\name{pobs} \alias{pobs} \title{Pseudo-observations} \description{ Compute the pseudo-observations for the given data matrix. } \usage{ pobs(x, na.last = "keep", ties.method = c("average", "first", "random", "max", "min")) } \arguments{ \item{x}{\eqn{n\times d}{n x d}-matrix of random variates to be converted to pseudo-observations.} \item{na.last, ties.method}{are passed to \code{\link{rank}}; see there.} } \value{matrix of the same dimensions as \code{x} containing the pseudo-observations. } \details{ Given \eqn{n} realizations \eqn{\bm{x}_i=(x_{i1},\dots,x_{id})^T}{x_i=(x_{i1},...,x_{id})}, \eqn{i\in\{1,\dots,n\}}{i in {1,...,n}} of a random vector \eqn{\bm{X}}{X}, the pseudo-observations are defined via \eqn{u_{ij}=r_{ij}/(n+1)} for \eqn{i\in\{1,\dots,n\}}{i in {1,...,n}} and \eqn{j\in\{1,\dots,d\}}{j in {1,...,d}}, where \eqn{r_{ij}} denotes the rank of \eqn{x_{ij}} among all \eqn{x_{kj}}, \eqn{k\in\{1,\dots,n\}}{k in {1,...,n}}. The pseudo-observations can thus also be computed by component-wise applying the empirical distribution functions to the data and scaling the result by \eqn{n/(n+1)}. This asymptotically negligible scaling factor is used to force the variates to fall inside the open unit hypercube, for example, to avoid problems with density evaluation at the boundaries. } \author{Marius Hofert} \seealso{ \code{\link{gnacopula}} or \code{\link{enacopula}} (where this function is typically applied). } \examples{ ## Simple definition of the function: pobs ## Draw from a multivariate normal distribution d <- 20 P <- matrix(rep(0.75, d*d), ncol=d) diag(P) <- rep(1, d) n <- 1000 x <- MASS::mvrnorm(n, mu = rep(0, d), Sigma = P) ## Compute pseudo-observations (should roughly follow a Gaussian ## copula with correlation matrix P) u <- pobs(x) plot(u[,1],u[,2]) }