https://github.com/ViCCo-Group/THINGS-data
Tip revision: 2d95c15d3a2cc5984ffd4a9a2c4ad3496847ca9d authored by Oliver Contier on 28 February 2023, 15:15:53 UTC
fixed howtocite
fixed howtocite
Tip revision: 2d95c15
step3g_validation_pairwise_decoding_mds.m
function step3g_validation_pairwise_decoding_mds(bids_dir, toolbox_dir, varargin)
%% Making an MDS plot for some image categories
%
%
% @ Lina Teichmann, 2022
%
% Usage:
% step3g_validation_pairwise_decoding_mds(bids_dir, ...)
%
% Inputs:
% bids_dir path to the bids root folder
% toolbox_dir path to toolbox folder containtining CoSMoMVPA
% Returns:
% _ Figure in BIDS/derivatives folder
%% folders
res_dir = [bids_dir '/derivatives/output/'];
figdir = [bids_dir '/derivatives/figures/'];
addpath(genpath([toolbox_dir '/CoSMoMVPA']))
%% parameters
n_participants = 4;
% plotting parameters
col_pp = [0.21528455710115266, 0.5919540462603717, 0.3825837270552851;
0.24756252096251694, 0.43757475330612905, 0.5968141290988245;
0.7153368599631209, 0.546895038817448, 0.1270092896093349;
0.6772691643574462, 0.3168004639904812, 0.3167958318320575];
colour_gray = [0.75,0.75,0.75];
line_col = [0, 109, 163]./255;
contrast_cols = cat(3,[[70, 225, 240]./255;[191, 82, 124]./255],...
[[126, 92, 150]./255;[255, 153, 0]./255]);
ylims = [41,80;45,65];
x_size = 0.19;
y_size = 0.15;
size_mds = 0.09;
x_pos = linspace(0.1,0.9-x_size,4);
y_pos = [0.8,0.54,0.29];
%% load results
% load one example output file to get the time vector
load([res_dir '/pairwise_decoding/P1_pairwise_decoding_1854_block1.mat'], 'res')
tv = res.a.fdim.values{1}*1000;
% load decoding results
load([res_dir,'/validation-pairwise_decoding_RDM1854'],'mat')
decoding_1854 = mat;
load([res_dir,'/validation-pairwise_decoding_RDM200'],'mat')
decoding_200 = mat;
% load category labels
labels = readtable([bids_dir '/sourcedata/category_mat_manual.tsv'],'FileType','text','PreserveVariableNames',1);
%% MDS: highlighting animals vs food and vehicles vs tools
colour_cat1 = zeros(1854,1);
colour_cat1(labels.animal==1&labels.food==0)=1;
colour_cat1(labels.animal==0&labels.food==1)=2;
colour_cat2 = zeros(1854,1);
colour_cat2(labels.vehicle==1&labels.tool==0)=1;
colour_cat2(labels.vehicle==0&labels.tool==1)=2;
% colour_cat2(labels.plant==1&labels.bodyPart==0)=1;
% colour_cat2(labels.plant==0&labels.bodyPart==1)=2;
mds_categories = [colour_cat1,colour_cat2];
legends = cat(3,[{'animals'},{'food'}],[{'vehicles'},{'tools'}]);
% legends = cat(3,[{'animals'},{'food'}],[{'plants'},{'body parts'}]);
average_rdm = mean(decoding_1854,4);
% loop over the two MDS comparisons
for i = 1:size(mds_categories,2)
colour_cat = mds_categories(:,i);
mean_mds_comp = squeeze(mean(mean(average_rdm(colour_cat==1,colour_cat==2,:))));
avg = [];
for t=1:length(tv)
D = average_rdm(:,:,t);
D(find(eye(size(D))))=0;
[Y(:,:,t),~] = cmdscale(D,2);
tmp = triu(average_rdm(:,:,t),1);
tmp = tmp(colour_cat==0,colour_cat==0);
avg=[avg;mean(mean(tmp(tmp>0)))];
end
% use procrustes to align the different MDS over time
for t = length(tv):-1:2
[~,z(:,:,t,i)] = procrustes(Y(:,:,t),Y(:,:,t-1));
end
end
%% plot timecourse together with MDS snapshots
toplot = zeros(length(tv),4);
all_decoding = [{decoding_200},{decoding_1854}];
for i = 1:2
for p = 1:n_participants
for t = 1:length(tv)
tmp = triu(all_decoding{i}(:,:,t,p),1);
toplot(t,p,i) = mean(mean(tmp(tmp>0)))*100;
end
end
end
f=figure(2);clf;
f.Position=[0,0,600,700];
titles = [{'Object image decoding'},{'Object category decoding'}];
% decoding plots for image and category decoding
for i = 1:2
for p = 1:4
% define threshold based on pre-stimulus onset
max_preonset = max(toplot(tv<=0,p,i));
% plot data for each participant, fill when r > threshold
disp(y_pos(i))
ax = axes('Position',[x_pos(p),y_pos(i),x_size,y_size],'Units','normalized');
plot(tv,toplot(:,p,i),'LineWidth',2,'Color',col_pp(p,:));hold on
hf = fill([tv,tv(end)],[max(toplot(:,p,i),max_preonset);max_preonset],col_pp(p,:),'EdgeColor','none','FaceAlpha',0.2);
% make it look pretty
ylim(ylims(i,:))
xlim([tv(1),tv(end)])
if p ==1
ax.YLabel.String = [{'Decoding'}; {'accuracy (%)'}];
else
ax.YTick = [];
end
xlabel('time (ms)')
set(gca(),'FontSize',12,'box','off','FontName','Helvetica');
% find onset of the longest shaded cluster
ii=reshape(find(diff([0;toplot(:,p,i)>max_preonset;0])~=0),2,[]);
[~,jmax]=max(diff(ii));
onset_idx=ii(1,jmax);
onset = tv(onset_idx);
% add a marker for onsets
text(onset,gca().YLim(1), char(8593),'Color',col_pp(p,:), 'FontSize', 24, 'VerticalAlignment', 'bottom', 'HorizontalAlignment','Center','FontName','Helvetica')
text(onset+20,gca().YLim(1), [num2str(onset) ' ms'],'Color',col_pp(p,:), 'FontSize', 14, 'VerticalAlignment', 'bottom', 'HorizontalAlignment','left')
% add subject title
ax1_title = axes('Position',[x_pos(p)+0.001,y_pos(i)+y_size-0.01,0.03,0.03]);
text(0,0,['M' num2str(p)],'FontSize',11,'FontName','Helvetica');
ax1_title.Visible = 'off';
end
end
% add title
row_title = axes('Position',[x_pos(1)+0.01,y_pos(1)+y_size+0.02,0.03,0.03]);
text(0,0,titles{1},'FontSize',14,'FontWeight','bold','FontName','Helvetica')
row_title.Visible = 'off';
row_title = axes('Position',[x_pos(1)+0.01,y_pos(2)+y_size+0.04,0.03,0.03]);
text(0,0,titles{2},'FontSize',14,'FontWeight','bold','FontName','Helvetica')
row_title.Visible = 'off';
row_title = axes('Position',[x_pos(1)+0.01,y_pos(2)+y_size+0.015,0.03,0.03]);
text(0,0,'Single subjects','FontSize',12,'FontName','Helvetica')
row_title.Visible = 'off';
% MDS
group_avg = mean(toplot(:,:,2),2);
ax1 = axes('Position',[x_pos(1),y_pos(3),x_pos(end)+x_size/2,y_size],'Units','normalized');
upper = group_avg' + std(toplot(:,:,2)')/sqrt(size(toplot,2));
lower = group_avg' - std(toplot(:,:,2)')/sqrt(size(toplot,2));
fill([tv,fliplr(tv)],[lower,fliplr(upper)],'k','FaceAlpha',0.1,'LineStyle','none'); hold on
plot(tv, group_avg,'Color','k','LineWidth',2);
plot(tv,tv*0+50,'k--')
fill([tv,fliplr(tv)],[lower,fliplr(upper)],[1,1,1]/255,'FaceAlpha',0.1,'LineStyle','none'); hold on
plot(tv, group_avg,'Color',[1,1,1]/255,'LineWidth',2);
plot(tv,tv*0+50,'Color',[1,1,1]/255)
xlim([tv(1),tv(end)])
ax1.YLabel.String = [{'Decoding'}; {'accuracy (%)'}];
ax1.XLabel.String='time (ms)';
ax1.XTick = [-80,0,120,320,520,720,920,1120];
set(ax1,'FontSize',12,'box','off','FontName','Helvetica');
% add title
row_title = axes('Position',[x_pos(1)+0.01,y_pos(3)+y_size+0.02,0.03,0.03]);
text(0,0,'Group Average','FontSize',12,'FontName','Helvetica')
row_title.Visible = 'off';
t_idx = 5:40:length(tv)+1;
t_time = tv(t_idx);
tv_pix = linspace(ax1.Position(1),ax1.Position(1)+ax1.Position(3),length(tv));
% loop over MDS comparisons
for i = 1:2
color1 = contrast_cols(1,:,i);
color2 = contrast_cols(2,:,i);
colour_cat = mds_categories(:,i);
% loop over time
for t = 1:length(t_idx)
ax2 = axes();
a=[];
a(3)=scatter(z(colour_cat==0,1,t_idx(t),i),z(colour_cat==0,2,t_idx(t),i),15,'MarkerFaceAlpha',1,'MarkerFaceColor',colour_gray,'MarkerEdgeColor','None');hold on
a(2)=scatter(z(colour_cat==1,1,t_idx(t),i),z(colour_cat==1,2,t_idx(t),i),15,'MarkerFaceAlpha',0.7,'MarkerFaceColor',color1,'MarkerEdgeColor','None');hold on
a(1)=scatter(z(colour_cat==2,1,t_idx(t),i),z(colour_cat==2,2,t_idx(t),i),15,'MarkerFaceAlpha',0.5,'MarkerFaceColor',color2,'MarkerEdgeColor','None');hold on
ax2.XTick = [];
ax2.YTick = [];
ax2.XLim=[-0.3,0.3];
ax2.YLim=[-0.3,0.3];
axis square
if i == 1
ax2.Position = [tv_pix(t_idx(t))-size_mds/2,y_pos(3)-0.16,size_mds,size_mds];
else
ax2.Position = [tv_pix(t_idx(t))-size_mds/2,y_pos(3)-0.16-size_mds-0.01,size_mds,size_mds];
end
annotation('arrow',[tv_pix(t_idx(t)),tv_pix(t_idx(t))],[y_pos(3)-0.025,y_pos(3)-0.16+size_mds])
set(ax2,'XColor', 'none','YColor','none')
end
ax2 = axes('box','off');hold on
if i == 1
ax2.Position = [0.92-0.05,y_pos(3)-0.16,size_mds,size_mds];
else
ax2.Position = [0.92-0.05,y_pos(3)-0.16-size_mds-0.01,size_mds,size_mds];
end
plot(0.1,0.7,'k.','MarkerSize',25,'Color',color1)
text(0.2,0.7,legends(:,1,i),'FontSize',12,'FontName','Helvetica','HorizontalAlignment','left','VerticalAlignment','middle')
plot(0.1,0.5,'k.','MarkerSize',25,'Color',color2)
text(0.2,0.5,legends(:,2,i),'FontSize',12,'FontName','Helvetica','HorizontalAlignment','left','VerticalAlignment','middle')
plot(0.1,0.3,'k.','MarkerSize',25,'Color',colour_gray)
text(0.2,0.3,'all other','FontSize',12,'FontName','Helvetica','HorizontalAlignment','left','VerticalAlignment','middle')
ax2.Visible = 'off';
ax2.XLim = [0,1];
ax2.YLim = [0,1];
end
% save figure
fn = [figdir,'/validation_decoding-mds'];
tn = tempname;
print(gcf,'-dpng','-r500',tn)
im=imread([tn '.png']);
[i,j]=find(mean(im,3)<255);margin=0;
imwrite(im(min(i-margin):max(i+margin),min(j-margin):max(j+margin),:),[fn '.png'],'png');
print([fn '.pdf'],'-dpdf')
end