solitaire)
	Rack Configuration

	Data, Variables and Objectives
	Specifying Data
	Declaring Variables
	Stand-alone Variables
	Arrays of Variables

	Specifying Objectives

	Twenty Popular Constraints
	Constraint intension
	Constraint extension
	Constraint regular
	Constraint mdd
	Constraint allDifferent
	Constraint allDifferentList
	Constraint allEqual
	Constraints increasing and decreasing
	Constraints lexIncreasing and lexDecreasing
	Constraint sum
	Constraint count
	Constraint nValues
	Constraint cardinality
	Constraint maximum
	Constraint minimum
	Constraint element
	Constraint channel
	Constraint noOverlap
	Constraint cumulative
	Constraint circuit
	Meta-Constraint slide

	Logically Combining Constraints
	Using Meta-Constraints
	Using Reification
	Using Tabling
	Using Reformulation

	Interface of the Library
	Command-Line Interface
	Main Module Interface
	Building Models
	Building Expressions
	Building Global Constraints
	Loading (Default) JSON Data
	Handling Lists (Matrices)
	Handling Tuples
	Utility Computations
	Building Compressed Forms of Tables
	Building Meta-constraints
	Solving

	Controlling Imports

	Piloting the Solving Process
	Running a Solver
	Finding One, Several or All Solutions
	Incremental Solving
	Enumerating Solutions with Solution-Blocking Constraints
	Simulating an Optimization Procedure
	Computing Diversified Solutions

	Extracting Unsatisfiable Cores

	Frequently Asked Questions
	Changelog

