Raw File
sgpmc.py
# Copyright 2016 James Hensman, alexggmatthews
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import numpy as np
import tensorflow as tf

from ..models.model import GPModel
from ..conditionals import conditional
from ..features import inducingpoint_wrapper
from ..params import Parameter, DataHolder
from ..priors import Gaussian
from ..decors import params_as_tensors


class SGPMC(GPModel):
    r"""
    This is the Sparse Variational GP using MCMC (SGPMC). The key reference is

    ::

      @inproceedings{hensman2015mcmc,
        title={MCMC for Variatinoally Sparse Gaussian Processes},
        author={Hensman, James and Matthews, Alexander G. de G.
                and Filippone, Maurizio and Ghahramani, Zoubin},
        booktitle={Proceedings of NIPS},
        year={2015}
      }

    The latent function values are represented by centered
    (whitened) variables, so

    .. math::
       :nowrap:

       \begin{align}
       \mathbf v & \sim N(0, \mathbf I) \\
       \mathbf u &= \mathbf L\mathbf v
       \end{align}

    with

    .. math::
        \mathbf L \mathbf L^\top = \mathbf K


    """
    def __init__(self, X, Y, kern, likelihood, feat=None,
                 mean_function=None,
                 num_latent=None,
                 Z=None,
                 **kwargs):
        """
        X is a data matrix, size N x D
        Y is a data matrix, size N x R
        Z is a data matrix, of inducing inputs, size M x D
        kern, likelihood, mean_function are appropriate GPflow objects

        """
        X = DataHolder(X)
        Y = DataHolder(Y)
        GPModel.__init__(self, X, Y, kern, likelihood, mean_function, num_latent=num_latent, **kwargs)
        self.num_data = X.shape[0]
        self.feature = inducingpoint_wrapper(feat, Z)
        self.V = Parameter(np.zeros((len(self.feature), self.num_latent)))
        self.V.prior = Gaussian(0., 1.)

    @params_as_tensors
    def _build_likelihood(self):
        """
        This function computes the optimal density for v, q*(v), up to a constant
        """
        # get the (marginals of) q(f): exactly predicting!
        fmean, fvar = self._build_predict(self.X, full_cov=False)
        return tf.reduce_sum(self.likelihood.variational_expectations(fmean, fvar, self.Y))

    @params_as_tensors
    def _build_predict(self, Xnew, full_cov=False, full_output_cov=False):
        """
        Xnew is a data matrix, point at which we want to predict

        This method computes

            p(F* | (U=LV) )

        where F* are points on the GP at Xnew, F=LV are points on the GP at Z,

        """
        mu, var = conditional(Xnew, self.feature, self.kern, self.V, full_cov=full_cov, q_sqrt=None,
                              white=True, full_output_cov=full_output_cov)
        return mu + self.mean_function(Xnew), var
back to top