\name{Brown-Resnick-Specific} \alias{RPbrmixed} \alias{RPbrorig} \alias{RPbrshifted} \alias{BRmethods} \title{Simulation methods for Brown-Resnick processes} \description{ These models define the particular way to simulate Brown-Resnick processes } \usage{ RPbrmixed(phi, tcf, xi, mu, s, meshsize, vertnumber, optim_mixed, optim_mixed_tol, optim_mixed_maxp, lambda, areamat, variobound) RPbrorig(phi, tcf, xi, mu, s) RPbrshifted(phi, tcf, xi, mu, s) } \arguments{ \item{phi}{object of class \code{\link[=RMmodel-class]{RMmodel}}; specifies the covariance model to be simulated.} \item{tcf}{the extremal correlation function; either \code{phi} or \code{tcf} must be given.} \item{xi, mu, s}{the shape parameter, the location parameter and the scale parameter, respectively, of the generalized extreme value distribution. See Details.} \item{lambda}{positive constant factor in the intensity of the Poisson point processused in the M3 representation, cf. Thm. 6 and Remark 7 in Oesting et. al (2012); can be estimated by setting \code{optim_mixed} if unknown. Default value is 1.} \item{areamat}{vector or matrix of values in \eqn{[0,1]} with odd length (odd number of rows and columns, respectively). Each value represents the portion of processes whose maximum is located at a specific location on a grid taken into account for the simulation of the shape function in the M3 representation. The center of \code{areamat} represents the value for the origin, the other entries belong to the corresponding locations on a 1D or 2D grid. \code{areamat} can be used for dimensions 1 and 2 only; can be optimized by setting \code{optim_mixed} if unknown. Default value is 1.} \item{meshsize, vertnumber, optim_mixed, optim_mixed_tol, optim_mixed_maxp, variobound}{further arguments for simulation via the mixed moving maxima (M3) representation; see \code{\link{RFoptions}}} } \details{ The argument \code{xi} is always a number, i.e. \eqn{\xi} is constant in space. In contrast, \eqn{\mu} and \eqn{s} might be constant numerical value or given a \code{\link{RMmodel}}, in particular by a \code{\link{RMtrend}} model. The functions \code{RPbrorig}, \code{RPbrshifted} and \code{RPbrmixed} simulate a Brown-Resnick process, which is defined by \deqn{Z(x) = \max_{i=1}^\infty X_i \exp(W_i(x) - \gamma), }{Z(x) = max_{i=1, 2, ...} X_i * exp(W_i(x) - gamma),} where the \eqn{X_i} are the points of a Poisson point process on the positive real half-axis with intensity \eqn{x^{-2} dx}{1/x^2 dx}, \eqn{W_i \sim W}{W_i ~ Y} are iid centered Gaussian processes with stationary increments and variogram \eqn{\gamma}{gamma} given by \code{model}. The functions correspond to the following ways of simulation: \describe{ \item{\code{RPbrorig}}{simulation via using the original definition (method 0 in Oesting et al., 2012)} \item{\code{RPbrshifted}}{simulation using a random shift (similar to method 1 and 2)} \item{\code{RPbrmixed}}{simulation using M3 representation (method 4)} } } \value{ The functions return an object of class \code{\link[=RMmodel-class]{RMmodel}} } \references{ \itemize{ \item Oesting, M., Kabluchko, Z. and Schlather M. (2012) Simulation of {B}rown-{R}esnick Processes, \emph{Extremes}, \bold{15}, 89-107. }} \note{Advanced options for \code{RPbroriginal} and \code{RPbrshifted} are \code{maxpoints} and \code{max_gauss}, see \command{\link{RFoptions}}.} \author{Marco Oesting, \email{oesting@math.uni-mannheim.de}, Martin Schlather, \email{schlather@math.uni-mannheim.de} \url{http://ms.math.uni-mannheim.de/de/publications/software}} \examples{ RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again model <- RPbrshifted(RMfbm(alpha=1.5), xi=0) z <- RFsimulate(model=model, 0:10, 0:10, grid=TRUE, n=4) plot(z) \dontshow{FinalizeExample()} } \seealso{ \command{\link{RPbrownresnick}}, \command{\link{RMmodel}}, \command{\link{RPgauss}}, \command{\link{maxstable}}, \command{\link{maxstableAdvanced}} } \keyword{methods}