Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/cplm
10 October 2024, 21:21:40 UTC
  • Code
  • Branches (35)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.1-1
    • refs/tags/0.1-2
    • refs/tags/0.2-1
    • refs/tags/0.3-1
    • refs/tags/0.4-1
    • refs/tags/0.5-1
    • refs/tags/0.6-1
    • refs/tags/0.6-2
    • refs/tags/0.6-4
    • refs/tags/0.7-1
    • refs/tags/0.7-10
    • refs/tags/0.7-11
    • refs/tags/0.7-12
    • refs/tags/0.7-12.1
    • refs/tags/0.7-2
    • refs/tags/0.7-3
    • refs/tags/0.7-4
    • refs/tags/0.7-5
    • refs/tags/0.7-6
    • refs/tags/0.7-7
    • refs/tags/0.7-8
    • refs/tags/0.7-9
    • refs/tags/R-2.13.2
    • refs/tags/R-2.14.0
    • refs/tags/R-2.14.1
    • refs/tags/R-2.14.2
    • refs/tags/R-2.15.0
    • refs/tags/R-2.15.1
    • refs/tags/R-2.15.2
    • refs/tags/R-2.15.3
    • refs/tags/R-3.0.0
    • refs/tags/R-3.0.1
    • refs/tags/R-3.0.2
    • refs/tags/R-3.0.3
    No releases to show
  • 9e17518
  • /
  • R
  • /
  • classMethods.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:cc5d728931ffd8950301d3fe13dd6b6e9ea602ea
origin badgedirectory badge Iframe embedding
swh:1:dir:f64e6b90800f11580b15f6285e5baefc7ee6a366
origin badgerevision badge
swh:1:rev:9be3f5a0653739a591e2b30cc9e77900612dad9a
origin badgesnapshot badge
swh:1:snp:cb0846c741ae3675a9b721e48106d976897b2530
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 9be3f5a0653739a591e2b30cc9e77900612dad9a authored by Wayne Zhang on 08 November 2011, 00:00:00 UTC
version 0.4-1
Tip revision: 9be3f5a
classMethods.R

################################################
# classes defined in the cplm package
################################################

# virtual classes used in other class definitions
setClassUnion("NullNum",c("NULL","numeric"))
setClassUnion("NullList",c("NULL","list"))  
setClassUnion("NullFunc",c("NULL","function"))  

# import from package coda
setOldClass(c("mcmc","mcmc.list","summary.mcmc"))

# class defining slots common to all derived classes 
setClass("cplm", 
  representation(
    call="call",
    formula="formula",
    contrasts="NullList",
    link.power="numeric",
    model.frame = "data.frame",
    inits="NullList")
)

# class of "cpglm", returned by a call to "cpglm" 
setClass("cpglm", 
  representation(
    coefficients="numeric",
    residuals="numeric",
    fitted.values="numeric",
    linear.predictors="numeric",
    y = "numeric",
    offset = "NullNum",
    prior.weights = "NullNum",
    weights="numeric",
    df.residual="integer",
    deviance="numeric",
    aic="numeric",
    control="list",
    theta="numeric",
    theta.all="matrix",
    p="numeric",
    phi="numeric",
    vcov="matrix",
    iter="integer",
    converged="logical",
    method="character",
    na.action="NullFunc"),
    contains = "cplm"
)

# class "cpglmm" returned from a call of cpglmm
setClass("cpglmm", 
 representation(
  p="numeric", 
  phi="numeric",
  bound.p="numeric"),
  contains = c("mer","cplm")
)

# class "summary.cpglmm" 
setClass("summary.cpglmm",                 
  representation(           
    methTitle = "character",
    logLik= "logLik",
    ngrps = "integer",
    sigma = "numeric", # scale, non-negative number
    coefs = "matrix",
    vcov = "dpoMatrix",
    REmat = "matrix",
    AICtab= "data.frame"),
  contains = "cpglmm")

# class of "bcpglm", returned from a call to "bcpglm"
setClass("bcpglm", 
  representation(
    n.chains="integer",
    n.iter="integer", 
    n.burnin="integer",
    n.thin="integer", 
    n.sims="integer",  
    sims.list="mcmc.list"),
  contains="cplm")

# class of "bcpglmm", returned from a call to "bcpglmm"
setClass("bcpglmm", 
  representation(
    Zt = "dgCMatrix",
    flist = "list"),
  contains="bcpglm")
         
################################################
# methods defined for cplm 
################################################

# extraction of slots using $
setMethod("$",
    signature(x = "cplm"),
    function (x, name) 
        slot(x,name)
)

# names to get slot names
setMethod("names",
    signature(x = "cplm"),
    function (x) 
        return(slotNames(x))
)

# extraction of slots using "[["
setMethod("[[",
    signature(x = "cplm",i="numeric",j="missing"),
    function (x, i, j, ...) 
	    return(slot(x,names(x)[i]))
)

setMethod("[[",
    signature(x = "cplm",i="character",j="missing"),
    function (x, i, j, ...) 
      return(slot(x,i))
)

setMethod("[",
    signature(x = "cplm",i="numeric",j="missing",drop="missing"),
    function (x, i, j, ..., drop) {
      output <- lapply(i, function(y) slot(x,names(x)[y]))
        names(output) <- names(x)[i]
	    return(output)
    }
)

setMethod("[",
    signature(x = "cplm",i="character",j="missing",drop="missing"),
    function (x, i, j, ..., drop) {
      output <- lapply(1:length(i), function(y) slot(x,i[y]))
      names(output) <- i
      return(output)
    }
)

setMethod("terms",
    signature(x = "cplm"),
    function (x,...) 
      attr(x@model.frame,"terms")
)

setMethod("model.matrix",
    signature(object = "cplm"),
    function (object,...) 
      model.matrix(terms(object), 
            object@model.frame, object@contrasts)
)

setMethod("formula",
    signature(x = "cplm"),
    function (x,...) 
     x@formula
)         

setMethod("show",signature(object = "cplm"),
  function(object)
    summary(object)                                                    
)

################################################
# methods defined for cpglm 
################################################
         
setMethod("coef",
          signature(object = "cpglm"),
    function (object,...) 
	    return(object@coefficients)
)

setMethod("vcov",
	signature(object = "cpglm"),
    function (object,...) 
    	return(object@vcov)
)

setMethod("residuals",
    signature(object = "cpglm"),
    function (object,type = c("deviance", "pearson", "working", 
    "response", "partial"),...) {      
    type <- match.arg(type)
    y <- object@y
    r <- object@residuals
    mu <- object@fitted.values
    wts <- object@prior.weights
    family <- tweedie(var.power=object@p,link.power=object@link.power)
    switch(type, deviance = , pearson = , response = if (is.null(y)) {
        eta <- object@linear.predictors
        y <- mu + r * family$mu.eta(eta)
    })
    res <- switch(type, 
      deviance = if (object@df.residual > 0) {
        d.res <- sqrt(pmax((family$dev.resids)(y, mu, 
            wts), 0))
        ifelse(y > mu, d.res, -d.res)
        } else rep.int(0, length(mu)), 
      pearson = (y - mu) * sqrt(wts)/sqrt(family$variance(mu)), 
      working = r, 
      response = y - mu, 
      partial = r)
    na.action <- attr(object@model.frame,"na.action")
    if (!is.null(na.action)) 
        res <- naresid(na.action, res)
    #if (type == "partial") 
    #    res <- res + predict(object, type = "terms")
    res
    }
)

setMethod("resid",
    signature(object = "cpglm"),
    function (object, type = c("deviance", "pearson", "working", 
    "response", "partial"),...) 
	    return(residuals(object, type=type))
)

# generate fitted values on the original scale
setMethod("fitted",
    signature(object = "cpglm"),
    function (object,...) 
      return(object@fitted.values)
)
		
setMethod("fitted.values",
    signature(object = "cpglm"),
    function (object,...) 
      fitted(object)
)

  	
setMethod("df.residual",
    signature(object = "cpglm"),
    function (object,...) 
      object@df.residual
)


setMethod("AIC",
    signature(object = "cpglm",k="missing" ),
    function (object,...,k) 
      object@aic
)


setMethod("deviance",
    signature(object = "cpglm"),
    function (object,...) 
      object@deviance
)


setMethod("summary", signature(object="cpglm"),
	function(object,...){
    coef.beta <- coef(object)    
    s.err <- sqrt(diag(object@vcov))    
    err.beta <- switch(object@method, 
                        MCEM=s.err[1:(length(s.err)-2)],
                        profile=s.err)
    test.value <- coef.beta/err.beta
    dn <- c("Estimate", "Std. Error")             
    pvalue <- switch(object@method, 
                        MCEM=2 * pnorm(-abs(test.value)),
                        profile=2 * pt(-abs(test.value), object@df.residual))
    
    coef.table <- cbind(coef.beta, err.beta, test.value, pvalue)  
    dn2 <- switch(object@method, 
                        MCEM=c("z value", "Pr(>|z|)"),
                        profile=c("t value", "Pr(>|t|)"))
    dimnames(coef.table) <- list(names(coef.beta), c(dn, dn2))
    keep <- match(c("call", "deviance", "aic", "contrasts", "df.residual","method",  
        "iter","na.action"), names(object), 0L)  
    ans <- c(object[keep], list(deviance.resid = residuals(object, 
        type = "deviance"), coefficients = coef.table, 
        dispersion = object@phi, vcov=object@vcov, p=object@p))    
    .print.cpglm.summary(ans)    
    }
)

.print.cpglm.summary<-function(x,digits=max(3, getOption("digits") - 3),
                               signif.stars = getOption("show.signif.stars"), ...){
  
    cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"), 
        "\n\n", sep = "")
    cat("Deviance Residuals: \n")
    if (x$df.residual > 5) {
        x$deviance.resid <- quantile(x$deviance.resid, na.rm = TRUE)
        names(x$deviance.resid) <- c("Min", "1Q", "Median", "3Q", 
            "Max")
    }
    xx <- zapsmall(x$deviance.resid, digits + 1)
    print.default(xx, digits = digits, na.print = "", print.gap = 2)
    printCoefmat(x$coefficients, digits = digits, signif.stars = signif.stars, 
            na.print = "NA",...)
        
    cat("\n(MLE estimate for the dispersion parameter is ",  
        format(x$dispersion,digits = max(5, digits + 1)), ";") 
    cat("\n MLE estimate for the index parameter is ",  
        format(x$p,digits = max(5, digits + 1)),")\n\n") 
    cat("Residual deviance:", format(x$deviance, digits = max(5, digits + 1)), 
        " on", format(x$df.residual), " degrees of freedom\n") 
    if (nzchar(mess <- naprint(x$na.action))) 
        cat("  (", mess, ")\n", sep = "")
    cat("AIC: ", format(x$aic, digits = max(4, digits + 1)), "\n\n")
    if (x$method=="MCEM")
      cat("Number of Monte Carlo EM iterations: ", x$iter, "\n") 
    if (x$method=="profile")
      cat("Number of Fisher Scoring iterations: ", x$iter, "\n") 
    cat("\n")
    invisible(x)
}
    



################################################
# methods defined for bcpglm
################################################

setMethod("summary", signature(object="bcpglm"),
  function(object, quantiles = c(0.025, 0.25, 0.5, 0.75, 0.975),...){
    summary(object@sims.list,quantiles=quantiles)   
  }
)

setMethod("plot", signature(x="bcpglm",y="missing"),
  function(x,y,...)
    plot(x@sims.list)
)

        
################################################
# methods defined for cpglmm
################################################


setMethod("vcov", signature(object = "cpglmm"),
    function(object, ...){
      rr <- as(object@phi *
              chol2inv(object@RX, size = object@dims['p']), "dpoMatrix")
      nms <- colnames(object@X)
      dimnames(rr) <- list(nms, nms)
      rr@factors$correlation <- as(rr, "corMatrix")
      rr
})

setMethod("VarCorr", signature(x = "cpglmm"),
    function(x, ...){
### Create the VarCorr object of variances and covariances
      sc <- sqrt(x@phi)
	    ans <- lapply(cc <- .Call(lme4:::mer_ST_chol, x),
                        function(ch) {
                            val <-  ch %*%t(ch) # variance-covariance
                            stddev <- sqrt(diag(val))
                            correl <- t(val / stddev)/stddev
                            diag(correl) <- 1
                            attr(val, "stddev") <- stddev
                            attr(val, "correlation") <- correl
                            val
                        })
      fl <- x@flist
      names(ans) <- names(fl)[attr(fl, "assign")]
      attr(ans, "sc") <- if (x@dims[["useSc"]]) sc else NA
      ans
    }
)

setMethod("summary", signature(object = "cpglmm"),
    function(object, ...){
      REML <- object@dims[["REML"]]
      fcoef <- fixef(object)
      vcov <- vcov(object)
      corF <- vcov@factors$correlation
      dims <- object@dims
      coefs <- cbind("Estimate" = fcoef, "Std. Error" = corF@sd) #, DF = DF)
      llik <- logLik(object, REML)
      dev <- object@deviance
      mType <- if((non <- as.logical(length(object@V)))) "NMM" else "LMM"
      mName <- "Compound Poisson linear"
	    method <- paste("the", if(dims[["nAGQ"]] == 1) "Laplace" else
			  "adaptive Gaussian Hermite","approximation")
	  
      AICframe <- data.frame(AIC = AIC(llik), BIC = BIC(llik),
                                 logLik = as.vector(llik),
                                 deviance = dev[["ML"]],
                                 REMLdev = dev[["REML"]],
                                 row.names = "")
      if (is.na(AICframe$REMLdev)) AICframe$REMLdev <- NULL
      varcor <- VarCorr(object)
      REmat <- lme4:::formatVC(varcor)
      if (is.na(attr(varcor, "sc")))
          REmat <- REmat[-nrow(REmat), , drop = FALSE]

      if (nrow(coefs) > 0) {
          if (!dims[["useSc"]]) {
                  coefs <- coefs[, 1:2, drop = FALSE]
                  stat <- coefs[,1]/coefs[,2]
                  pval <- 2*pnorm(abs(stat), lower = FALSE)
                  coefs <- cbind(coefs, "z value" = stat, "Pr(>|z|)" = pval)
              } else {
                  stat <- coefs[,1]/coefs[,2]
                  ##pval <- 2*pt(abs(stat), coefs[,3], lower = FALSE)
                  coefs <- cbind(coefs, "t value" = stat) #, "Pr(>|t|)" = pval)
              }
          } ## else : append columns to 0-row matrix ...
          new("summary.cpglmm",
              object,
              methTitle = paste(mName, "mixed model fit by", method),
              logLik = llik,
              ngrps = sapply(object@flist, function(x) length(levels(x))),
              sigma = sqrt(object@phi),
              coefs = coefs,
              vcov = vcov,
              REmat = REmat,
              AICtab= AICframe)
  }
)

## This is modeled a bit after  print.summary.lm :
print.cpglmm <- function(x, digits = max(3, getOption("digits") - 3),
                     correlation = FALSE, symbolic.cor = FALSE,
                     signif.stars = getOption("show.signif.stars"), ...){
    so <- summary(x)
    REML <- so@dims[["REML"]]
    llik <- so@logLik
    dev <- so@deviance
    dims <- x@dims
    cat(so@methTitle, "\n")
    if (!is.null(x@call$formula))
        cat("Formula:", deparse(x@call$formula),"\n")
    if (!is.null(x@call$data))
        cat("   Data:", deparse(x@call$data), "\n")
    if (!is.null(x@call$subset))
        cat(" Subset:", deparse(x@call$subset),"\n")
    print(so@AICtab, digits = digits)

    cat("Random effects:\n")
    print(so@REmat, quote = FALSE, digits = digits, ...)

    ngrps <- so@ngrps
    cat(sprintf("Number of obs: %d, groups: ", dims[["n"]]))
    cat(paste(paste(names(ngrps), ngrps, sep = ", "), collapse = "; "))
    cat("\n")
     
    if (nrow(so@coefs) > 0) {
	    cat("\nFixed effects:\n")
	    printCoefmat(so@coefs, zap.ind = 3, #, tst.ind = 4
		     digits = digits, signif.stars = signif.stars)
  
      cat("\nEstimated scale parameter:", round(so@phi, digits=digits))
      cat("\n")
      cat("Estimated index parameter:", round(so@p, digits=digits))
      cat("\n")
     
	    if(correlation) {
	      corF <- so@vcov@factors$correlation
	    if (!is.null(corF)) {
		    p <- ncol(corF)
		    if (p > 1) {
		      rn <- rownames(so@coefs)
		      rns <- abbreviate(rn, minlength=11)
		      cat("\nCorrelation of Fixed Effects:\n")
		      if (is.logical(symbolic.cor) && symbolic.cor) {
			      corf <- as(corF, "matrix")
			      dimnames(corf) <- list(rns,
					       abbreviate(rn, minlength=1, strict=TRUE))
			      print(symnum(corf))
		      } else {
			      corf <- matrix(format(round(corF@x, 3), nsmall = 3),
				       ncol = p,dimnames = list(rns, abbreviate(rn, minlength=6)))
			      corf[!lower.tri(corf)] <- ""
			      print(corf[-1, -p, drop=FALSE], quote = FALSE)
		      }
		    }
	    }
	  }
  }
  invisible(x)
}

setMethod("print", "cpglmm", print.cpglmm)
setMethod("show", "cpglmm", 
  function(object) 
    print.cpglmm(object)
)
                  

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API