Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • a3483c2
  • /
  • bikel3
  • /
  • m4f
  • /
  • gf2x_inv.c
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:cb73c1ccfd09fbcfd2e0d2bea85fa2680fef47d1
directory badge Iframe embedding
swh:1:dir:03923b55962c2e735997636bb556c266f41a3493
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
gf2x_inv.c
/* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0"
 *
 * Written by Nir Drucker, Shay Gueron and Dusan Kostic,
 * AWS Cryptographic Algorithms Group.
 *
 * Modified by Ming-Shing Chen, Tung Chou and Markus Krausz.
 *
 * The inversion algorithm in this file is based on:
 * [1] Nir Drucker, Shay Gueron, and Dusan Kostic. 2020. "Fast polynomial
 * inversion for post quantum QC-MDPC cryptography". Cryptology ePrint Archive,
 * 2020. https://eprint.iacr.org/2020/298.pdf
 */

#include "cleanup.h"
#include "gf2x.h"
#include "gf2x_internal.h"

#include "ring_ops.h"

#define _MY_SQU_


// c = a^2^2^num_sqrs
_INLINE_ void repeated_squaring(OUT pad_r_t *c,
                                IN pad_r_t *    a,
                                IN const size_t num_sqrs,
                                OUT dbl_pad_r_t *sec_buf)
{
  c->val = a->val;

  for(size_t i = 0; i < num_sqrs; i++) {
#if defined(_MY_SQU_)
    ring_squ(c , c);
#else
    gf2x_mod_sqr_in_place(c, sec_buf);
#endif
  }
}

// The gf2x_mod_inv function implements inversion in F_2[x]/(x^R - 1)
// based on [1](Algorithm 2).

// In every iteration, [1](Algorithm 2) performs two exponentiations:
// exponentiation 0 (exp0) and exponentiation 1 (exp1) of the form f^(2^k).
// These exponentiations are computed either by repeated squaring of f, k times,
// or by a single k-squaring of f. The method for a specific value of k
// is chosen based on the performance of squaring and k-squaring.
//
// Benchmarks on several platforms indicate that a good threshold
// for switching from repeated squaring to k-squaring is k = 64.
#define K_SQR_THR (7)

// k-squaring is computed by a permutation of bits of the input polynomial,
// as defined in [1](Observation 1). The required parameter for the permutation
// is l = (2^k)^-1 % R.
// Therefore, there are two sets of parameters for every exponentiation:
//   - exp0_k and exp1_k
//   - exp0_l and exp1_l

// Exponentiation 0 computes f^2^2^(i-1) for 0 < i < MAX_I.
// Exponentiation 1 computes f^2^((r-2) % 2^i) for 0 < i < MAX_I,
// only when the i-th bit of (r-2) is 1. Therefore, the value 0 in
// exp1_k[i] and exp1_l[i] means that exp1 is skipped in i-th iteration.

// To quickly generate all the required parameters in Sage:
//   r = DESIRED_R
//   max_i = floor(log(r-2, 2)) + 1
//   exp0_k = [2^i for i in range(max_i)]
//   exp0_l = [inverse_mod((2^k) % r, r) for k in exp0_k]
//   exp1_k = [(r-2)%(2^i) if ((r-2) & (1<<i)) else 0 for i in range(max_i)]
//   exp1_l = [inverse_mod((2^k) % r, r) if k != 0 else 0 for k in exp1_k]

#define _ITOH_TSUJII_

#if !defined(_ITOH_TSUJII_)

#if(LEVEL == 1)
// The parameters below are hard-coded for R=12323
bike_static_assert((R_BITS == 12323), gf2x_inv_r_doesnt_match_parameters);

// MAX_I = floor(log(r-2)) + 1
#  define MAX_I (14)
#  define EXP0_K_VALS \
    1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192
#  define EXP0_L_VALS                                                           \
    6162, 3081, 3851, 5632, 22, 484, 119, 1838, 1742, 3106, 10650, 1608, 10157, \
      8816
#  define EXP1_K_VALS 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 33, 4129
#  define EXP1_L_VALS 0, 0, 0, 0, 0, 6162, 0, 0, 0, 0, 0, 0, 242, 5717

#else
// The parameters below are hard-coded for R=24659
bike_static_assert((R_BITS == 24659), gf2x_inv_r_doesnt_match_parameters);

// MAX_I = floor(log(r-2)) + 1
#  define MAX_I (15)
#  define EXP0_K_VALS \
    1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384
#  define EXP0_L_VALS                                                          \
    12330, 6165, 7706, 3564, 2711, 1139, 15053, 1258, 4388, 20524, 9538, 6393, \
      10486, 1715, 6804
#  define EXP1_K_VALS 0, 0, 0, 0, 1, 0, 17, 0, 0, 0, 0, 0, 0, 81, 8273
#  define EXP1_L_VALS 0, 0, 0, 0, 12330, 0, 13685, 0, 0, 0, 0, 0, 0, 23678, 19056

#endif

#else

#if(LEVEL == 1)
// The parameters below are hard-coded for R=12323
bike_static_assert((R_BITS == 12323), gf2x_inv_r_doesnt_match_parameters);

#define MAX_I (13)
#define EXP0_K_VALS \
    1, 3, 6, 12, 24, 48, 96, 192, 385, 770, 1540, 3080, 6160
#define EXP0_L_VALS                                                           \
    6162, 7702, 10205, 352, 674, 10648, 8304, 9231, 11231, 9456, 248, 12212, 12321
#define EXP1_K_VALS 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1
#define EXP1_L_VALS 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

#else

// The parameters below are hard-coded for R=24659
bike_static_assert((R_BITS == 24659), gf2x_inv_r_doesnt_match_parameters);

#  define MAX_I (14)
#  define EXP0_K_VALS \
    1, 3, 6, 12, 24, 48, 96, 192, 385, 770, 1541, 3082, 6164, 12328
#  define EXP0_L_VALS                                                          \
    12330, 15412, 14256, 18717, 20335, 5454, 7362, 23221, 22903, 1161, 20497, 11626, \
      7897, 24657
#  define EXP1_K_VALS 1, 0, 0, 0,  0, 0, 0, 1,  0, 1, 0, 0,  0, 1
#  define EXP1_L_VALS 0, 0, 0, 0,  0, 0, 0, 0,  0, 0, 0, 0,  0, 0

#endif

#endif



// Inversion in F_2[x]/(x^R - 1), [1](Algorithm 2).
// c = a^{-1} mod x^r-1
void gf2x_mod_inv(OUT pad_r_t *c, IN const pad_r_t *a)
{
  // Note that exp0/1_k/l are predefined constants that depend only on the value
  // of R. This value is public. Therefore, branches in this function, which
  // depends on R, are also "public". Code that releases these branches
  // (taken/not-taken) does not leak secret information.
  const size_t exp0_k[MAX_I] = {EXP0_K_VALS};
  const size_t exp0_l[MAX_I] = {EXP0_L_VALS};
  const size_t exp1_k[MAX_I] = {EXP1_K_VALS};
  const size_t exp1_l[MAX_I] = {EXP1_L_VALS};

#if defined(_ITOH_TSUJII_)
  DEFER_CLEANUP(mul_internal_t ta = {0}, mul_internal_cleanup);
  DEFER_CLEANUP(pad_r_t g = {0}, pad_r_cleanup);
  DEFER_CLEANUP(pad_r_t t = {0}, pad_r_cleanup);
  DEFER_CLEANUP(dbl_pad_r_t sec_buf = {0}, dbl_pad_r_cleanup);

  ring_mul_inputtransform(&ta, a);

  t.val = a->val;

  for(size_t i = 0; i < MAX_I; i++) {
    if(exp0_k[i] <= K_SQR_THR) {
      repeated_squaring(&g, &t, exp0_k[i], &sec_buf);
    } else {
      k_squaring(&g, &t, exp0_l[i]);
    }
    ring_mul(&t, &g, &t);

    if(exp1_k[i] != 0) {
      repeated_squaring(&g, &t, exp1_k[i], &sec_buf);
      ring_mul_2(&t, &g, &ta);
      //ring_mul(&t, &g, a);  /// XXX: use pre-computed input transform
    }
  }
#else
  DEFER_CLEANUP(pad_r_t f = {0}, pad_r_cleanup);
  DEFER_CLEANUP(pad_r_t g = {0}, pad_r_cleanup);
  DEFER_CLEANUP(pad_r_t t = {0}, pad_r_cleanup);
  DEFER_CLEANUP(dbl_pad_r_t sec_buf = {0}, dbl_pad_r_cleanup);

  // Steps 2 and 3 in [1](Algorithm 2)
  f.val = a->val;
  t.val = a->val;

  for(size_t i = 1; i < MAX_I; i++) {
    // Step 5 in [1](Algorithm 2), exponentiation 0: g = f^2^2^(i-1)
    if(exp0_k[i - 1] <= K_SQR_THR) {
      repeated_squaring(&g, &f, exp0_k[i - 1], &sec_buf);
    } else {
      k_squaring(&g, &f, exp0_l[i - 1]);
    }

    // Step 6, [1](Algorithm 2): f = f*g
    //gf2x_mod_mul(&f, &g, &f);
    ring_mul(&f, &g, &f);

    if(exp1_k[i] != 0) {
      // Step 8, [1](Algorithm 2), exponentiation 1: g = f^2^((r-2) % 2^i)
      if(exp1_k[i] <= K_SQR_THR) {
        repeated_squaring(&g, &f, exp1_k[i], &sec_buf);
      } else {
        k_squaring(&g, &f, exp1_l[i]);
      }

      // Step 9, [1](Algorithm 2): t = t*g;
      gf2x_mod_mul(&t, &g, &t);
    }
  }
#endif

  // Step 10, [1](Algorithm 2): c = t^2
#if defined(_MY_SQU_)
  ring_squ(&t, &t);
#else
  gf2x_mod_sqr_in_place(&t, &sec_buf);
#endif
  c->val = t.val;
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top