# Copyright 2016 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import tensorflow as tf import numpy as np from numpy.testing import assert_allclose, assert_equal import gpflow from gpflow.transforms import Chain, Identity from gpflow.test_util import GPflowTestCase from gpflow import settings class TransformTests(GPflowTestCase): def prepare(self): x_np = np.random.randn(10).astype(settings.float_type) transforms = [] for transform_class in gpflow.transforms.Transform.__subclasses__(): if transform_class == Chain: continue # Chain transform cannot be tested on its own if transform_class == gpflow.transforms.LowerTriangular: pass # Test triangular transforms separately. elif transform_class == gpflow.transforms.DiagMatrix: transforms.append(transform_class(5)) else: transform = transform_class() transforms.append(transform) transforms.append(Chain(Identity(), transform)) transforms.append(Chain(transform, Identity())) transforms.append(gpflow.transforms.Logistic(7.3, 19.4)) # test __call__() and chaining: transforms.append(gpflow.transforms.positive(gpflow.transforms.Rescale(7.5))) transforms.append(gpflow.transforms.Rescale(9.5)(gpflow.transforms.positive)) # test helper: transforms.append(gpflow.transforms.positiveRescale(9.5)) return tf.convert_to_tensor(x_np), x_np, transforms def test_tf_np_forward_backward(self): """ Make sure the np forward transforms are the same as the tensorflow ones """ with self.test_context() as session: x, x_np, transforms = self.prepare() for t in transforms: y_tf = t.forward_tensor(x) y_np = t.forward(x_np) assert_allclose(session.run(y_tf), y_np) def test_forward_backward(self): with self.test_context() as session: x, x_np, transforms = self.prepare() for t in transforms: y_np_res = t.forward(x_np) y_tf = t.forward_tensor(x) y_tf_res = session.run(y_tf) assert_allclose(y_np_res, y_tf_res) x_np_res = t.backward(y_np_res) x_tf = t.backward_tensor(y_tf) x_tf_res = session.run(x_tf) assert_allclose(x_np_res, x_tf_res) x_expect = x_np.reshape(x_np_res.shape) assert_allclose(x_expect, x_np_res) assert_allclose(x_expect, x_tf_res) def test_logjac(self): """ We have hand-crafted the log-jacobians for speed. Check they're correct wrt a tensorflow derived version """ with self.test_context() as session: x, x_np, transforms = self.prepare() # there is no jacobian: loop manually def jacobian(f): return tf.stack([tf.gradients(f(x)[i], x)[0] for i in range(10)]) tf_jacs = [tf.log(tf.matrix_determinant(jacobian(t.forward_tensor))) for t in transforms if not isinstance(t, (gpflow.transforms.LowerTriangular, gpflow.transforms.DiagMatrix))] hand_jacs = [t.log_jacobian_tensor(x) for t in transforms if not isinstance(t, (gpflow.transforms.LowerTriangular, gpflow.transforms.DiagMatrix))] for j1, j2 in zip(tf_jacs, hand_jacs): j1_res = session.run(j1) j2_res = session.run(j2) assert_allclose(j1_res, j2_res) def test_logistic_error_wrong_order(self): with self.assertRaises(ValueError): gpflow.transforms.Logistic(8.0, 4.7) def test_logistic_error_bounds_equal(self): with self.assertRaises(ValueError): gpflow.transforms.Logistic(4.7, 4.7) def test_bad_chain_argument(self): t = gpflow.transforms.Logistic(1.0, 2.0) with self.assertRaises(TypeError): t(1.5) # this syntax chains transforms, is not equivalent to t.forward(x) class TestChainIdentity(GPflowTestCase): def prepare(self): x_np = np.random.randn(10).astype(settings.float_type) transforms = [] for transform in gpflow.transforms.Transform.__subclasses__(): if transform != Chain and transform != gpflow.transforms.LowerTriangular: transforms.append(transform()) transforms.append(gpflow.transforms.Logistic(7.3, 19.4)) return tf.convert_to_tensor(x_np), x_np, transforms def assertEqualElements(self, lst): elem0 = lst[0] for elemi in lst[1:]: assert_equal(elem0, elemi) def test_equivalence(self): """ Make sure chaining with identity doesn't lead to different values. """ with self.test_context() as session: x, x_np, transforms = self.prepare() for transform in transforms: equiv_transforms = [transform, Chain(transform, Identity()), Chain(Identity(), transform)] ys_np = [t.forward(x_np) for t in equiv_transforms] self.assertEqualElements(ys_np) y_np = ys_np[0] xs_np = [t.backward(y_np) for t in equiv_transforms] self.assertEqualElements(xs_np) ys = [t.forward_tensor(x) for t in equiv_transforms] ys_tf = [session.run(y) for y in ys] self.assertEqualElements(ys_tf) logjs = [t.log_jacobian_tensor(x) for t in equiv_transforms] logjs_tf = [session.run(logj) for logj in logjs] self.assertEqualElements(logjs_tf) class TestOverflow(GPflowTestCase): """ Bug #302 identified an overflow in the standard positive transform. This is a regression test. """ def setUp(self): self.t = gpflow.transforms.Log1pe() def testOverflow(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') y = self.t.forward(np.array([-1000, -300, -10, 10, 300, 1000])) self.assertEqual(len(w), 0) self.assertFalse(np.any(np.isinf(y))) self.assertFalse(np.any(np.isnan(y))) def testDivByZero(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') y = self.t.backward(np.array([self.t._lower])) self.assertTrue(len(w) == 0) self.assertFalse(np.any(np.isinf(y))) self.assertFalse(np.any(np.isnan(y))) class TestMatrixTransforms(GPflowTestCase): """ Some extra tests for the matrix transformations. """ def test_LowerTriangular(self): t = gpflow.transforms.LowerTriangular(N=3, num_matrices=2) t.forward(np.ones((2, 6))) with self.assertRaises(ValueError): t.forward(np.ones((2, 7))) def test_LowerTriangular_squeezes_only_first_axis(self): t = gpflow.transforms.LowerTriangular(1, 1, squeeze=True) ret = t.forward(np.ones((1, 1))) self.assertEqual(ret.shape, (1, 1)) def test_LowerTriangularConsistency(self): t = gpflow.transforms.LowerTriangular(2, 4) M = np.random.randn(4, 2, 2) * np.tri(2, 2)[None, :, :] M_free = t.backward(M) assert_allclose(M, t.forward(M_free)) with self.test_context() as session: M_free_tf = session.run(t.backward_tensor(tf.identity(M))) assert_allclose(M_free, M_free_tf) assert_allclose(M, session.run(t.forward_tensor(tf.identity(M_free_tf)))) def test_LowerTriangular_squeezes(self): t1 = gpflow.transforms.LowerTriangular(N=3, num_matrices=1) t2 = gpflow.transforms.LowerTriangular(N=3, num_matrices=1, squeeze=True) X = np.random.randn(1, 6) Y = np.random.randn(1, 3, 3) self.assertTrue(np.all(t1.forward(X).squeeze() == t2.forward(X))) self.assertTrue(np.all(t1.forward(X).squeeze().shape == t2.forward(X).shape)) self.assertTrue(np.all(t1.backward(Y) == t2.backward(Y.squeeze()))) self.assertTrue(np.all(t1.backward(Y).shape == t2.backward(Y.squeeze()).shape)) with self.test_context() as session: self.assertTrue(np.all(session.run(tf.squeeze(t1.forward_tensor(X))) == session.run(t2.forward_tensor(X)))) self.assertTrue(np.all(session.run(t1.backward_tensor(Y)) == session.run(t2.backward_tensor(Y.squeeze())))) # make sure we don't try to squeeze when there are more than 1 matrices. with self.assertRaises(ValueError): gpflow.transforms.LowerTriangular(N=3, num_matrices=2, squeeze=True) def test_DiagMatrix(self): t = gpflow.transforms.DiagMatrix(3) t.backward(np.eye(3)) t.backward(np.eye(3)[None, :, :]) t.backward(np.eye(3)[None, :, :] * np.array([1, 2])[:, None, None]) with self.assertRaises(ValueError): t.backward(np.eye(4)) t.backward(np.eye(2)[None, :, :] * np.array([1, 2, 3])[:, None, None]) class TestDiagMatrixTransform(GPflowTestCase): def setUp(self): self.t1 = gpflow.transforms.DiagMatrix(dim=1) self.t2 = gpflow.transforms.DiagMatrix(dim=3) def test_forward_backward(self): free_1d = np.random.randn(8) fwd1d = self.t1.forward(free_1d) assert_allclose(fwd1d.shape, np.array([len(free_1d), self.t1.dim, self.t1.dim])) assert_allclose(free_1d, self.t1.backward(fwd1d)) size2d = 5 free_2d = np.random.randn(size2d, self.t2.dim).flatten() fwd2d = self.t2.forward(free_2d) assert_allclose(fwd2d.shape, np.array([size2d, self.t2.dim, self.t2.dim])) assert_allclose(free_2d, self.t2.backward(fwd2d)) def test_tf_np_forward(self): """ Make sure the np forward transforms are the same as the tensorflow ones """ with self.test_context() as session: free = np.random.randn(8, self.t2.dim) x = tf.convert_to_tensor(free) ys = session.run(self.t2.forward_tensor(x)) assert_allclose(ys, self.t2.forward(free)) free = np.random.randn(7, self.t1.dim) x = tf.convert_to_tensor(free) ys = session.run(self.t1.forward_tensor(x)) assert_allclose(ys, self.t1.forward(free)) if __name__ == "__main__": tf.test.main()