https://github.com/kuo-lab/simplelocomotionmodel
Tip revision: fc46ca7f88d6f91ec43bb77f0d8809df2eb73ee8 authored by Art Kuo on 14 February 2023, 22:04:04 UTC
extra readme about cloning and downloading
extra readme about cloning and downloading
Tip revision: fc46ca7
uneventerrain.jl
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .jl
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.3.2
# kernelspec:
# display_name: Julia 1.8.5
# language: julia
# name: julia-1.8
# ---
# # Dynamic optimization of walking on uneven terrain
#
# A simple walking model is optimized to walk over uneven terrain. The
# objective is to minimize energy expenditure, quantified by the push-off
# work performed with each step. The optimization here seeks to traverse a
# stretch of terrain, starting and ending at level walking, and taking the
# same amount of time as level walking.
#
# ## Walk over a single upward step
#
# The optimal compensation for a single upward step is to speed up
# beforehand, lose speed stepping upward, and then speed up again
# afterward. The optimal speed-ups both occur over several steps but have
# different shapes: the first one increases nearly exponentially with
# time, and the second one resembles a saturating exponential. The
# optimization is described by Darici et al. (2020), and tested with human
# subjects experiment (Darici and Kuo 2022).
# +
using DynLoco, Plots;
wstar4s = findgait(WalkRW2l(α=0.4102,safety=true), target=:speed=>0.4789, varying=:P)
nsteps = 15
bumpHeightDimless = 0.075
B = asin(bumpHeightDimless / (2*sin(wstar4s.α)))
δs = zeros(nsteps); δs[Int((nsteps+1)/2)] = B # one bump
upstepresult = optwalk(wstar4s, nsteps, boundarywork=false, δs=δs)
p = multistepplot(upstepresult, boundarywork=false, legend=false) # plot speed, push-off, terrain heights
display(p)
p = plot(cumsum(upstepresult.steps.tf), upstepresult.steps.vm,xlabel="time",ylabel="midstance speed",legend=false)
display(p)
# step timings, per step
plot(cumsum(upstepresult.steps.tf),upstepresult.steps.tf, xlabel="time",ylabel="step time", legend=false)
# -
# The optimization is performed with `optwalk`, which computes the
# minimum-work trajectory for `nsteps` of walking. A terrain may be
# provided by an array of height/angle changes `δs`.
#
# All quantities are plotted in dimensionless form, with base units of
# body mass $M$, leg length $L$, and gravitational acceleration $g$. Thus
# speed is normalized by $\sqrt(gL)$ and time by $\sqrt(L/g)$. For a
# typical leg length of $L = 1\,\mathrm{m}$, the equivalent dimensional
# speed is about 1.25 m/s, and step time about 0.55 s.
#
# ## Use varying step lengths to walk over a single upward step
#
# The model above uses fixed step lengths, whereas humans adjust step
# length with speed. The model can also be constrained to step at the
# preferred step length vs speed relationship of human, resulting in a
# different amplitude of speed fluctuations, but a similarly-shaped speed
# profile.
# WalkRW2ls has varying step lengths according to preferred human
wstar4ls = findgait(WalkRW2ls(α=0.4102,safety=true), target=:speed=>0.4789, varying=:P, cstep=0.35, vmstar=wstar4s.vm)
varyingresult = optwalk(wstar4ls, nsteps, boundarywork=false,δs=δs)
plotvees(upstepresult,boundaryvels=upstepresult.boundaryvels, speedtype=:midstance)
plotvees!(varyingresult,boundaryvels=upstepresult.boundaryvels, speedtype=:midstance)
# ## Walk over a bunch of terrains
#
# The terrain is specified as a series of angle/height changes each step.
# The task is to start and end with nominal level walking, and to traverse
# the terrain in minimum energy, in the same amount of time as for level
# walking.
#
# Note that terrain profile is not plotted to scale.
# +
## plot bumps and speed trajectories of all 8 terrains
numStepsBefore = 6; numStepsAfter = 6
# all terrain trajectories
wstar4s = findgait(WalkRW2l(α=0.4102,safety=true), target=:speed=>0.4789, varying=:P)
δs = ( # terrain defined a sequence of height or angle changes from previous step
"level" =>[zeros(numStepsBefore); [0] .* B; zeros(numStepsAfter)], # level
"U" => [zeros(numStepsBefore); [1] .* B; zeros(numStepsAfter)], # Up
"D" => [zeros(numStepsBefore); [-1] .* B; zeros(numStepsAfter)], # Down
"UD" => [zeros(numStepsBefore); [1, -1] .* B; zeros(numStepsAfter)], # Up-Down
"DnUD" => [zeros(numStepsBefore); [-1, 0, 5/3, -5/3] .* B; zeros(numStepsAfter)] , # Down & Up-Down
"P" => [zeros(numStepsBefore); [ 1, 1, 1, 0, 0, 0, -1, -1, -1] .* B; zeros(numStepsAfter)], # Pyramid
"C1" => [zeros(numStepsBefore); [ 3, 2, -3, 2, -1, 3, 1, -3, -2, 3, -1, -2, -1, 3, -2, -2] .* B/3; zeros(numStepsAfter)], # Complex 1
"C2" => [zeros(numStepsBefore); [ 2, 2, -3, 1, 2, 1, -3, 2, 3, -1, -3, 1, -2, 3, -2, -3] .* B/3; zeros(numStepsAfter)], # Complex 2
)
p = plot(layout=(4,4), legend=false);
pslotnum(n) = n + (n>4 ? 4 : 0) # plot in slots 1 - 4, 9 - 12
for (i,(terrainname, terrainbumps)) in enumerate(δs)
# plot the terrain profile in space (not to scale)
plotterrain!(p[pslotnum(i)], cumsum(terrainbumps)./B .* bumpHeightDimless, setfirstbumpstep=true,ylims=(-0.1,0.2),showaxis=false,grid=false)
# minimum-work strategy for terrain
results = optwalk(wstar4s, length(terrainbumps), δs=terrainbumps, boundarywork = false) # optimizing push-offs (boundarywork=false means start from nominal walking)
plotvees!(p[pslotnum(i)+4], results, boundaryvels=results.boundaryvels, speedtype=:midstance, setfirstbumpstep=true,title=terrainname, tchange = 0, ylims=(0.3,0.575))
vline!(p[pslotnum(i)+4], [0]) # mark where the first uneven step is
end
display(p)
# -
# ## Walk over a simple bump with no compensation
#
# Model walks with constant push-offs for steady walking, and encounters
# the up-step without any compensation. As a result of the unexpected
# upward step, the model loses speed, and with repeated constant
# push-offs, will eventually regain nominal speed. The number of regaining
# steps is described by the persistence distance. This model expends the
# same energy as level walking, but accumulates a time deficit compared to
# minimum-work compensation. Walking over a bump generally requires more
# time or more work. More detail is available from Darici, Temeltas, and
# Kuo (2020).
upstep = δs[2][2] # up-step terrain, get the terrain array
nsteps = length(upstep)
nocompresult = multistep(wstar4s, Ps=fill(wstar4s.P,nsteps),δangles=upstep,boundaryvels=(wstar4s.vm,wstar4s.vm))
println("No compensation total work cost = ", nocompresult.totalcost)
println("Min-work compensation total work cost = ", upstepresult.totalcost)
p = multistepplot(nocompresult, legend=false, boundarywork=false)
display(p)
plot(cumsum(upstepresult.steps.tf),label="min work")
plot!(cumsum(nocompresult.steps.tf), xlabel="step",ylabel="accumulated time", label="no compensation")
println("Final time deficit = ", -sum(upstepresult.steps.tf)+sum(nocompresult.steps.tf))
# ## Walk over a single bump with a reactive compensation
#
# Here the model does not anticipate the up-step and loses speed and time
# upon first contact with it. Thereafter, the model compensates and
# catches up to the level ground model by looking ahead and adjusting the
# trajectory of push-offs. This strategy therefore actually anticipates
# and optimally compensates for all steps other the first uneven one. It
# is almost impossible to regain time without some knowledge and goal for
# the terrain ahead. More detail is available from Darici, Temeltas, and
# Kuo (2020).
nbump = Int(floor((nsteps+1)/2))
reactresults1 = multistep(wstar4s, Ps=fill(wstar4s.P,nbump),δangles=upstep[1:nbump],boundaryvels=(wstar4s.vm,wstar4s.vm))
reactresults2 = optwalk(wstar4s, length(upstepresult.steps)-nbump, totaltime = upstepresult.totaltime - reactresults1.totaltime,boundaryvels=(reactresults1.steps[end].vm,wstar4s.vm), boundarywork=(false,false))
reactresult = cat(reactresults1, reactresults2)
println("Reactive contrl total work cost = ", reactresult.totalcost)
println("Up-step min-work control total work cost = ", upstepresult.totalcost)
p = multistepplot(reactresult,boundarywork=false) # plot concatenation of two simulations
display(p)
p = plot(cumsum(upstepresult.steps.tf),label="up-step min-work")
plot!(p, cumsum(reactresult.steps.tf), xlabel="step",ylabel="accumulated time", label="reactive")
display(p)
println("Final time deficit = ", -sum(upstepresult.steps.tf)+sum(reactresult.steps.tf))
# # Julia code
#
# This page is viewable as [Jupyter notebook](uneventerrain.ipynb), [plain
# Julia](uneventerrain.jl) text, or [HTML](uneventerrain.html).
#
# # Matlab code
#
# There is also extensive Matlab code for an earlier implementation of the
# same model. See [Matlab directory](../matlab). There is very limited
# documentation of this code.
#
# ## Experimental data
#
# The data from accompanying human subjects experiment are available in a
# [separate data and code
# repository](https://github.com/kuo-lab/uneventerrainexperiment/). The
# code is in Matlab, and the data files are in .mat format, which is
# compatible with HDF5.
#
# ## References
#
# Darici, Osman, and Arthur D. Kuo. 2022. “Humans Optimally Anticipate and
# Compensate for an Uneven Step During Walking.” Edited by Lena H Ting.
# *eLife* 11 (January): e65402. <https://doi.org/10.7554/eLife.65402>.
#
# Darici, Osman, Hakan Temeltas, and Arthur D. Kuo. 2020. “Anticipatory
# Control of Momentum for Bipedal Walking on Uneven Terrain.” *Scientific
# Reports* 10 (1): 540. <https://doi.org/10.1038/s41598-019-57156-6>.