
How to make advanced packages

Simon Tournier

November, 10th, 2023

Abstract

This tutorial is dedicated to review what can be done when that’s
not enough to list dependencies and/or declare a build system. The aim
is to introduce various mechanisms for adapting the base Guix recipe.
The prerequisite is the reading of the section “Defining Packages” from
the manual and the goal of this tutorial is to provide some ingredients
for making it sound. We propose to first introduce a Scheme/Guile
Swiss-knife toolbox, then to cover how to modify upstream source code
(field origin) and how to customize the build system parameters or
phases (field arguments). If time allows, we will introduce the meaning
of cryptic symbols as the sequence #˜(#$(

Do not forget that packaging is a craft, so there is no magic but
only practise.

(Terms using sans serif font are hyperlinks.)

This tutorial for introducing key components to make advanced packages for
Guix is its first version. Do not take all as written in stone; it is based on
my experience and I do not consider being a packaging expert. If I might,
my two only advises are:

1. Dive into existing packages and confront with Guix manual.

2. Most is about a lot of practise. Quoting rekado,

I wish I had anything to say about this other than

“try again, give up, forget about it, remember it, ask for pointers,
repeat”

#guix-hpc on 2023-10-13.

1

https://logs.guix.gnu.org/guix-hpc/2023-10-13.log#142159

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Preliminary I bis how to connect using ssh on VM

1 Create a SSH key for the session (here ˜/.ssh/stournier, pick your name)
ssh-keygen -t rsa -b 4096 -f ~/.ssh/stournier

2 Copy the public SSH key
cat ~/.ssh/stournier.pub | ssh bastion ’cat >> .ssh/authorized_keys’

3 Start your editor (VSCode or Emacs via Tramp or else)

Or just connect to one VM, then start Emacs in text mode:

guix shell emacs-minimal -- emacs -f shell

S. Tournier How to make advanced packages 2 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Preliminary II

1 Clone Git repository: https://gitlab.com/zimoun/advanced-packages-2023
2 Start a terminal

$ guix show -L examples/packages hi

$ guix build -L examples/packages hi
$ guix build -L examples/packages hi --no-grafts --check -K

$ guix edit -L $(pwd)/examples/packages hi

workaround VSCode: EDITOR=./vscode-wrapper guix edit

Plain text: EDITOR=less guix edit
S. Tournier How to make advanced packages 3 / 32

1 Introduction

As a warmer, let re-read the section Defining Packages from the Guix manual.
The aim of this ≈ 1h30 tutorial is to help in packaging when Invoking guix
import is not enough.
Quoting Package Naming:
A package actually has two “names” associated with it. First, there is the
name of the Scheme variable, the one following ‘define-public’. By this name,
the package can be made known in the Scheme code, for instance as input to
another package. Second, there is the string in the ‘name’ field of a package

2

https://guix.gnu.org/manual/devel/en/guix.html#Defining-Packages
https://guix.gnu.org/manual/devel/en/guix.html#Invoking-guix-import
https://guix.gnu.org/manual/devel/en/guix.html#Invoking-guix-import
https://guix.gnu.org/manual/devel/en/guix.html#Package-Naming

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Defining Packages: key points file: examples/packages/first.scm

define-module Create a Guile module
#:use-module List the modules required for Guile compiling the recipe

define-public Define and export
package Object representing a package (Scheme record)

name The string we prefer
version A string that makes sense
source Define where to fetch the source code

build-system Define how to build
arguments The arguments for the build system

inputs List the other package dependencies

guix repl -L examples/packages

S. Tournier How to make advanced packages 4 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Package from guix repl

Recommendation for the file ˜/.guile

(use-modules (ice-9 readline) ;; package guile-readline, guile?
(ice-9 format)
(ice-9 pretty-print))

(activate-readline)

1 Type hi then ,q
2 Type (use-modules (first)) (or ,use(first)) and again hi
3 Try (package-name hi) then ,use(guix packages) (or ,use(guix)) and repeat

Two names: the Scheme variable and the string.

1 How to display the version?
2 Try (package-inputs hi)

S. Tournier How to make advanced packages 5 / 32

definition. This name is used by package management commands such as
‘guix package’ and ‘guix build’.
Pick the same for both is welcome but not mandatory. And several packages
for the same version have the same string name but not the same symbol;
except if they are defined in different modules.

3

Guix @ Montpellier, 2023

2 Scheme/Guile Swiss-knife toolbox

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Examples of packages

$ guix edit gsl
$ guix edit r-torch

What does it mean?

keyword define-public, let, lambda
record package

convention %something, something?, something*
symbol quote (’), backtick (`), comma (,), comma at (,@), underscore (_)

G-expressions: #˜ or #$

S. Tournier How to make advanced packages 6 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

First things first

S-expression: atom or expression of the form (x y ...)

atom: +, *, list, etc.
expression: (list ’one 2 "three")

Call (evaluation) with parenthesis
e.g., apply the atom list to the rest

(list ’one 2 "three") returns the list composed by the elements (one 2 "three")

Quote protects from the call (do not evaluate)
e.g., ’one returns plain one

e.g., ’(list one 2 "three") returns (list ’one 2 "three")
’(list ’one 2 "three") returns (list (quote one) 2 "three")

S. Tournier How to make advanced packages 7 / 32

"quoted" data remains unevaluated, and provides a convenient way of rep-
resenting Scheme programs. This is one of the big payoffs of Lisp’s simple
syntax: since programs themselves are lists, it is extremely simple to repre-
sent Lisp programs as data. Compare the simplicity of quoted lists with the
ML datatype that we used to represent ML expressions.
This makes it simple to write programs that manipulate other programs —
it is easy to construct and transform programs on the fly.

4

Guix @ Montpellier, 2023

Note that names in Lisp programs are translated into symbols in quoted Lisp
expressions. This is so that quoted names can be distinguished from quoted
strings; consider the difference between the following two expressions:

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Second thing second

variable (define some-variable 42)
procedure (lambda (argument) (something argument))

Define a procedure

(define my-name-procedure
(lambda (argument1 argument2)

(something-with argument1)))

(define (my-name-procedure argument1 argument2)
(something-with argument1))

Call (my-name-procedure 1 "two")
define-public is sugar to define and export (see « Creating Guile Modules (link)) »

S. Tournier How to make advanced packages 8 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Local variables = let

Independent local variables

(define (add-plus-2 x y)
(let ((two 2)

(x+y (+ x y)))
(+ x+y two)))

Inter-dependant local variables

(define (add-plus-2-bis x y)
(let* ((two 2)

(x+two (+ x two))
(result (+ y x+two)))

result))
S. Tournier How to make advanced packages 9 / 32

Let build something!

Before, we need to fetch something, isn’t it?

5

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Local variables: example seen in package julia-biogenerics

(define-public julia-biogenerics
(let ((commit "a75abaf459250e2b5e22b4d9adf25fd36d2acab6")

(revision "1"))
(package

(name "julia-biogenerics")
(version (git-version "0.0.0" revision commit))

...

S. Tournier How to make advanced packages 10 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Conventions

predicate ends with question mark (?), return boolean (#t or #f
note: #true or #false works too)

e.g., (string-prefix? "hello" "hello-world")

variant ends with star mark (*) e.g., let*
lambda* more argument

(lambda* (#:key inputs #:allow-other-keys)
(setenv "CONFIG_SHELL"

(search-input-file inputs "/bin/sh")))
;; seen in package frama-c

keyword starts with sharp colon (#:)
e.g., #:key, #:configure-flags, #:phases

“global“ starts with percent (%)
e.g., %standard-phases

S. Tournier How to make advanced packages 11 / 32

3 origin field

4 Arguments

%standard-phases

Except one, all package build systems implement a notion of Build Phases:
a sequence of actions that the build system executes, when you build the

6

https://guix.gnu.org/manual/devel/en/guix.html#Build-Phases

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Quote, quasiquote, unquote
quote do not evaluate (keep as it is) quote ’

quasiquote unevaluate except escaped backtick `
unquote evaluate that escaped coma ,

guix repl

1 Type
scheme@(guix-user)> (define ho "path/to/ho")
scheme@(guix-user)> (string-append ho "/bin/bye")
scheme@(guix-user)> `(string-append ho "/bin/bye")
scheme@(guix-user)> `(string-append ,ho "/bin/bye")

2 Type
scheme@(guix-user)> (eval $4 (interaction-environment))

construction-time vs eval-time

S. Tournier How to make advanced packages 12 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Quote, quasiquote, unquote II splicing

unquote-splicing as unquote and insert the elements comma-at ,@

the expression must evaluate to a list

1 Type

scheme@(guix-user)> (define of (list #:vegetable 'tomatoes
#:dessert (list "cake" "pie")))

scheme@(guix-user)> `(more ,@of that)
scheme@(guix-user)> `(more ,of that)

S. Tournier How to make advanced packages 13 / 32

package. For instance, these actions might be unpack, configure, build,
check, install, etc.

4.0.1 List and compare %standard-phases

For each build system, this sequence of actions is stored by %standard-phases.
Please, note that this sequence of actions is build system depends, i.e.,
%standard-phases is defined per build system. For example, the %standard-phases
for the GNU build system is defined by the module (guix build-system
gnu). And the %standard-phases for the Python build system is defined by

7

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Quote, quasiquote, unquote III digression

substitute-keyword-arguments substitutes keyword arguments

(arguments
(substitute-keyword-arguments (package-arguments hdf4)

((#:configure-flags flags) `(cons* "--disable-netcdf" ,flags))))
;; seen in package hdf4-alt

1 scheme@(guix-user)> ,use(srfi srfi-1)
scheme@(guix-user)> ,pp (lset-difference equal?

(substitute-keyword-arguments (package-arguments hdf4)
((#:configure-flags flags) `(cons* "--disable-netcdf" ,flags)))

(package-arguments hdf4))
$1 = ((cons* "--disable-netcdf" (list "--enable-shared" "FCFLAGS=-fallow-argument-mismatch"

"FFLAGS=-fallow-argument-mismatch"
"--enable-hdf4-xdr")))

S. Tournier How to make advanced packages 15 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Quote, quasiquote, unquote III digression

substitute-keyword-arguments substitutes keyword arguments

(arguments
(substitute-keyword-arguments (package-arguments hdf4)

((#:configure-flags flags) `(cons* "--disable-netcdf" ,flags))))
;; seen in package hdf4-alt

1 scheme@(guix-user)> ,use(srfi srfi-1)
scheme@(guix-user)> ,pp (lset-difference equal?

(substitute-keyword-arguments (package-arguments hdf4)
((#:configure-flags flags) `(cons* "--disable-netcdf" ,flags)))

(package-arguments hdf4))
$1 = ((cons* "--disable-netcdf" (list "--enable-shared" "FCFLAGS=-fallow-argument-mismatch"

"FFLAGS=-fallow-argument-mismatch"
"--enable-hdf4-xdr")))

S. Tournier How to make advanced packages 15 / 32

the module (guix build-system python).

It is possible to interactively explore these sequences of actions using guix
repl. Here, we load the GNU build system %standard-phases, and we
rebind that variable to standard-phases (without the percent %) and prefix
it with gnu:

scheme@(guix-user)> (use-modules ((guix build gnu-build-system)
#:select ((%standard-phases . standard-phases)) ;also rename
#:prefix gnu:))

Similarly, let load the sequence of actions for the Python build system,

8

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Association list

(alist) association list = list of pairs (this . that)

think: (list (key1 . value1) (key2 . value2) ...)

1 Type

scheme@(guix-user)> (define alst (list '(a . 1) '(2 . 3) '("foo" . v)))
scheme@(guix-user)> (assoc-ref alst "foo")
scheme@(guix-user)> (assoc-ref alst 'a)

2 Type

scheme@(guix-user)> (assoc-ref (package-inputs hi) "gawk")

S. Tournier How to make advanced packages 16 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Ready? seen in package feedgnuplot
1 (add-after 'install 'wrap
2 (lambda* (#:key inputs outputs #:allow-other-keys)
3 (let* ((out (assoc-ref outputs "out"))
4 (gnuplot (search-input-file inputs "/bin/gnuplot"))
5 (modules '("perl-list-moreutils" "perl-exporter-tiny"))
6 (PERL5LIB (string-join
7 (map (lambda (input)
8 (string-append (assoc-ref inputs input)
9 "/lib/perl5/site_perl"))

10 modules)
11 ":")))
12 (wrap-program (string-append out "/bin/feedgnuplot")
13 `("PERL5LIB" ":" suffix (,PERL5LIB))
14 `("PATH" ":" suffix (,(dirname gnuplot)))))))

S. Tournier How to make advanced packages 17 / 32

scheme@(guix-user)> (use-modules ((guix build python-build-system)
#:select ((%standard-phases . standard-phases))
#:prefix python:))

And using lset-difference from the module (srfi srfi-1), it is straight-
forward to list the items that are part of the GNU build system but not part
of the Python build system.

scheme@(guix-user)> ,use(srfi srfi-1)
scheme@(guix-user)> ,pp (lset-difference eq?

gnu:standard-phases python:standard-phases)

9

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

origin field seen in package feedgnuplot

(source (origin
(method git-fetch)
(uri (git-reference

(url home-page)
(commit (string-append "v" version))))

(file-name (git-file-name name version))
(sha256
(base32
"0403hwlian2s431m36qdzcczhvfjvh7128m64hmmwbbrgh0n7md7"))))

S. Tournier How to make advanced packages 19 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Defining origin II more method

fixed-output derivation = content known in advance

▶ url-fetch fetches data from URL (= a string or a list of strings)
module (guix download)

▶ git-fetch fetches a git-reference object module (guix git-download)
▶ hg-fetch fetches a hg-reference object module (guix hg-download)
▶ svn-fetch fetches a svn-reference object module (guix svn-download)
▶ etc.

see origin Reference (link) in Guix manual

S. Tournier How to make advanced packages 21 / 32

Based on that, we are able to compare the sequence of actions (%standard-phases)
for two build systems. And we could have a simple script for automating:

$./examples/scripts/compare-bs-phases.scm gnu python

Compare %standard-phases of "gnu" and "python":
22 phases in "gnu"
28 phases in "python"
20 phases in common

10

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Defining origin II more method

fixed-output derivation = content known in advance

▶ url-fetch fetches data from URL (= a string or a list of strings)
module (guix download)

▶ git-fetch fetches a git-reference object module (guix git-download)
▶ hg-fetch fetches a hg-reference object module (guix hg-download)
▶ svn-fetch fetches a svn-reference object module (guix svn-download)
▶ etc.

see origin Reference (link) in Guix manual

S. Tournier How to make advanced packages 21 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Modifying origin

1 Fetch the source code of the package gecode

$ guix build gecode --source

2 Show what git-fetch does behind the scene
$./examples/scripts/show-me-fetch.scm gecode
$ eval $(./examples/scripts/show-me-fetch.scm gecode)

3 Compare both
$ diff -rq /tmp/gecode $(guix build gecode -S)

how to remove these files?

S. Tournier How to make advanced packages 22 / 32

Only in "gnu":
+ bootstrap
+ configure

Only in "python":
+ ensure-no-mtimes-pre-1980
+ enable-bytecode-determinism
+ ensure-no-cythonized-files
+ add-install-to-pythonpath
+ add-install-to-path

11

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Modifying origin III snippet

A S-expression (or G-expression) that will be run in the source directory

(origin
...

(snippet
'(begin

;; delete generated sources
(for-each delete-file

'("gecode/kernel/var-imp.hpp"
"gecode/kernel/var-type.hpp"))))

patches vs snippet: it depends on

Look at the module (guix builds utils) for helpers as delete-file-recursively, etc.
S. Tournier How to make advanced packages 24 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Modifying origin III snippet

A S-expression (or G-expression) that will be run in the source directory

(origin
...

(snippet
'(begin

;; delete generated sources
(for-each delete-file

'("gecode/kernel/var-imp.hpp"
"gecode/kernel/var-type.hpp"))))

patches vs snippet: it depends on

Look at the module (guix builds utils) for helpers as delete-file-recursively, etc.
S. Tournier How to make advanced packages 24 / 32

+ wrap
+ sanity-check
+ rename-pth-file

The manual provides some details about the meaning of various phases, see
Build Systems.

5 Questions

12

https://guix.gnu.org/manual/devel/en/guix.html#Build-Systems

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Pass arguments to the build system

(arguments
(list #:configure-flags

#~(list "--enable-dynamic-build"
#$@(if (target-x86?)

#~("--enable-vector-intrinsics=sse")
#~())

"--enable-ldim-alignment")
#:make-flags #~(list "FC=gfortran -fPIC")
#:phases
#~(modify-phases %standard-phases

#:configure-flags is keyword.
What is #˜ or #$@?

S. Tournier How to make advanced packages 25 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

G-expression

Remember quasiquote and unquote?
#˜ is similar as ` with context (host machine, store state, etc.)
#$ is similar as , with context
#$@ is similar as ,@ with context

#˜(string-append #$hello "/some/string")
“means”

"/gnu/store/8bzzc70vgzdvj6qdzhdpd709m4y2kw7z-hello-2.12.1/some/string"

https://simon.tournier.info/posts/2023-11-02-gexp-intuition.html

S. Tournier How to make advanced packages 26 / 32

13

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

G-expression II

(replace 'install
(lambda* (#:key outputs #:allow-other-keys)

(mkdir-p (string-append #$output "/bin"))
(chmod "BQN" #o755)
(rename-file "BQN" "bqn")
(install-file "bqn" (string-append #$output "/bin"))))

S. Tournier How to make advanced packages 27 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

%standard-phases

Phases %standard-phases

%standard-phases is defined build system by build system

$./examples/scripts/compare-bs-phases.scm gnu python

Phases 1 ’configure
2 ’build
3 ’install
4 ’check
5 etc.

Actions 1 replace
2 delete
3 add-before
4 add-after

S. Tournier How to make advanced packages 28 / 32

14

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

%standard-phases

Phases %standard-phases II

(arguments
(list
#:phases
#~(modify-phases %standard-phases

(delete 'configure)
(add-before 'build 'set-prefix-in-makefile

(lambda* (#:key inputs #:allow-other-keys)
(substitute* "Makefile"

(("PREFIX =.*")
(string-append "PREFIX = " #$output "\n"))

(("XMLLINT =.*")
(string-append "XMLLINT = "

(search-input-file inputs "/bin/xmllint")
"\n"))))))))))

;; see in Guix manualS. Tournier How to make advanced packages 29 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

%standard-phases

Phases %standard-phases III

(arguments
(if (not (target-x86-64?))

;; This test is only broken when using openblas, not openblas-ilp64.
(list

#:phases
#~(modify-phases %standard-phases

(add-after 'unpack 'adjust-tests
(lambda _

(substitute* "test/test_layoutarray.jl"
(("test all\\(B") "test_broken all(B"))))))

'()))
;; see in julia-arraylayouts

S. Tournier How to make advanced packages 30 / 32

15

Guix @ Montpellier, 2023

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Resources (links)

Talk « A tour of the Guix source tree » (video 40min)
Talk « Introduction to G-Expressions » (video 30min)

self-promotion
https://simon.tournier.info/posts/

Post « Automatic differentiation by dual numbers using Guile »
Post « From naive to rough intuition about G-expression »
Post « Quasiquote and G-expression: Fibonacci sequence using derivations »

S. Tournier How to make advanced packages 31 / 32

Introduction Scheme/Guile Swiss-knife toolbox origin field Arguments Questions

Packaging = practise and practise again

If I might,

1 Dive into existing packages and deal with Guix manual and community.
2 Most of the “tricks” is about a lot of practise. Quoting rekado,

I wish I had anything to say about this other than:
“try again, give up, forget about it, remember it, ask for pointers, repeat”

#guix-hpc on 2023-10-13.

do not forget that packaging is a craft

S. Tournier How to make advanced packages 32 / 32

16

Guix @ Montpellier, 2023

A First intuition about G-expression

G-expressions make it easy to write to files Scheme code that refers to store
items, or to write Scheme code to build derivations. This section is an
attempt to build an intuition about them. Please take this section as a first
introduction containing some approximations for clarity.

The vehicle for the journey is guix repl. Let start by binding the variable
hi to the string "path/to/hi" and let append the string "/bin/bye".

scheme@(guix-user)> (define hi "path/to/hi")
scheme@(guix-user)> (begin (string-append hi "/bin/bye"))
$1 = "path/to/hi/bin/bye"

Now consider that we do not want to fully evaluate the resulting string but
we would like to construct an intermediate expression, which will be then
evaluated. The quasiquote allows to protect the evaluation and unquote to
escape this protection.

Scheme is able to control what is evaluated when constructing an expres-
sion and what is evaluated when computing this expression. It is about
quasiquote and unquote; they are so familiar that they have their own syn-
tactic sugar: backtick (`) and comma (,). For instance,

scheme@(guix-user)> `(begin (string-append ,hi "/bin/bye"))
$2 = (begin (string-append "path/to/hi" "/bin/bye"))

Now, this expression can be evaluated later. Let say later is now:

scheme@(guix-user)> (eval $2 (interaction-environment))
$3 = "path/to/hi/bin/bye"

Here the term $2 refers to the interactive previous result. Please note that the
expression is evaluated in the context of the (interaction-environment).
So far, so good.

What if the variable refers to a package? Let check it. First, we import the
packages from the module base and the variable hello corresponds to the
package hello.

scheme@(guix-user)> (use-modules (gnu packages base))
scheme@(guix-user)> hello
$4 = #<package hello@2.12.1 gnu/packages/base.scm:90 7f0d0bba8dc0>

Let tweak the previous expression and replace the variable hi by the variable
hello.

scheme@(guix-user)> `(begin (string-append ,hello "/bin/bye"))
$5 = (begin (string-append #<package hello@2.12.1 gnu/packages/base.scm:90 ...>

"/bin/bye"))

Interresting isn’t it? Then, as previously, we are going to evaluate it.

17

Guix @ Montpellier, 2023

scheme@(guix-user)> (eval $5 (interaction-environment))
ice-9/boot-9.scm:1685:16: In procedure raise-exception:
In procedure string-append: Wrong type (expecting string): #<package hello@2.12.1

Entering a new prompt. Type `,bt' for a backtrace or `,q' to continue.
scheme@(guix-user) [1]> ,q

Bang! An error. Well, it was expected, no? The variable hello does not
refer to a string so it does not make sense to append with one other string.
G-expressions make it easy to write to files Scheme code that refers
to store items. Let try that. Instead of quasiquote, let introduce gexp.
And instead of unquote, let introduce ungexp. And similarly, they have their
syntatic sugar:

quasiquote (backtick) ` #˜ gexp
unquote (comma) , #$ ungexp

Before continuing, we need to load the module providing all this fun.

scheme@(guix-user)> (use-modules (guix gexp))

We are ready for replacing the two symbols:

scheme@(guix-user)> #~(begin (string-append #$hello "/bin/bye"))
$6 = #<gexp (begin (string-append #<gexp-input #<package hello@2.12.1

"/bin/bye")) 7f0d0a9b6780>

Nice, it returns a G-expression type (gexp).

Warning: The following procedure is an helper for easing the explanations
of this section. Please skip it elsewhere. It does not matter what it means
or how to invoke it and, to my knowledge, it is not required for writing
packages.

scheme@(guix-user)> (define gexp->sexp (@@ (guix gexp) gexp->sexp))

Once typed, consider it transforms from the G-expression type (gexp) to the
regular S-expression type (sexp). And let be back to the explanations.

scheme@(guix-user)> (gexp->sexp $6 "x86_64-linux" #f)
$7 = #<procedure 7f0d0ac011e0 at guix/gexp.scm:1387:2 (state)>

Wait, the result is a procedure. And it seems that a state is required. What
does it mean? Somehow, it captures the context for the evaluation. How
to evaluate? The interactive guix repl provides an handy ,run-in-store
command – Guix specific REPL command; here the comma (,) is not related
to unquote but to the command switch. Let run this procedure in the context
of the Guix local store.

18

https://guix.gnu.org/manual/devel/en/html_node/Using-Guix-Interactively.html
https://www.gnu.org/software/guile/manual/html_node/REPL-Commands.html

Guix @ Montpellier, 2023

scheme@(guix-user)> ,run-in-store (gexp->sexp $7 "x86_64-linux" #f)
$8 = (begin

(string-append
"/gnu/store/8bzzc70vgzdvj6qdzhdpd709m4y2kw7z-hello-2.12.1"
"/bin/bye"))

Bingo! We get a S-expression where the G-expression had been replaced by
the value. Now we would be able to evaluate this S-expression and append
the two strings.

G-expressions make it easy to manipulate Scheme code
refering to store items.

Variation

In the very first example, the whole expression is quasiquoted and only the
variable hi is unquoted. Why not unquote all the append? It would mean
that the string append will be happened at construction time and not at
evaluation time.

scheme@(guix-user)> `(begin ,(string-append hi "/bin/bye"))
$9 = (begin "path/to/hi/bin/bye")
scheme@(guix-user)> (eval $9 (interaction-environment))
$10 = "path/to/hi/bin/bye"

Similarly as previously, let just replace the symbols:

scheme@(guix-user)> #~(begin #$(string-append hello "/bin/bye"))

Again, as previously, it raises an error and it is expected. It does not make
sense to append the type package with the type string.

ice-9/boot-9.scm:1685:16: In procedure raise-exception:
In procedure string-append: Wrong type (expecting string): #<package hello@2.12.1

Entering a new prompt. Type `,bt' for a backtrace or `,q' to continue.
scheme@(guix-user) [1]> ,q

What is the solution? The solution is to not use the procedure string-append
and instead rely on the procedure file-append which is designed for these
kind of situations.

scheme@(guix-user)> #~(begin #$(file-append hello "/bin/bye"))
$11 = #<gexp (begin #<gexp-input #<file-append #<package hello@2.12.1

"/bin/bye">:out>) 7f0d09225900>
scheme@(guix-user)> (gexp->sexp $11 "x86_64-linux" #f)
$12 = #<procedure 7f0d09393450 at guix/gexp.scm:1387:2 (state)>
scheme@(guix-user)> ,run-in-store $12
$13 = (begin

"/gnu/store/8bzzc70vgzdvj6qdzhdpd709m4y2kw7z-hello-2.12.1/bin/bye")

19

Guix @ Montpellier, 2023

B Quasiquote and G-expressions

From Guix: Quasiquote and G-expressions blog post.

Well, the best explanation is “show me the code”, isn’t it?

let start guix repl and explore. . .

Before introducing G-expressions we need to have a clear idea about classic
Scheme concepts quasiquote (`) and unquote (,); as well as quote (’).
In Lisp-family language, “quoted ” data remains unevaluated.

scheme@(guix-user)> (define x 42)
scheme@(guix-user)> x
$1 = 42
scheme@(guix-user)> (quote x)
$2 = x

This quote is so frequent that it has syntactic sugar (’). Somehow,
’(x y z) is short for (list ’x ’y ’z).

scheme@(guix-user)> '(x y z)
$3 = (x y z)
scheme@(guix-user)> (list? '(x y z))
$4 = #t
scheme@(guix-user)> (list 'x 'y 'z)
$5 = (x y z)
scheme@(guix-user)> (equal? '(x y z) (list 'x 'y 'z))
$6 = #t

Everything on the list is a value – e.g., ’x or ’y or ’z; namely there are
symbols. In short, a symbol looks like a variable name except that it starts
with quote (’) and it plays a role similar as strings; somehow symbols are
a great way to represent “symbolic” information as data.

That’s said, we would like to be able to escape back inside of a quoted list
and evaluate something. Thanks to quasiquote (`) and unquote (,), it
is possible.

scheme@(guix-user)> (define y 24)
scheme@(guix-user)> `(,x y z)
$7 = (42 y z)

Here, the unquoted expression is evaluated during the construction of the
list, while the other remaining unevaluated. Another example:

scheme@(guix-user)> (define something 'cool)
scheme@(guix-user)> (define (tell-me) `(Guix is ,something))
scheme@(guix-user)> (tell-me)

20

https://simon.tournier.info/posts/2023-11-01-gexp.html

Guix @ Montpellier, 2023

$8 = (Guix is cool)
scheme@(guix-user)> (define something 'awesome)
scheme@(guix-user)> (tell-me)
$9 = (Guix is awesome)

And unquote evaluates everything, including procedures if any.

scheme@(guix-user)> `(Again ,(tell-me))
$10 = (Again (Guix is awesome))
scheme@(guix-user)> `(1 ,(+ 2 3) 4)
$11 = (1 5 4)

For instance, let build1 the Fibonacci sequence.

scheme@(guix-user)> (define (fibo n)
(if (or (= 0 n) (= 1 n))

`(begin ,n)
(let ((f_1 (fibo (- n 1)))

(f_2 (fibo (- n 2))))
`(begin (+ ,f_1 ,f_2)))))

scheme@(guix-user)> ,pp (fibo 7)
$12 = (begin

(+ (begin
(+ (begin

(+ (begin
(+ (begin

(+ (begin (+ (begin 1) (begin 0))) (begin 1)))
(begin (+ (begin 1) (begin 0)))))

(begin
(+ (begin (+ (begin 1) (begin 0))) (begin 1)))))

(begin
(+ (begin

(+ (begin (+ (begin 1) (begin 0))) (begin 1)))
(begin (+ (begin 1) (begin 0)))))))

(begin
(+ (begin

(+ (begin
(+ (begin (+ (begin 1) (begin 0))) (begin 1)))

(begin (+ (begin 1) (begin 0)))))
(begin

(+ (begin (+ (begin 1) (begin 0))) (begin 1)))))))

Here, nothing is evaluated. All is data and symbolically manipulated. The
evaluation (computation) is then done with eval,

1It would be possible to make the code more symmetric and implement the Fibonacci
sequence using quasiquote / unquote and files. However, it makes everything far more
complicated. Somehow, that’s why G-expressions had been introduced, after all! ;-)

21

https://en.wikipedia.org/wiki/Fibonacci_sequence

Guix @ Montpellier, 2023

scheme@(guix-user)> (eval (fibo 7) (interaction-environment))
$13 = 13

So far, so good. What about G-expressions? Quoting dedicated section
of Guix manual:

To describe a derivation and its build actions, one typically needs
to embed build code inside host code. It boils down to manip-
ulating build code as data, and the homoiconicity of Scheme —
code has a direct representation as data — comes in handy for
that. But we need more than the normal quasiquote mechanism
in Scheme to construct build expressions.

Somehow, G-expressions simplifies the machinery for staging code. Com-
pared to classic expression, it introduces both: context – e.g., the set of
inputs associated with the expression – and the ability to serialize high-level
objects – i.e., to replace a reference to a package object with its /gnu/store/
file name.

G-expressions consist of syntactic forms: gexp, ungexp – or simply: #~ and
#$ – which are comparable to quasiquote and unquote, respectively. Other
said, it allows to control the context of the evaluation.

Let make it concrete with the Fibonacci example. We need the modules
(guix gexp), (guix derivations) and (guix store).

scheme@(guix-user)> (use-modules (guix gexp)
(guix derivations)
(guix store))

blank

22

https://guix.gnu.org/manual/devel/en/guix.html#G_002dExpressions
https://en.wikipedia.org/wiki/Homoiconicity

Guix @ Montpellier, 2023

Now, instead of manipulating quasiquote (`) and unquote (,), we are
going to manipulate gexp (#~) and ungexp (#$). Let start with three
helpers:

(define (number->name n)
(string-append "Fibonacci-of-"

(number->string n)))

(define (number->gexp n)
#~(begin

(use-modules (ice-9 format))
(call-with-output-file #$output

(lambda (port)
(format port "~d" #$n)))))

(define (store-item->number path)
#~(begin

(use-modules ((ice-9 textual-ports) #:select (get-string-all)))
(string->number
(call-with-input-file #$path

get-string-all))))

Nothing special to say about number->name. What do the others do? number->gexp
takes an interger number and returns a G-expression, such that, after eval-
uation, it will write this number to some file. What makes the machinery
convenient is that #$output will be replaced – evaluated with adequate con-
text – by a string containing the output reference to its /gnu/store/ file
name. Can you guess what store-item->number does?

The core: computing the Fibonacci sequence using G-expressions,

(define (fibonacci n)
(if (or (= 0 n) (= 1 n))

(gexp->derivation
(number->name n)
(number->gexp n))

(let* ((store (open-connection))
(drv-1 (run-with-store store

(fibonacci (- n 1))))
(drv-2 (run-with-store store

(fibonacci (- n 2))))
(f_1 (store-item->number drv-1))
(f_2 (store-item->number drv-2)))

(gexp->derivation
(number->name n)
(number->gexp #~(+ #$f_1 #$f_2))))))

23

Guix @ Montpellier, 2023

First, gexp->derivation returns a derivation with the name (number->name
) that runs the gexp (number->gexp); somehow this gexp stores something
to compute. Second, run-with-store runs a gexp in the context of the
store – see The Store monad.

The procedure fibonacci takes an integer number and constructs some G-
expressions controlling the context of evaluation. Let run it!

scheme@(guix-user)> ,run-in-store (fibonacci 7)
$14 = #<derivation /gnu/store/db97xy9d5icaa64n2n9l7q2v66npmm6c-Fibonacci-of-7.drv

=> /gnu/store/8b5g05g4z5r9f3ash53ppb5m1r7kksfj-Fibonacci-of-7 7f7ca8ed3640>

Awesome! We get back a derivation. Note the handy ,run-in-store com-
mand – Guix specific REPL command – which hides the plumbing of run-with-store.
From the REPL, it is possible to explore this derivation, although the pretty-
printer is not handy. Well, this derivation reads:

Derive
([("out","/gnu/store/8b5g05g4z5r9f3ash53ppb5m1r7kksfj-Fibonacci-of-7","","")]
,[("/gnu/store/0wkxvd2ll0gff37wghamb12dz4x50n14-Fibonacci-of-6.drv",["out"])

,("/gnu/store/9r95y1j1rg4q7vb528lh51w0cz3c5hvi-Fibonacci-of-5.drv",["out"])
,("/gnu/store/zraigp7miin3vzr5dcbr4i9rvds0i07r-guile-3.0.9.drv",["out"])]

,["/gnu/store/z0jspla9advx77ihbc7nfjvnky2gfvjz-Fibonacci-of-7-builder"]
,"x86_64-linux"
,"/gnu/store/g8p09w6r78hhkl2rv1747pcp9zbk6fxv-guile-3.0.9/bin/guile"
, ["--no-auto-compile"
, "/gnu/store/z0jspla9advx77ihbc7nfjvnky2gfvjz-Fibonacci-of-7-builder"]
,[("out","/gnu/store/8b5g05g4z5r9f3ash53ppb5m1r7kksfj-Fibonacci-of-7")])

Figure 1: the derivation Fibonacci-of-7.drv

And the 7th term depends on the 6th and 5th (F7 = F6 +F5); the expected
recursive sequence. The interesting part is the builder.

blank

24

https://guix.gnu.org/manual/devel/en/html_node/The-Store-Monad.html
https://guix.gnu.org/manual/devel/en/html_node/Using-Guix-Interactively.html
https://guix.gnu.org/manual/devel/en/html_node/Using-Guix-Interactively.html
https://www.gnu.org/software/guile/manual/html_node/REPL-Commands.html

Guix @ Montpellier, 2023

(begin
(use-modules (ice-9 format))
(call-with-output-file

((@ (guile) getenv) "out")
(lambda (port)

(format port "~d"
(+
(begin

(use-modules ((ice-9 textual-ports)
#:select
(get-string-all)))

(string->number
(call-with-input-file

"/gnu/store/rhjmlgaz4f1niwhrnm2nsfdj2g6dya6h-Fibonacci-of-6"
get-string-all)))

(begin
(use-modules
((ice-9 textual-ports) #:select (get-string-all)))

(string->number
(call-with-input-file

"/gnu/store/xcp9b4j0nskk6lk5jxlpv3926j19vpw0-Fibonacci-of-5"
get-string-all))))))))

Figure 2: the builder of Fibonacci-of-7.drv

All had been correctly replaced. Somehow, that builder script is similar as
the output of the previous fibo procedure, and instead of eval, now the
computation will be done by Guix daemon evaluating this builder script.

Let make that computation!

scheme@(guix-user)> ,build $14
$15 = "/gnu/store/8b5g05g4z5r9f3ash53ppb5m1r7kksfj-Fibonacci-of-7"

And guess what? This file contains the value 13. Yeah!

As you can see, all the previous values of the Fibonacci sequence are also
computed via derivations and the result stored as files. Guix daemon starts to
construct the derivation Fibonacci-of-0.drv, then Fibonacci-of-1.drv,
and compute them by writing 0 then 1 inside the output store item files
Fibonacci-of-0 and Fibonacci-of-1. Then Guix daemon evaluates the
builder script of the derivation Fibonacci-of-2.drv, i.e., it reads the values
from two previous store item files, adds them and writes the result inside the
store item file Fibonacci-of-2. The Guix daemon repeats until 7. Other
said, if we want to compute the value for the 8th Fibonacci number, all the

25

https://guix.gnu.org/manual/devel/en/html_node/Setting-Up-the-Daemon.html

Guix @ Montpellier, 2023

previous computations are cached in the Guix store; the Guix store acts as
a good memoization mean. Check it with:

$ guix gc --list-dead | grep Fibonacci-of

C Do not shoot yourself in the foot

Closing remark about G-expressions, let mention that “With great power
there must also come great responsibility”. Once defined a package, Guix dae-
mon, for concretely building it, will first construct a derivation that mainly
lists two components:

• All the other derivations as dependencies,

• How to build the output artefact with a Scheme builder script.

And doing so, it will keep track of the information about the derivations that
the G-expressions refer to.

Example unrelated to packaging, see Fibonacci sequence as implemented
in section B. For instance, Figure 1 (p.24) shows the derivation and Fig-
ure 2 (p.25) the associated script builder for computing the 7th Fibonacci
number. As we can see, because the builder depends on some store items,
namely Fibonacci-of-5 and Fibonacci-of-6, their derivations are listed
in Fibonacci-of-7.drv. And we have not explicitely mentioned this de-
pendency relationship. That’s the G-expression machinery which does the
job.

That’s great! Where is the potential shoot? Let create a package named bye
which just adds only one phase compared to the base package hello,

blank

26

Guix @ Montpellier, 2023

(define-module (appendix)
#:use-module (guix packages)
#:use-module (gnu packages base)
#:use-module (guix gexp)
#:use-module (gnu packages emacs))

(define-public bye
(package

(inherit hello)
(name "bye")
(arguments
(list
#:phases
#~(modify-phases %standard-phases

(add-after 'install 'do-something-with-emacs
(lambda _

(invoke #$(file-append emacs-minimal
"/bin/emacs") "--version"))))))))

Please note there is no package inputs, i.e., the package emacs-minimal is
listed nowhere. When we build this package, we will see:

$ guix build -L example bye --no-grafts
...
phase ‘install’ succeeded after 0.2 seconds
starting phase ‘do-something-with-emacs’
GNU Emacs 29.1
Copyright (C) 2023 Free Software Foundation, Inc.
GNU Emacs comes with ABSOLUTELY NO WARRANTY.
You may redistribute copies of GNU Emacs
under the terms of the GNU General Public License.
For more information about these matters, see the file named COPYING.
phase ‘do-something-with-emacs’ succeeded after 0.0 seconds
...

Wow, the package emacs-minimal is not listed as inputs and it is used,
thanks to G-expressions and its machinery that captured it. No magic, all
is transparent: it appears in the derivation bye.drv,

$ cat $(guix build -L example bye --no-grafts --derivations) \
| sed ’s/),/\n/g’ # transform the one single line to several
| grep emacs

("/gnu/store/1nagdikm5rwdf8ilp5r6071l2wrnrlhi-emacs-minimal-29.1.drv",["out"]

Thanks to Guix great transparency, we only wind on, no shoot.

What about the builder script? If you open it, you will see,

27

Guix @ Montpellier, 2023

#:phases
(modify-phases %standard-phases

(add-after
(quote install)
(quote do-something-with-emacs)

(lambda _
(invoke "/gnu/store/9y222z4lgfyddi2k65ycc1nx6cal73ic-emacs-minimal-29.1/bin/emacs" "--version"))))

Nice, G-expression rocks! However, this item is not listed under %build-inputs
passed to the gnu-build system.

Concretely, what does it mean? Because it is a abuse of G-expression ma-
chinery, it escapes some Guix features as Package-Transformation-Options or
Invoking guix-refresh. To make a long story short, most package manipu-
lations operate on a level that cannot access to such plumbing level.

Hope that what G-expression means and how to use them is clearer. My
conclusion is: Don’t fear the G-expression.

28

https://guix.gnu.org/manual/devel/en/guix.html#Package-Transformation-Options
https://guix.gnu.org/manual/devel/en/guix.html#Invoking-guix-refresh

	Introduction
	Scheme/Guile Swiss-knife toolbox
	origin field
	Arguments
	Questions
	First intuition about G-expression
	Quasiquote and G-expressions
	Do not shoot yourself in the foot

