Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 711c3b2
  • /
  • src
  • /
  • technical
  • /
  • enhancedrussell.md
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:d3082cacaff07cd8698f7c766ffa422b7cb66f14
directory badge Iframe embedding
swh:1:dir:7696d39678e6db4ba664281c8ef17262a2d18a13
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
enhancedrussell.md
```@meta
CurrentModule = DataEnvelopmentAnalysis
```

# Enhanced Russell Graph Slack Based Measure

Based on the data  matrix $(X,Y)$, we calculate the Enhanced Russell Graph Measure, **ERG**, (Pastor et al., 1999) -- also known as the Slack Based Measure, **SBM**, Tone (2001) -- of each observation *o* by solving $n$ times the following linear programming problem:

```math
\begin{aligned}
  & \underset{\beta, t_i^-, t_r^+ ,\mu_j }{\mathop{\min }}\,\quad \quad \quad \;\ \beta -  \frac{1}{m} \sum_{i=1}^{m}{\frac{t_i^-}{x_{io}}}  \\
  & \text{subject}\ \text{to}  \\
  & \quad \quad \quad \quad \quad \ \beta +  \frac{1}{s} \sum_{r=1}^{s}{\frac{t_r^+}{y_{ro}}} = 1 \\
  & \quad \quad \quad \quad \quad \ \sum_{j=1}^{n}{\mu_j x_{ij} }\ = \beta {x}_{io} - t_i^- \qquad i = 1,...,m \\
  & \quad \quad \quad \quad \quad \ \sum_{j=1}^{n}{\mu_j y_{rj} }\ = \beta {y}_{ro} + t_r^+ \qquad r = 1,...,s \\
  & \quad \quad \quad \quad \quad \ \beta \ge 0  \\
  & \quad \quad \quad \quad \quad \ t_i^- \ge 0 \qquad i = 1,...,m \\
  & \quad \quad \quad \quad \quad \ t_r^+ \ge 0 \qquad r = 1,...,s \\
  & \quad \quad \quad \quad \quad \ \mu_j \ge 0 \qquad j = 1,...,n. 
\end{aligned}
```

with the following condition when assuming variable returns to scale:
```math
\sum\nolimits_{j=1}^{n}\mu_j=\beta
```

After solving the model, input and output slacks are recovered through the following expressions:
```math
\begin{aligned}
 & s_i^- = \frac{t_i^-}{\beta} \qquad i = 1,...,m \\
 & s_r^+ = \frac{t_r^+}{\beta} \qquad r = 1,...,s.
\end{aligned}
```

In this example we compute the Enhanced Russell Graph DEA model under variable returns to scale:
```@example ergsbm
using DataEnvelopmentAnalysis

X = [2; 4; 8; 12; 6; 14; 14; 9.412];

Y = [1; 5; 8; 9; 3; 7; 9; 2.353];

deaergvrs = deaerg(X, Y, rts = :VRS)
```

Estimated efficiency scores are returned with the `efficiency` function:
```@example ergsbm
efficiency(deaergvrs)
```

Estimated $\beta$'s are returned with the `efficiency` function using `:beta` as the second argument:
```@example ergsbm
efficiency(deaergvrs, :beta)
```

### deaerg Function Documentation

```@docs
deaerg
```

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top