\name{rstable1} \title{Random Numbers from (Skew) Stable Distributions} \alias{rstable1} \alias{rstable} \description{ Generate random numbers of the stable distribution \deqn{S(\alpha, \beta, \gamma, \delta; k)} with characteristic exponent \eqn{\alpha\in(0,2]}{alpha in (0,2]}, skewness \eqn{\beta\in[-1,1]}{beta in [-1,1]}, scale \eqn{\gamma\in[0,\infty)}{gamma in [0,Inf)}, and location \eqn{\delta\in\mathbf{R}}{delta in IR}; see Nolan (2010) for the parameterization \eqn{k\in\{0,1\}}{k in {0,1}}. The case \eqn{\gamma=0} is understood as the unit jump at \eqn{\delta}. } \usage{ rstable1(n, alpha, beta, gamma = 1, delta = 0, pm = 1) } \arguments{ \item{n}{an \code{\link{integer}}, the number of observations to generate.} \item{alpha}{characteristic exponent \eqn{\alpha\in(0,2]}{alpha in (0,2]}.} \item{beta}{skewness \eqn{\beta\in[-1,1]}{beta in [-1,1]}.} \item{gamma}{scale \eqn{\gamma\in[0,\infty)}{gamma in [0,Inf)}.} \item{delta}{location \eqn{\delta\in\mathbf{R}}{delta in IR}.} \item{pm}{0 or 1, denoting which parametrization (as by Nolan) is used.} } \value{ A \code{\link{numeric}} vector of length \code{n} containing the generated random variates. } \details{ We use the approach of John Nolan for generating random variates of stable distributions. The function \code{rstable1} provides two basic parametrizations, by default, \code{pm = 1}, the so called \dQuote{S}, \dQuote{S1}, or \dQuote{1} parameterization. This is the parameterization used by Samorodnitsky and Taqqu (1994), and is a slight modification of Zolotarev's (A) parameterization. It is the form with the most simple form of the characteristic function; see Nolan (2010, p. 8). \code{pm = 0} is the \dQuote{S0} parameterization: based on the (M) representation of Zolotarev for an alpha stable distribution with skewness beta. Unlike the Zolotarev (M) parameterization, gamma and delta are straightforward scale and shift parameters. This representation is continuous in all 4 parameters. } \author{ Diethelm Wuertz wrote \code{\link[fBasics]{rstable}} for Rmetrics; Martin Maechler vectorized it (also in \code{alpha},\dots), fixed it for \eqn{\alpha=1,\beta\ne 0}{alpha = 1, beta != 0} and sped it up. } \seealso{\code{\link[fBasics]{rstable}} which also allows the 2-parametrization and provides further functionality for stable distributions. } \references{ Chambers, J. M., Mallows, C. L., and Stuck, B. W. (1976), \emph{A Method for Simulating Stable Random Variables}, J. Amer. Statist. Assoc. \bold{71}, 340--344. Nolan, J. P. (2010), \emph{Stable Distributions---Models for Heavy Tailed Data}, Birkhaeuser. Samoridnitsky, G. and Taqqu, M. S. (1994), \emph{Stable Non-Gaussian Random Processes, Stochastic Models with Infinite Variance}, Chapman and Hall, New York. % Nolan, J.P. (1999), % \emph{Stable Distributions}, % Preprint, University Washington DC, 30 pages. % Nolan, J.P. (1999), % \emph{Numerical Calculation of Stable Densities and Distribution % Functions}, % Preprint, University Washington DC, 16 pages. % Weron, A., Weron R. (1999), % \emph{Computer Simulation of Levy alpha-Stable Variables and % Processes}, % Preprint Technical Univeristy of Wroclaw, 13 pages. } \examples{ # Generate and plot a series of stable random variates set.seed(1953) r <- rstable1(n = 1000, alpha = 1.9, beta = 0.3) plot(r, type = "l", main = "stable: alpha=1.9 beta=0.3", col = "steelblue"); grid() hist(r, "Scott", prob = TRUE, ylim = c(0,0.3), main = "Stable S(1.9, 0.3; 1)") lines(density(r), col="red2", lwd = 2) } \keyword{distribution}