# This file is a part of Julia. License is MIT: https://julialang.org/license # methods related to array printing # Printing a value requires to take into account the :typeinfo property # from the IO context; this property encodes (as a type) the type information # that is supposed to have already been displayed concerning this value, # so that redundancy can be avoided. For example, when printing an array of # `Float16` values, the header "Float16" will be printed, and the values # can simply be printed with the decimal representations: # show(Float16(1)) -> "Float16(1.0)" # show([Float16(1)]) -> "Float16[1.0]" (instead of "Float16[Float16(1.0)]") # Similarly: # show([[Float16(1)]]) -> "Array{Float16}[[1.0]]" (instead of "Array{Float16}[Float16[1.0]]") # # The array printing methods here can be grouped into two categories (and are annotated as such): # 1) "typeinfo aware" : these are "API boundaries" functions, which will read the typeinfo # property from the context, and pass down to their value an updated property # according to its eltype; at each layer of nesting, only one "typeinfo aware" # function must be called; # 2) "typeinfo agnostic": these are helper functions used by the first category; hence # they don't manipulate the typeinfo property, and let the printing routines # for their elements read directly the property set by their callers # # Non-annotated functions are even lower level (e.g. print_matrix_row), so they fall # by default into category 2. # # The basic organization of this file is # 1) printing with `display` # 2) printing with `show` # 3) Logic for displaying type information ## printing with `display` """ Unexported convenience function used in body of `replace_in_print_matrix` methods. By default returns a string of the same width as original with a centered cdot, used in printing of structural zeros of structured matrices. Accept keyword args `c` for alternate single character marker. """ function replace_with_centered_mark(s::AbstractString;c::AbstractChar = '⋅') N = length(s) return join(setindex!([" " for i=1:N],string(c),ceil(Int,N/2))) end const undef_ref_alignment = (3,3) """ `alignment(X, rows, cols, cols_if_complete, cols_otherwise, sep)` returns the alignment for specified parts of array `X`, returning the (left,right) info. It will look in X's `rows`, `cols` (both lists of indices) and figure out what's needed to be fully aligned, for example looking all the way down a column and finding out the maximum size of each element. Parameter `sep::Integer` is number of spaces to put between elements. `cols_if_complete` and `cols_otherwise` indicate screen width to use. Alignment is reported as a vector of (left,right) tuples, one for each column going across the screen. """ function alignment(io::IO, X::AbstractVecOrMat, rows::AbstractVector, cols::AbstractVector, cols_if_complete::Integer, cols_otherwise::Integer, sep::Integer) a = Tuple{Int, Int}[] for j in cols # need to go down each column one at a time l = r = 0 for i in rows # plumb down and see what largest element sizes are if isassigned(X,i,j) aij = alignment(io, X[i,j]) else aij = undef_ref_alignment end l = max(l, aij[1]) # left characters r = max(r, aij[2]) # right characters end push!(a, (l, r)) # one tuple per column of X, pruned to screen width if length(a) > 1 && sum(map(sum,a)) + sep*length(a) >= cols_if_complete pop!(a) # remove this latest tuple if we're already beyond screen width break end end if 1 < length(a) < length(axes(X,2)) while sum(map(sum,a)) + sep*length(a) >= cols_otherwise pop!(a) end end return a end """ `print_matrix_row(io, X, A, i, cols, sep)` produces the aligned output for a single matrix row X[i, cols] where the desired list of columns is given. The corresponding alignment A is used, and the separation between elements is specified as string sep. `print_matrix_row` will also respect compact output for elements. """ function print_matrix_row(io::IO, X::AbstractVecOrMat, A::Vector, i::Integer, cols::AbstractVector, sep::AbstractString) for (k, j) = enumerate(cols) k > length(A) && break if isassigned(X,Int(i),Int(j)) # isassigned accepts only `Int` indices x = X[i,j] a = alignment(io, x) sx = sprint(show, x, context=io, sizehint=0) else a = undef_ref_alignment sx = undef_ref_str end l = repeat(" ", A[k][1]-a[1]) # pad on left and right as needed r = j == axes(X, 2)[end] ? "" : repeat(" ", A[k][2]-a[2]) prettysx = replace_in_print_matrix(X,i,j,sx) print(io, l, prettysx, r) if k < length(A); print(io, sep); end end end """ `print_matrix_vdots` is used to show a series of vertical ellipsis instead of a bunch of rows for long matrices. Not only is the string vdots shown but it also repeated every M elements if desired. """ function print_matrix_vdots(io::IO, vdots::AbstractString, A::Vector, sep::AbstractString, M::Integer, m::Integer, pad_right::Bool = true) for k = 1:length(A) w = A[k][1] + A[k][2] if k % M == m l = repeat(" ", max(0, A[k][1]-length(vdots))) r = k == length(A) && !pad_right ? "" : repeat(" ", max(0, w-length(vdots)-length(l))) print(io, l, vdots, r) else (k != length(A) || pad_right) && print(io, repeat(" ", w)) end if k < length(A); print(io, sep); end end end # typeinfo agnostic """ print_matrix(io::IO, mat, pre, sep, post, hdots, vdots, ddots, hmod, vmod) Prints a matrix with limited output size. If `io` sets `:limit` to true, then only the corners of the matrix are printed, separated with vertical, horizontal, and diagonal ellipses as appropriate. Optional arguments are string pre (printed before the matrix, e.g. an opening bracket) which will cause a corresponding same-size indent on following rows, and string post (printed at the end of the last row of the matrix). Also options to use different ellipsis characters hdots, vdots, ddots. These are repeated every hmod or vmod elements. """ function print_matrix(io::IO, X::AbstractVecOrMat, pre::AbstractString = " ", # pre-matrix string sep::AbstractString = " ", # separator between elements post::AbstractString = "", # post-matrix string hdots::AbstractString = " \u2026 ", vdots::AbstractString = "\u22ee", ddots::AbstractString = " \u22f1 ", hmod::Integer = 5, vmod::Integer = 5) if !get(io, :limit, false) screenheight = screenwidth = typemax(Int) else sz = displaysize(io) screenheight, screenwidth = sz[1] - 4, sz[2] end screenwidth -= length(pre) + length(post) presp = repeat(" ", length(pre)) # indent each row to match pre string postsp = "" @assert textwidth(hdots) == textwidth(ddots) sepsize = length(sep) rowsA, colsA = UnitRange(axes(X,1)), UnitRange(axes(X,2)) m, n = length(rowsA), length(colsA) # To figure out alignments, only need to look at as many rows as could # fit down screen. If screen has at least as many rows as A, look at A. # If not, then we only need to look at the first and last chunks of A, # each half a screen height in size. halfheight = div(screenheight,2) if m > screenheight rowsA = [rowsA[(0:halfheight-1) .+ firstindex(rowsA)]; rowsA[(end-div(screenheight-1,2)+1):end]] end # Similarly for columns, only necessary to get alignments for as many # columns as could conceivably fit across the screen maxpossiblecols = div(screenwidth, 1+sepsize) if n > maxpossiblecols colsA = [colsA[(0:maxpossiblecols-1) .+ firstindex(colsA)]; colsA[(end-maxpossiblecols+1):end]] end A = alignment(io, X, rowsA, colsA, screenwidth, screenwidth, sepsize) # Nine-slicing is accomplished using print_matrix_row repeatedly if m <= screenheight # rows fit vertically on screen if n <= length(A) # rows and cols fit so just print whole matrix in one piece for i in rowsA print(io, i == first(rowsA) ? pre : presp) print_matrix_row(io, X,A,i,colsA,sep) print(io, i == last(rowsA) ? post : postsp) if i != last(rowsA); println(io); end end else # rows fit down screen but cols don't, so need horizontal ellipsis c = div(screenwidth-length(hdots)+1,2)+1 # what goes to right of ellipsis Ralign = reverse(alignment(io, X, rowsA, reverse(colsA), c, c, sepsize)) # alignments for right c = screenwidth - sum(map(sum,Ralign)) - (length(Ralign)-1)*sepsize - length(hdots) Lalign = alignment(io, X, rowsA, colsA, c, c, sepsize) # alignments for left of ellipsis for i in rowsA print(io, i == first(rowsA) ? pre : presp) print_matrix_row(io, X,Lalign,i,colsA[1:length(Lalign)],sep) print(io, (i - first(rowsA)) % hmod == 0 ? hdots : repeat(" ", length(hdots))) print_matrix_row(io, X, Ralign, i, (n - length(Ralign)) .+ colsA, sep) print(io, i == last(rowsA) ? post : postsp) if i != last(rowsA); println(io); end end end else # rows don't fit so will need vertical ellipsis if n <= length(A) # rows don't fit, cols do, so only vertical ellipsis for i in rowsA print(io, i == first(rowsA) ? pre : presp) print_matrix_row(io, X,A,i,colsA,sep) print(io, i == last(rowsA) ? post : postsp) if i != rowsA[end] || i == rowsA[halfheight]; println(io); end if i == rowsA[halfheight] print(io, i == first(rowsA) ? pre : presp) print_matrix_vdots(io, vdots, A, sep, vmod, 1, false) print(io, i == last(rowsA) ? post : postsp * '\n') end end else # neither rows nor cols fit, so use all 3 kinds of dots c = div(screenwidth-length(hdots)+1,2)+1 Ralign = reverse(alignment(io, X, rowsA, reverse(colsA), c, c, sepsize)) c = screenwidth - sum(map(sum,Ralign)) - (length(Ralign)-1)*sepsize - length(hdots) Lalign = alignment(io, X, rowsA, colsA, c, c, sepsize) r = mod((length(Ralign)-n+1),vmod) # where to put dots on right half for i in rowsA print(io, i == first(rowsA) ? pre : presp) print_matrix_row(io, X,Lalign,i,colsA[1:length(Lalign)],sep) print(io, (i - first(rowsA)) % hmod == 0 ? hdots : repeat(" ", length(hdots))) print_matrix_row(io, X,Ralign,i,(n-length(Ralign)).+colsA,sep) print(io, i == last(rowsA) ? post : postsp) if i != rowsA[end] || i == rowsA[halfheight]; println(io); end if i == rowsA[halfheight] print(io, i == first(rowsA) ? pre : presp) print_matrix_vdots(io, vdots, Lalign, sep, vmod, 1, true) print(io, ddots) print_matrix_vdots(io, vdots, Ralign, sep, vmod, r, false) print(io, i == last(rowsA) ? post : postsp * '\n') end end end if isempty(rowsA) print(io, pre) print(io, vdots) length(colsA) > 1 && print(io, " ", ddots) print(io, post) end end end # typeinfo agnostic # n-dimensional arrays function show_nd(io::IO, a::AbstractArray, print_matrix::Function, label_slices::Bool) limit::Bool = get(io, :limit, false) if isempty(a) return end tailinds = tail(tail(axes(a))) nd = ndims(a)-2 for I in CartesianIndices(tailinds) idxs = I.I if limit for i = 1:nd ii = idxs[i] ind = tailinds[i] if length(ind) > 10 if ii == ind[firstindex(ind)+3] && all(d->idxs[d]==first(tailinds[d]),1:i-1) for j=i+1:nd szj = length(axes(a, j+2)) indj = tailinds[j] if szj>10 && first(indj)+2 < idxs[j] <= last(indj)-3 @goto skip end end #println(io, idxs) print(io, "...\n\n") @goto skip end if ind[firstindex(ind)+2] < ii <= ind[end-3] @goto skip end end end end if label_slices print(io, "[:, :, ") for i = 1:(nd-1); print(io, "$(idxs[i]), "); end println(io, idxs[end], "] =") end slice = view(a, axes(a,1), axes(a,2), idxs...) print_matrix(io, slice) print(io, idxs == map(last,tailinds) ? "" : "\n\n") @label skip end end # print_array: main helper functions for show(io, text/plain, array) # typeinfo agnostic # Note that this is for showing the content inside the array, and for `MIME"text/plain". # There are `show(::IO, ::A) where A<:AbstractArray` methods that don't use this # e.g. show_vector, show_zero_dim print_array(io::IO, X::AbstractArray{<:Any, 0}) = isassigned(X) ? show(io, X[]) : print(io, undef_ref_str) print_array(io::IO, X::AbstractVecOrMat) = print_matrix(io, X) print_array(io::IO, X::AbstractArray) = show_nd(io, X, print_matrix, true) # typeinfo aware # implements: show(io::IO, ::MIME"text/plain", X::AbstractArray) function show(io::IO, ::MIME"text/plain", X::AbstractArray) # 0) show summary before setting :compact summary(io, X) isempty(X) && return print(io, ":") # 1) compute new IOContext if !haskey(io, :compact) && length(axes(X, 2)) > 1 io = IOContext(io, :compact => true) end if get(io, :limit, false) && eltype(X) === Method # override usual show method for Vector{Method}: don't abbreviate long lists io = IOContext(io, :limit => false) end if get(io, :limit, false) && displaysize(io)[1]-4 <= 0 return print(io, " …") else println(io) end # 2) update typeinfo # # it must come after printing the summary, which can exploit :typeinfo itself # (e.g. views) # we assume this function is always called from top-level, i.e. that it's not nested # within another "show" method; hence we always print the summary, without # checking for current :typeinfo (this could be changed in the future) io = IOContext(io, :typeinfo => eltype(X)) # 2) show actual content print_array(io, X) end ## printing with `show` ### non-Vector arrays # _show_nonempty & _show_empty: main helper functions for show(io, X) # typeinfo agnostic """ `_show_nonempty(io, X::AbstractMatrix, prefix)` prints matrix X with opening and closing square brackets, preceded by `prefix`, supposed to encode the type of the elements. """ function _show_nonempty(io::IO, X::AbstractMatrix, prefix::String) @assert !isempty(X) limit = get(io, :limit, false)::Bool indr, indc = axes(X,1), axes(X,2) nr, nc = length(indr), length(indc) rdots, cdots = false, false rr1, rr2 = UnitRange{Int}(indr), 1:0 cr1, cr2 = UnitRange{Int}(indc), 1:0 if limit if nr > 4 rr1, rr2 = rr1[1:2], rr1[nr-1:nr] rdots = true end if nc > 4 cr1, cr2 = cr1[1:2], cr1[nc-1:nc] cdots = true end end print(io, prefix, "[") for rr in (rr1, rr2) for i in rr for cr in (cr1, cr2) for j in cr j > first(cr) && print(io, " ") if !isassigned(X,i,j) print(io, undef_ref_str) else el = X[i,j] show(io, el) end end if last(cr) == last(indc) i < last(indr) && print(io, "; ") elseif cdots print(io, " \u2026 ") end end end last(rr) != nr && rdots && print(io, "\u2026 ; ") end print(io, "]") end _show_nonempty(io::IO, X::AbstractArray, prefix::String) = show_nd(io, X, (io, slice) -> _show_nonempty(io, slice, prefix), false) # a specific call path is used to show vectors (show_vector) _show_nonempty(::IO, ::AbstractVector, ::String) = error("_show_nonempty(::IO, ::AbstractVector, ::String) is not implemented") _show_nonempty(io::IO, X::AbstractArray{T,0} where T, prefix::String) = print_array(io, X) # NOTE: it's not clear how this method could use the :typeinfo attribute _show_empty(io::IO, X::Array{T}) where {T} = print(io, "Array{", T, "}(undef,", join(size(X),','), ')') _show_empty(io, X) = nothing # by default, we don't know this constructor # typeinfo aware (necessarily) function show(io::IO, X::AbstractArray) ndims(X) == 0 && return show_zero_dim(io, X) ndims(X) == 1 && return show_vector(io, X) prefix = typeinfo_prefix(io, X) io = IOContext(io, :typeinfo => eltype(X)) isempty(X) ? _show_empty(io, X) : _show_nonempty(io, X, prefix) end ### 0-dimensional arrays (#31481) show_zero_dim(io::IO, X::BitArray{0}) = print(io, "BitArray(", Int(X[]), ")") function show_zero_dim(io::IO, X::AbstractArray{T, 0}) where T if isassigned(X) print(io, "fill(") show(io, X[]) else print(io, "Array{$T,0}(") show(io, undef) end print(io, ")") end ### Vector arrays # typeinfo aware # NOTE: v is not constrained to be a vector, as this function can work with iterables # in general (it's used e.g. by show(::IO, ::Set)) function show_vector(io::IO, v, opn='[', cls=']') print(io, typeinfo_prefix(io, v)) # directly or indirectly, the context now knows about eltype(v) io = IOContext(io, :typeinfo => eltype(v)) limited = get(io, :limit, false) if limited && length(v) > 20 axs1 = axes1(v) f, l = first(axs1), last(axs1) show_delim_array(io, v, opn, ",", "", false, f, f+9) print(io, " … ") show_delim_array(io, v, "", ",", cls, false, l-9, l) else show_delim_array(io, v, opn, ",", cls, false) end end ## Logic for displaying type information # given type `typeinfo` extracted from context, assuming a collection # is being displayed, deduce the elements type; in spirit this is # similar to `eltype` (except that we don't want a default fall-back # returning Any, as this would cause incorrect printing in e.g. `Vector[Any[1]]`, # because eltype(Vector) == Any so `Any` wouldn't be printed in `Any[1]`) typeinfo_eltype(typeinfo) = nothing # element type not precisely known typeinfo_eltype(typeinfo::Type{<:AbstractArray{T}}) where {T} = eltype(typeinfo) typeinfo_eltype(typeinfo::Type{<:AbstractDict{K,V}}) where {K,V} = eltype(typeinfo) typeinfo_eltype(typeinfo::Type{<:AbstractSet{T}}) where {T} = eltype(typeinfo) # types that can be parsed back accurately from their un-decorated representations function typeinfo_implicit(@nospecialize(T)) if T === Float64 || T === Int || T === Char || T === String || T === Symbol || issingletontype(T) return true end return isconcretetype(T) && ((T <: Array && typeinfo_implicit(eltype(T))) || ((T <: Tuple || T <: Pair) && all(typeinfo_implicit, fieldtypes(T))) || (T <: AbstractDict && typeinfo_implicit(keytype(T)) && typeinfo_implicit(valtype(T)))) end # X not constrained, can be any iterable (cf. show_vector) function typeinfo_prefix(io::IO, X) typeinfo = get(io, :typeinfo, Any)::Type if !(X isa typeinfo) typeinfo = Any end # what the context already knows about the eltype of X: eltype_ctx = typeinfo_eltype(typeinfo) eltype_X = eltype(X) if X isa AbstractDict if eltype_X == eltype_ctx || (!isempty(X) && typeinfo_implicit(keytype(X)) && typeinfo_implicit(valtype(X))) string(typeof(X).name) else string(typeof(X)) end else # Types hard-coded here are those which are created by default for a given syntax if eltype_X == eltype_ctx || (!isempty(X) && typeinfo_implicit(eltype_X)) "" elseif print_without_params(eltype_X) string(unwrap_unionall(eltype_X).name) # Print "Array" rather than "Array{T,N}" else string(eltype_X) end end end